Sobocki P, Jönsson B, Angst J, Rehnberg C. Cost of depression in Europe. J Ment Health Policy Econ. 2006;9(2):87–98.
PubMed
Google Scholar
Pan A, Keum N, Okereke OI, Sun Q, Kivimaki M, Rubin RR, Hu FB. Bidirectional association between depression and metabolic syndrome: a systematic review and meta-analysis of epidemiological studies. Diabetes Care. 2012;35(5):1171–80.
Article
PubMed
PubMed Central
Google Scholar
Depression and Other Common
Mental Disorders: Global Health Estimates. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA
3.0 IGO.
Noorbala AA, Faghihzadeh S, Kamali K, Bagheri Yazdi SA, Hajebi A, Mousavi MT, Akhondzadeh S, Faghihzadeh E, Nouri B. Mental Health Survey of the Iranian Adult Population in 2015. Arch Iran Med. 2017;20(3):128–34.
PubMed
Google Scholar
Mohammadzadeh J, Mami S, Omidi K. Mean Scores of Depression, Anxiety and Stress in Iranian University Students Based on DASS-21: A Systematic Review and Meta-analysis. Int J Epidemiol Res. 2019;6:42–8.
Article
Google Scholar
Mirzaei M, Yasini Ardekani SM, Mirzaei M, Dehghani A. Prevalence of Depression, Anxiety and Stress among Adult Population: Results of Yazd Health Study. Iran J Psychiatry. 2019;14(2):137–46.
PubMed
PubMed Central
Google Scholar
Wesselhoeft R, Sørensen MJ, Heiervang ER, Bilenberg N. Subthreshold depression in children and adolescents - a systematic review. J Affect Disord. 2013;151(1):7–22.
Article
PubMed
Google Scholar
Aarons GA, Monn AR, Leslie LK, Garland AF, Lugo L, Hough RL, Brown SA. Association between mental and physical health problems in high-risk adolescents: a longitudinal study. J Adolesc Health. 2008;43(3):260–7.
Article
PubMed
PubMed Central
Google Scholar
Adolescent mental health. https://www.who.int/news-room/fact-sheets/detail/adolescent-mental-health. Accessed 30 Sept 2018.
World Health O. The World health report : 2001: Mental health : new understanding, new hope. In. Geneva: World Health Organization; 2001.
Google Scholar
Nagy-Pénzes G, Vincze F, Bíró É. Contributing Factors in Adolescents’ Mental Well-Being—The Role of Socioeconomic Status, Social Support, and Health Behavior. Sustainability. 2020;12(22):9597.
Article
Google Scholar
Abbasalizad Farhangi M, Dehghan P, Jahangiry L. Mental health problems in relation to eating behavior patterns, nutrient intakes and health related quality of life among Iranian female adolescents. PLoS ONE. 2018;13:e0195669.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rienks J, Dobson A, Mishra G. Mediterranean dietary pattern and prevalence and incidence of depressive symptoms in mid-aged women: results from a large community-based prospective study. Eur J Clin Nutr. 2013;67(1):75–82.
Article
CAS
PubMed
Google Scholar
Jacka FN, Cherbuin N, Anstey KJ, Butterworth P. Dietary patterns and depressive symptoms over time: examining the relationships with socioeconomic position, health behaviours and cardiovascular risk. PLoS ONE. 2014;9(1):e87657.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ruusunen A, Lehto SM, Mursu J, Tolmunen T, Tuomainen T-P, Kauhanen J, Voutilainen S. Dietary patterns are associated with the prevalence of elevated depressive symptoms and the risk of getting a hospital discharge diagnosis of depression in middle-aged or older Finnish men. J Affect Disord. 2014;159:1–6.
Article
PubMed
Google Scholar
Lai JS, Hiles S, Bisquera A, Hure AJ, McEvoy M, Attia J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am J Clin Nutr. 2013;99(1):181–97.
Article
PubMed
CAS
Google Scholar
Le Port A, Gueguen A, Kesse-Guyot E, Melchior M, Lemogne C, Nabi H, Goldberg M, Zins M, Czernichow S. Association between dietary patterns and depressive symptoms over time: a 10-year follow-up study of the GAZEL cohort. PLoS ONE. 2012;7(12):e51593.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov. 2009;3(1):73–80.
Article
CAS
PubMed
Google Scholar
Deledda A, Annunziata G, Tenore GC, Palmas V, Manzin A, Velluzzi F. Diet-Derived Antioxidants and Their Role in Inflammation, Obesity and Gut Microbiota Modulation. Antioxidants (Basel, Switzerland). 2021;10(5):708.
CAS
Google Scholar
Abshirini M, Siassi F, Koohdani F, Qorbani M, Mozaffari H, Aslani Z, Soleymani M, Entezarian M, Sotoudeh G. Dietary total antioxidant capacity is inversely associated with depression, anxiety and some oxidative stress biomarkers in postmenopausal women: a cross-sectional study. Ann Gen Psychiatry. 2019;18:3.
Article
PubMed
PubMed Central
Google Scholar
Milajerdi A, Keshteli AH, Afshar H, Esmaillzadeh A, Adibi P. Dietary total antioxidant capacity in relation to depression and anxiety in Iranian adults. Nutrition (Burbank, Los Angeles County, Calif). 2019;65:85–90.
Article
CAS
Google Scholar
Haghighatdoost F, Feizi A, Esmaillzadeh A, Feinle-Bisset C, Keshteli AH, Afshar H, Adibi P. Association between the dietary inflammatory index and common mental health disorders profile scores. Clinical nutrition (Edinburgh, Scotland). 2019;38(4):1643–50.
Article
Google Scholar
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96.
Article
PubMed
Google Scholar
Shivappa N, Wirth MD, Murphy EA, Hurley TG, Hébert JR. Association between the Dietary Inflammatory Index (DII) and urinary enterolignans and C-reactive protein from the National Health and Nutrition Examination Survey-2003-2008. Eur J Nutr. 2019;58(2):797–805.
Article
CAS
PubMed
Google Scholar
Vahid F, Shivappa N, Faghfoori Z, Khodabakhshi A, Zayeri F, Hebert JR, Davoodi SH. Validation of a Dietary Inflammatory Index (DII) and Association with Risk of Gastric Cancer: a Case-Control Study. Asian Pac J Cancer Prev. 2018;19(6):1471–7.
CAS
PubMed
PubMed Central
Google Scholar
Vahid F, Shivappa N, Hekmatdoost A, Hebert JR, Davoodi SH, Sadeghi M. Association between Maternal Dietary Inflammatory Index (DII) and abortion in Iranian women and validation of DII with serum concentration of inflammatory factors: case-control study. Appl Physiol Nutr Metab. 2017;42(5):511–6.
Article
CAS
PubMed
Google Scholar
Wirth M, Burch J, Shivappa N, Violanti JM, Burchfiel CM, Fekedulegn D, Andrew ME, Hartley TA, Miller DB, Mnatsakanova A. Association of a dietary inflammatory index with inflammatory indices and the metabolic syndrome among police officers. J Occup Environ Med. 2014;56(9):986.
Article
PubMed
PubMed Central
Google Scholar
Neufcourt L, Assmann K, Fezeu L, Touvier M, Graffouillère L, Shivappa N, Hébert J, Wirth M, Hercberg S, Galan P. Prospective association between the dietary inflammatory index and metabolic syndrome: Findings from the SU. VI. MAX study. Nutr Metab Cardiovasc Dis. 2015;25(11):988–96.
Article
CAS
PubMed
Google Scholar
Garcia-Arellano A, Ramallal R, Ruiz-Canela M, Salas-Salvadó J, Corella D, Shivappa N, Schröder H, Hébert JR, Ros E, Gómez-Garcia E. Dietary inflammatory index and incidence of cardiovascular disease in the PREDIMED study. Nutrients. 2015;7(6):4124–38.
Article
PubMed
PubMed Central
Google Scholar
Tabung FK, Steck SE, Ma Y, Liese AD, Zhang J, Caan B, Hou L, Johnson KC, Mossavar-Rahmani Y, Shivappa N. The association between dietary inflammatory index and risk of colorectal cancer among postmenopausal women: results from the Women’s Health Initiative. Cancer Causes Control. 2015;26(3):399–408.
Article
PubMed
Google Scholar
Graffouillere L, Deschasaux M, Mariotti F, Neufcourt L, Shivappa N, Hébert JR, Wirth MD, Latino-Martel P, Hercberg S, Galan P. The dietary inflammatory index is associated with prostate cancer risk in French middle-aged adults in a prospective study. J Nutr. 2015;146(4):785–91.
Article
CAS
Google Scholar
Maisonneuve P, Shivappa N, Hébert JR, Bellomi M, Rampinelli C, Bertolotti R, Spaggiari L, Palli D, Veronesi G, Gnagnarella P. Dietary inflammatory index and risk of lung cancer and other respiratory conditions among heavy smokers in the COSMOS screening study. Eur J Nutr. 2016;55(3):1069–79.
Article
CAS
PubMed
Google Scholar
Shivappa N, Bosetti C, Zucchetto A, Montella M, Serraino D, La Vecchia C, Hébert JR. Association between dietary inflammatory index and prostate cancer among Italian men. Br J Nutr. 2015;113(2):278–83.
Article
CAS
PubMed
Google Scholar
Shivappa N, Bosetti C, Zucchetto A, Serraino D, La Vecchia C, Hébert JR. Dietary inflammatory index and risk of pancreatic cancer in an Italian case–control study. Br J Nutr. 2015;113(2):292–8.
Article
CAS
PubMed
Google Scholar
Tabung FK, Steck SE, Liese AD, Zhang J, Ma Y, Caan B, Chlebowski RT, Freudenheim JL, Hou L, Mossavar-Rahmani Y. Association between dietary inflammatory potential and breast cancer incidence and death: results from the Women’s Health Initiative. Br J Cancer. 2016;114(11):1277–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wirth MD, Shivappa N, Steck SE, Hurley TG, Hébert JR. The dietary inflammatory index is associated with colorectal cancer in the National Institutes of Health-American Association of Retired Persons Diet and Health Study. Br J Nutr. 2015;113(11):1819–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akbaraly TN, Kerleau C, Wyart M, Chevallier N, Ndiaye L, Shivappa N, Hébert JR, Kivimäki M. Dietary inflammatory index and recurrence of depressive symptoms: results from the Whitehall II Study. Clinical Psychological Science. 2016;4(6):1125–34.
Article
PubMed
PubMed Central
Google Scholar
Shivappa N, Hebert JR, Kivimaki M, Akbaraly T. Alternative Healthy Eating Index 2010, Dietary Inflammatory Index and risk of mortality: results from the Whitehall II cohort study and meta-analysis of previous Dietary Inflammatory Index and mortality studies. Br J Nutr. 2017;118(3):210–21.
Article
CAS
PubMed
Google Scholar
Vahid F, Shivappa N, Faghfoori Z, Khodabakhshi A, Zayeri F, Hebert J, Davoodi S. Validation of a Dietary Inflammatory Index (DII) and Association with Risk of Gastric Cancer: a Case-Control Study. Asian Pac J Cancer Prev. 2018;19:1471–7.
CAS
PubMed
PubMed Central
Google Scholar
Vahid F, Shivappa N, Hekmatdoost A, Hebert J, Davoodi S, Sadeghi M. Association between Maternal Dietary Inflammatory Index (DII) and Abortion in Iranian Women and Validation of DII with Serum Concentration of Inflammatory Factors: Case-Control Study. Appl Physiol Nutr Metab. 2017;42(5):511–6.
Article
CAS
PubMed
Google Scholar
Mihrshahi S, Dobson A, Mishra G. Fruit and vegetable consumption and prevalence and incidence of depressive symptoms in mid-age women: results from the Australian longitudinal study on women’s health. Eur J Clin Nutr. 2015;69(5):585–91.
Article
CAS
PubMed
Google Scholar
Shivappa N, Schoenaker DA, Hebert JR, Mishra GD. Association between inflammatory potential of diet and risk of depression in middle-aged women: the Australian Longitudinal Study on Women’s Health. Br J Nutr. 2016;116(6):1077–86.
Article
CAS
PubMed
Google Scholar
Ghazizadeh H, Yaghooti-Khorasani M, Asadi Z, Zare-Feyzabadi R, Saeidi F, Shabani N, Safari-Ghalezou M, Yadegari M, Nosrati-Tirkani A, Shivappa N, et al. Association between Dietary Inflammatory Index (DII®) and depression and anxiety in the Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) Study population. BMC Psychiatry. 2020;20(1):282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phillips CM, Shivappa N, Hébert JR, Perry IJ. Dietary inflammatory index and mental health: A cross-sectional analysis of the relationship with depressive symptoms, anxiety and well-being in adults. Clin Nutr (Edinburgh, Scotland). 2018;37(5):1485–91.
Article
Google Scholar
Sanchez-Villegas A, Ruiz-Canela M, de la Fuente-Arrillaga C, Gea A, Shivappa N, Hebert JR, Martinez-Gonzalez MA. Dietary inflammatory index, cardiometabolic conditions and depression in the Seguimiento Universidad de Navarra cohort study. Br J Nutr. 2015;114(9):1471–9.
Article
CAS
PubMed
Google Scholar
Diaf M, Khaled MB. Associations Between Dietary Antioxidant Intake and Markers of Atherosclerosis in Middle-Aged Women From North-Western Algeria. Front Nutr. 2018;5:29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abdollahpour I, Nedjat S, Salimi Y, Mansournia MA, Vahid F, Weinstock-Guttman B. The role of dietary antioxidant index and index of nutritional quality in MS onset: finding from an Iranian population-based incident case–control study. Nutr Neurosci. 2022;25(2):379–86.
Article
CAS
PubMed
Google Scholar
Sotoudeh G, Abshirini M, Bagheri F, Siassi F, Koohdani F, Aslany Z. Higher dietary total antioxidant capacity is inversely related to prediabetes: A case-control study. Nutrition (Burbank, Los Angeles County, Calif). 2018;46:20–5.
Article
CAS
Google Scholar
Pantavos A, Ruiter R, Feskens EF, de Keyser CE, Hofman A, Stricker BH, Franco OH, Kiefte-de Jong JC. Total dietary antioxidant capacity, individual antioxidant intake and breast cancer risk: the Rotterdam Study. Int J Cancer. 2015;136(9):2178–86.
Article
CAS
PubMed
Google Scholar
Mozaffari H, Daneshzad E, Surkan PJ, Azadbakht L. Dietary Total Antioxidant Capacity and Cardiovascular Disease Risk Factors: A Systematic Review of Observational Studies. J Am Coll Nutr. 2018;37(6):533–45.
Article
CAS
PubMed
Google Scholar
Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, Hu FB. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ (Clinical research ed). 2014;349:g4490.
Google Scholar
Leenders M, Boshuizen HC, Ferrari P, Siersema PD, Overvad K, Tjønneland A, Olsen A, Boutron-Ruault MC, Dossus L, Dartois L, et al. Fruit and vegetable intake and cause-specific mortality in the EPIC study. Eur J Epidemiol. 2014;29(9):639–52.
Article
CAS
PubMed
Google Scholar
Prohan M, Amani R, Nematpour S, Jomehzadeh N, Haghighizadeh MH. Total antioxidant capacity of diet and serum, dietary antioxidant vitamins intake, and serum hs-CRP levels in relation to depression scales in university male students. Redox Rep. 2014;19(3):133–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Oliveira NG, Teixeira IT, Theodoro H, Branco CS. Dietary total antioxidant capacity as a preventive factor against depression in climacteric women. Dement Neuropsychol. 2019;13(3):305–11.
Article
PubMed
PubMed Central
Google Scholar
Daneshzad E, Keshavarz S-A, Qorbani M, Larijani B, Azadbakht L. Dietary total antioxidant capacity and its association with sleep, stress, anxiety, and depression score: A cross-sectional study among diabetic women. Clinical Nutrition ESPEN. 2020;37:187–94.
Article
PubMed
Google Scholar
Shahinfar H, Shahavandi M, Jibril AT, Djafarian K, Clark CCT, Shab-Bidar S. The Association between Dietary Antioxidant Quality Score and Cardiorespiratory Fitness in Iranian Adults: a Cross-Sectional Study. Clin Nutr Res. 2020;9(3):171–81.
Article
PubMed
PubMed Central
Google Scholar
Farhadnejad H, Neshatbini Tehrani A, Salehpour A, Hekmatdoost A. Antioxidant vitamin intakes and risk of depression, anxiety and stress among female adolescents. Clin Nutr ESPEN. 2020;40:257–62.
Article
PubMed
Google Scholar
Głąbska D, Kołota A, Lachowicz K, Skolmowska D, Stachoń M, Guzek D. The Influence of Vitamin D Intake and Status on Mental Health in Children: A Systematic Review. Nutrients. 2021;13(3):952.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vahid F, Rahmani D, Davoodi SH. Validation of Dietary Antioxidant Index (DAI) and investigating the relationship between DAI and the odds of gastric cancer. Nutr Metab. 2020;17(1):102.
Article
CAS
Google Scholar
Azadbakht L, Hajishafiee M, Golshahi J, Esmaillzadeh A. Snacking behavior and obesity among female adolescents in Isfahan. Iran J Am Coll Nutr. 2016;35(5):405–12.
Article
PubMed
Google Scholar
World Health Organization growth reference data for 5 to 19 years old girls. https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age. Accessed 6 Oct 2018.
The USDA Food Data Central. https://fdc.nal.usda.gov. Accessed 10 Oct 2018.
Beaufort IN, De Weert-Van Oene GH, Buwalda VAJ, de Leeuw JRJ, Goudriaan AE. The Depression, Anxiety and Stress Scale (DASS-21) as a Screener for Depression in Substance Use Disorder Inpatients: A Pilot Study. Eur Addict Res. 2017;23(5):260–8.
Article
PubMed
Google Scholar
Asghari A, Saed F, Dibajnia P. Psychometric properties of the Depression Anxiety Stress Scales-21 (DASS-21) in a non-clinical Iranian sample. Int J psychol. 2008;2(2):82–102.
Google Scholar
Lin C-Y, Imani V, Griffiths MD, Pakpour AH. Validity of the Yale Food Addiction Scale for Children (YFAS-C): Classical test theory and item response theory of the Persian YFAS-C. Eat Weight Disord. 2021;26(5):1457–66.
Article
PubMed
Google Scholar
Lovibond S, Lovibond P. Manual for the depression anxiety stress scales. Sydney: Psychology Foundation of Australia; 1995. ISBN 7334–1423–0.
Google Scholar
Vahid F, Shivappa N, Faghfoori Z, Khodabakhshi A, Zayeri F. R Hebert J, Davoodi SH: Validation of a Dietary Inflammatory Index (DII) and Association with Risk of Gastric Cancer: a Case-Control Study. Asian Pac J Cancer Prev. 2018;19(6):1471–7.
CAS
PubMed
PubMed Central
Google Scholar
Adjibade M, Andreeva VA, Lemogne C, Touvier M, Shivappa N, Hébert JR, Wirth MD, Hercberg S, Galan P, Julia C, et al. The Inflammatory Potential of the Diet Is Associated with Depressive Symptoms in Different Subgroups of the General Population. J Nutr. 2017;147(5):879–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergmans RS, Malecki KM. The association of dietary inflammatory potential with depression and mental well-being among US adults. Prev Med. 2017;99:313–9.
Article
PubMed
PubMed Central
Google Scholar
Shivappa N, Hebert JR, Rashidkhani B. Association between Inflammatory Potential of Diet and Stress Levels in Adolescent Women in Iran. Arch Iran Med. 2017;20(2):108–12.
PubMed
Google Scholar
Shivappa N, Hebert JR, Neshatbini Tehrani A, Bayzai B, Naja F, Rashidkhani B. A Pro-Inflammatory Diet Is Associated With an Increased Odds of Depression Symptoms Among Iranian Female Adolescents: A Cross-Sectional Study. Front Psychiatry. 2018;9:400.
Article
PubMed
PubMed Central
Google Scholar
Han Q-Q, Yu J. Inflammation: a mechanism of depression? Neurosci Bull. 2014;30(3):515–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahin C, Dursun S, Cetin M, Aricioglu F. The Neuroinflammation Perspective of Depression: Reuniting the Outstanding Mechanisms of the Pathophysiology. Klinik Psikofarmakoloji Bülteni-Bulletin of Clinical Psychopharmacology. 2016;26(2):196–206.
Article
CAS
Google Scholar
Finnell JE, Wood SK. Neuroinflammation at the interface of depression and cardiovascular disease: Evidence from rodent models of social stress. Neurobiology of stress. 2016;4:1–14.
Article
PubMed
PubMed Central
Google Scholar
Kheirouri S, Alizadeh M. Dietary Inflammatory Potential and the Risk of Incident Depression in Adults: A Systematic Review. Advances in nutrition (Bethesda, Md). 2019;10(1):9–18.
Article
Google Scholar
Liu YZ, Wang YX, Jiang CL. Inflammation: The Common Pathway of Stress-Related Diseases. Front Hum Neurosci. 2017;11:316.
Article
PubMed
PubMed Central
CAS
Google Scholar
Busillo JM, Azzam KM, Cidlowski JA. Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J Biol Chem. 2011;286(44):38703–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akbaraly TN, Brunner EJ, Ferrie JE, Marmot MG, Kivimaki M, Singh-Manoux A. Dietary pattern and depressive symptoms in middle age. Br J Psychiatry. 2018;195(5):408–13.
Article
Google Scholar
Wolniczak I, Cáceres-DelAguila JA, Maguiña JL, Bernabe-Ortiz A. Fruits and vegetables consumption and depressive symptoms: A population-based study in Peru. PLoS ONE. 2017;12(10):e0186379.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jacka FN, Pasco JA, Mykletun A, Williams LJ, Hodge AM, O’Reilly SL, Nicholson GC, Kotowicz MA, Berk M. Association of Western and traditional diets with depression and anxiety in women. Am J Psychiatry. 2010;167(3):305–11.
Article
PubMed
Google Scholar
Payne ME, Steck SE, George RR, Steffens DC. Fruit, vegetable, and antioxidant intakes are lower in older adults with depression. J Acad Nutr Diet. 2012;112(12):2022–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stedile N, Canuto R, Col CD, Sene JS, Stolfo A, Wisintainer GN, Henriques JA, Salvador M. Dietary total antioxidant capacity is associated with plasmatic antioxidant capacity, nutrient intake and lipid and DNA damage in healthy women. Int J Food Sci Nutr. 2016;67(4):479–88.
Article
CAS
PubMed
Google Scholar
Czarny P, Wigner P, Galecki P, Sliwinski T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2018;80(Pt C):309–21.
Article
CAS
PubMed
Google Scholar
Hewitt G, Jurk D, Marques FDM, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos JF. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun. 2012;3(1):708.
Article
PubMed
CAS
Google Scholar
Xu Y, Wang C, Klabnik JJ, O’Donnell JM. Novel therapeutic targets in depression and anxiety: antioxidants as a candidate treatment. Curr Neuropharmacol. 2014;12(2):108–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev. 2012;36(2):764–85.
Article
CAS
PubMed
Google Scholar
Ng F, Berk M, Dean O, Bush AI. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol. 2008;11(6):851–76.
Article
CAS
PubMed
Google Scholar