Kanis J, McCloskey E, Johansson H, Cooper C, Rizzoli R, Reginster J-Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporosis Int. 2013;24(1):23–57.
Article
CAS
Google Scholar
Krieg M-A, Barkmann R, Gonnelli S, Stewart A, Bauer DC, Barquero LDR, Kaufman JJ, Lorenc R, Miller PD, Olszynski WP. Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD official positions. J Clin Densitom. 2008;11(1):163–87.
Article
Google Scholar
Yu Q, Liu Z-H, Lei T, Tang Z. Subjective evaluation of the frequency of coffee intake and relationship to osteoporosis in Chinese men. J Health Popul Nutr. 2016;35(1):24.
Article
Google Scholar
Johnell O, Kanis J. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis Int. 2006;17(12):1726–33.
Article
CAS
Google Scholar
Kanis JA, Odén A, McCloskey E, Johansson H, Wahl DA, Cooper C. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporosis Int. 2012;23(9):2239–56.
Article
CAS
Google Scholar
Lu Y-C, Lin YC, Lin Y-K, Liu Y-J, Chang K-H, Chieng P-U, Chan WP. Prevalence of osteoporosis and low bone mass in older chinese population based on bone mineral density at multiple skeletal sites. Sci Rep. 2016;6.
Chen I-J, Chiang C-Y, Li Y-H, Chang C-H, Hu C-C, Chen D, Chang Y, Yang W-E, Shih H-N, Ueng S-N. Nationwide cohort study of hip fractures: time trends in the incidence rates and projections up to 2035. Osteoporosis Int. 2015;26(2):681–8.
Article
Google Scholar
Khodadadi S, Khodadadi S. Estimation of annual per capita treatment in osteoporosis. JPD. 2016;4(1):18.
Google Scholar
Chan D-C, Lee Y-S, Wu Y-J, Tsou H-H, Chen C-T, Hwang J-S, Tsai K-S, Yang R-S. A 12-year ecological study of hip fracture rates among older Taiwanese adults. Calcif Tissue Int. 2013;93(5):397–404.
Article
CAS
Google Scholar
Silva TR, Franz R, Maturana MA, Spritzer PM. Associations between body composition and lifestyle factors with bone mineral density according to time since menopause in women from southern Brazil: a cross-sectional study. BMC Endocr Disord. 2015;15(1):71.
Article
Google Scholar
Zhu K, Hunter M, James A, Lim EM, Walsh JP. Associations between body mass index, lean and fat body mass and bone mineral density in middle-aged Australians: the Busselton healthy ageing study. Bone. 2015;74:146–52.
Article
Google Scholar
Langsetmo L, Hanley DA, Prior JC, Barr SI, Anastassiades T, Towheed T, Goltzman D, Morin S, Poliquin S, Kreiger N. Dietary patterns and incident low-trauma fractures in postmenopausal women and men aged ≥ 50 y: a population-based cohort study. Am J Clin Nutr. 2011;93(1):192–9.
Article
CAS
Google Scholar
Akhlaque U, Ayaz SB, Akhtar N, Ahmad N. Association of bone mineral density and body mass index in a cohort of Pakistanis: relation to gender, menopause and ethnicity. The Egyptian Rheumatologist. 2017;39(1):39–43.
Article
Google Scholar
Butt MS, Sultan MT. Coffee and its consumption: benefits and risks. Crit Rev Food Sci Nutr. 2011;51(4):363–73.
Article
CAS
Google Scholar
Higdon JV, Frei B. Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr. 2006;46(2):101–23.
Article
CAS
Google Scholar
Lin C-C. Approach of improving coffee industry in Taiwan-promote quality of coffee bean by fermentation. JIMS. 2010;5(1):154–9.
Google Scholar
Demirbag D, Ozdemir F, Ture M. Effects of coffee consumption and smoking habit on bone mineral density. Rheumatol Int. 2006;26(6):530–5.
Article
CAS
Google Scholar
Choi E-J, Kim K-H, Koh Y-J, Lee J-S, Lee D-R, Park SM. Coffee consumption and bone mineral density in Korean premenopausal women. Korean J Fam Med. 2014;35(1):11–8.
Article
Google Scholar
Hallström H, Byberg L, Glynn A, Lemming EW, Wolk A, Michaëlsson K. Long-term coffee consumption in relation to fracture risk and bone mineral density in women. Am J Epidemiol. 2013;178(6):898–909.
Article
Google Scholar
Choi E, Choi K-H, Park SM, Shin D, Joh H-K, Cho E. The benefit of bone health by drinking coffee among Korean postmenopausal women: a cross-sectional analysis of the fourth & fifth Korea national health and nutrition examination surveys. PLoS One. 2016;11(1):e0147762.
Article
Google Scholar
Haque M. Sampling methods in social research. Global Research Methodology. 2010:1–6.
Nakada M, Demura S. Effect of past and present lifestyle habits and nutrition on calcaneal quantitative osteo-sono index in pre-and post-menopausal females. Health. 2010;2(2):124–30.
Article
Google Scholar
Arai Y, Iinuma T, Takayama M, Takayama M, Abe Y, Fukuda R, Ando J, Ohta K, Hanabusa H, Asakura K. The Tokyo oldest old survey on Total health (TOOTH): a longitudinal cohort study of multidimensional components of health and well-being. BMC Geriatr. 2010;10(1):35.
Article
Google Scholar
Tanabe R, Kawamura Y, Tsugawa N, Haraikawa M, Sogabe N, Okano T, Hosoi T, Goseki-Sone M. Effects of Fok-I polymorphism in vitamin D receptor gene on serum 25-hydroxyvitamin D, bone-specific alkaline phosphatase and calcaneal quantitative ultrasound parameters in young adults. Asia Pac J Clin Nutr. 2015;24(2):329–35.
CAS
PubMed
Google Scholar
Tsuboi S, Hayakawa T, Kanda H, Fukushima T. The relationship between clustering health-promoting components of lifestyle and bone status among middle-aged women in a general population. Environ Health Prev Med. 2009;14(5):292.
Article
Google Scholar
Sugawara N, Yasui Furukori N, Fujii A, Saito M, Sato Y, Nakagami T, Tsuchimine S, Kaneko S. No association between bone mass and prolactin levels among patients with schizophrenia. Hum Psychopharm Clin. 2011;26(8):596–601.
Article
CAS
Google Scholar
Orwoll ES, Bliziotes M. Osteoporosis: pathophysiology and clinical management: Springer Science & Business Media; 2002.
Google Scholar
Chin K-Y, Low NY, Dewiputri WI, Ima-Nirwanaa S. Factors associated with bone health in Malaysian middle-aged and elderly women assessed via quantitative ultrasound. Int J Environ Res Public Health. 2017;14(7):736.
Article
Google Scholar
Chang H-C, Hsieh C-F, Lin Y-C, Tantoh DM, Kung Y-Y, Lin M-C, Liaw Y-C, Liaw Y-P. Coffee consumption might reduce the risk of osteopenia/osteoporosis in premenopausal Taiwanese women. JFNR. 2017;5(10):789–93.
Article
Google Scholar
Medraś M, Jankowska E, Rogucka E. The effect of smoking tobacco and drinking of alcohol and coffee on bone mineral density of healthy men 40 years of age. Pol Arch Med Wewn. 2000;103(3–4):187–93.
PubMed
Google Scholar
Hallström H, Melhus H, Glynn A, Lind L, Syvänen A-C, Michaëlsson K. Coffee consumption and CYP1A2 genotype in relation to bone mineral density of the proximal femur in elderly men and women: a cohort study. Nutr Metab. 2010;7(1):12.
Article
Google Scholar
Kapetanovic A, Avdic D. Influence of coffee consumption on bone mineral density in postmenopausal women with estrogen deficiency in menstrual history. J Health Sci. 2014;4:2.
Google Scholar
Yang P, Zhang X-Z, Zhang K, Tang Z. Associations between frequency of coffee consumption and osteoporosis in Chinese postmenopausal women. Int J Clin Exp Med. 2015;8(9):15958.
PubMed
PubMed Central
Google Scholar
Tang QY, Kukita T, Ushijima Y, Kukita A, Nagata K, Sandra F, Watanabe T, Toh K, Okuma Y, Kawasaki S. Regulation of osteoclastogenesis by Simon extracts composed of caffeic acid and related compounds: successful suppression of bone destruction accompanied with adjuvant-induced arthritis in rats. Histochem Cell Biol. 2006;125(3):215–25.
Article
CAS
Google Scholar
Hallström H, Wolk A, Glynn A, Michaëlsson K. Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporosis Int. 2006;17(7):1055–64.
Article
Google Scholar
Hallström H, Wolk A, Glynn A, Michaëlsson K, Byberg L. Coffee consumption and risk of fracture in the cohort of Swedish men (COSM). PLoS One. 2014;9(5):e97770.
Article
Google Scholar
Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age. 2012;34(6):1493–515.
Article
Google Scholar
Langsetmo L, Hitchcock C, Kingwell E, Davison K, Berger C, Forsmo S, Zhou W, Kreiger N, Prior J. Physical activity, body mass index and bone mineral density—associations in a prospective population-based cohort of women and men: the Canadian multicentre osteoporosis study (CaMos). Bone. 2012;50(1):401–8.
Article
CAS
Google Scholar
Khoo C, Woo J, Leung P, Kwok A, Kwok T. Determinants of bone mineral density in older postmenopausal Chinese women. Climacteric. 2011;14(3):378–83.
Article
CAS
Google Scholar
Prabha V, StanlyA M. Effect of body mass index on bone mineral density; 2015.
Google Scholar
Barrera G, Bunout D, Gattás V, de la Maza MP, Leiva L, Hirsch S. A high body mass index protects against femoral neck osteoporosis in healthy elderly subjects. Nutrition. 2004;20(9):769–71.
Article
Google Scholar
Wong SK, Chin K-Y, Suhaimi FH, Ahmad F, Ima-Nirwana S. The relationship between metabolic syndrome and osteoporosis: a review. Nutrients. 2016;8(6):347.
Article
Google Scholar
Fawzy T, Muttappallymyalil J, Sreedharan J, Ahmed A, Alshamsi SOS, Al Ali MSSHBB, Al Balsooshi KA. Association between body mass index and bone mineral density in patients referred for dual-energy X-ray absorptiometry scan in Ajman, UAE. J Osteoporos. 2011;2011.
Pagotto V, Silveira EA: Bone mineral density in the noninstitutionalized elderly: influence of sociodemographic and anthropometric factors. Curr Gerontol Geriatr Res. 2016, 2016.
Ho SC, Y-m C, Woo JL. Educational level and osteoporosis risk in postmenopausal Chinese women. Am J Epidemiol. 2005;161(7):680–90.
Article
Google Scholar
Chin K-Y, Ima-Nirwana S. Calcaneal quantitative ultrasound as a determinant of bone health status: what properties of bone does it reflect? Int J Med Sci. 2013;10(12):1778.
Article
Google Scholar