Sallis JF, Cerin E, Conway TL, Adams MA, Frank LD, Pratt M, et al. Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study. Lancet. 2016;387(10034):2207–17.
Article
PubMed
Google Scholar
Creatore MI, Glazier RH, Moineddin R, Fazli GS, Johns A, Gozdyra P, et al. Association of neighborhood walkability with change in overweight, obesity, and diabetes. Jama. 2016;315(20):2211–20.
Article
CAS
PubMed
Google Scholar
Wasfi RA, Dasgupta K, Orpana H, Ross NA. Neighborhood walkability and body mass index trajectories: longitudinal study of Canadians. Am J Public Health. 2016;106(5):934–940.
Barrington-Leigh C, Millard-Ball A. A century of sprawl in the United States. Proc Natl Acad Sci. 2015;112(27):8244–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cain KL, Millstein RA, Sallis JF, Conway TL, Gavand KA, Frank LD, et al. Contribution of streetscape audits to explanation of physical activity in four age groups based on the microscale audit of pedestrian streetscapes (MAPS). Soc Sci Med. 2014;116:82–92.
Article
PubMed
PubMed Central
Google Scholar
Sallis JF, Cain KL, Conway TL, Gavand KA, Millstein RA, Geremia CM, et al. Peer reviewed: is your neighborhood designed to support physical activity? A brief streetscape audit tool. Prev Chronic Dis. 2015;12.
Lafontaine SJ, Sawada M, Kristjansson E. A direct observation method for auditing large urban centers using stratified sampling, mobile GIS technology and virtual environments. Int J Health Geogr. 2017;16(1):6.
Article
PubMed
PubMed Central
Google Scholar
Chudyk AM, Winters M, Gorman E, McKay HA, Ashe MC. Agreement between virtual and in-the-field environment audits of assisted living sites. J Aging Phys Act. 2014;22(3):414–20.
Article
PubMed
Google Scholar
Curtis JW, Curtis A, Mapes J, Szell AB, Cinderich A. Using google street view for systematic observation of the built environment: analysis of spatio-temporal instability of imagery dates. Int J Health Geogr. 2013;12(1):53.
Article
PubMed
PubMed Central
Google Scholar
Kelly CM, Wilson JS, Baker EA, Miller DK, Schootman M. Using Google street view to audit the built environment: inter-rater reliability results. Ann Behav Med. 2013;45(1):108–12.
Article
Google Scholar
Bader MD, Mooney SJ, Bennett B, Rundle AG. The promise, practicalities, and perils of virtually auditing neighborhoods using Google street view. Ann Am Acad Pol Soc Sci. 2017;669(1):18–40.
Article
Google Scholar
Zhu W, Sun Y, Kurka J, Geremia C, Engelberg JK, Cain K, et al. Reliability between online raters with varying familiarities of a region: microscale audit of pedestrian streetscapes (MAPS). Landsc Urban Plan. 2017;167:240–8.
Article
PubMed
PubMed Central
Google Scholar
Millstein RA, Cain KL, Sallis JF, Conway TL, Geremia C, Frank LD, et al. Development, scoring, and reliability of the microscale audit of pedestrian streetscapes (MAPS). BMC Public Health. 2013;13(1):403.
Article
PubMed
PubMed Central
Google Scholar
Google Inc. Google maps. 2019 [Available from: www.google.com/maps].
Griew P, Hillsdon M, Foster C, Coombes E, Jones A, Wilkinson P. Developing and testing a street audit tool using Google street view to measure environmental supportiveness for physical activity. Int J Behav Nutr Phys Act. 2013;10(1):103.
Article
PubMed
PubMed Central
Google Scholar
Badland HM, Opit S, Witten K, Kearns RA, Mavoa S. Can virtual streetscape audits reliably replace physical streetscape audits? J Urban Health. 2010;87(6):1007–16.
Article
PubMed
PubMed Central
Google Scholar
Clarke P, Ailshire J, Melendez R, Bader M, Morenoff J. Using Google earth to conduct a neighborhood audit: reliability of a virtual audit instrument. Health Place. 2010;16(6):1224–9.
Article
PubMed
PubMed Central
Google Scholar
Odgers CL, Caspi A, Bates CJ, Sampson RJ, Moffitt TE. Systematic social observation of children’s neighborhoods using Google street view: a reliable and cost-effective method. J Child Psychol Psychiatry. 2012;53(10):1009–17.
Article
PubMed
PubMed Central
Google Scholar
Rundle AG, Bader MD, Richards CA, Neckerman KM, Teitler JO. Using Google street view to audit neighborhood environments. Am J Prev Med. 2011;40(1):94–100.
Article
PubMed
PubMed Central
Google Scholar
Chiang Y-C, Sullivan W, Larsen L. Measuring neighborhood walkable environments: a comparison of three approaches. Int J Environ Res Public Health. 2017;14(6):593.
Article
PubMed Central
Google Scholar
Statistics Canada. More information on the postal code. 2009 [Available from: http://www12.statcan.ca/census-recensement/2006/ref/dict/geo035a-eng.cfm.
Day K, Boarnet M, Alfonzo M, Forsyth A. The Irvine–Minnesota inventory to measure built environments: development. Am J Prev Med. 2006;30(2):144–52.
Article
PubMed
Google Scholar
Pikora TJ, Bull FC, Jamrozik K, Knuiman M, Giles-Corti B, Donovan RJ. Developing a reliable audit instrument to measure the physical environment for physical activity. Am J Prev Med. 2002;23(3):187–94.
Article
PubMed
Google Scholar
Michael YL, Keast EM, Chaudhury H, Day K, Mahmood A, Sarte AF. Revising the senior walking environmental assessment tool. Prev Med. 2009;48(3):247–9.
Article
PubMed
Google Scholar
Hoehner CM, Ramirez LKB, Elliott MB, Handy SL, Brownson RC. Perceived and objective environmental measures and physical activity among urban adults. Am J Prev Med. 2005;28(2):105–16.
Article
PubMed
Google Scholar
Hoehner CM, Ivy A, Ramirez LKB, Handy S, Brownson RC. Active neighborhood checklist: a user-friendly and reliable tool for assessing activity friendliness. Am J Health Promot. 2007;21(6):534–7.
Article
PubMed
Google Scholar
King D. Neighborhood and individual factors in activity in older adults: results from the neighborhood and senior health study. J Aging Phys Act. 2008;16(2):144–70.
Article
PubMed
Google Scholar
Clifton KJ, Smith ADL, Rodriguez D. The development and testing of an audit for the pedestrian environment. Landsc Urban Plan. 2007;80(1–2):95–110.
Article
Google Scholar
Porter AK, Wen F, Herring AH, Rodríguez DA, Messer LC, Laraia BA, et al. Reliability and one-year stability of the PIN3 neighborhood environmental audit in urban and rural neighborhoods. J Urban Health. 2018:1–9.
Ewing R, Handy S, Brownson RC, Clemente O, Winston E. Identifying and measuring urban design qualities related to walkability. J Phys Act Health. 2006;3(s1):S223–S40.
Article
PubMed
Google Scholar
Saelens BE, Frank LD, Auffrey C, Whitaker RC, Burdette HL, Colabianchi N. Measuring physical environments of parks and playgrounds: EAPRS instrument development and inter-rater reliability. J Phys Act Health. 2006;3(s1):S190–207.
Article
PubMed
Google Scholar
Bader MD, Mooney SJ, Lee YJ, Sheehan D, Neckerman KM, Rundle AG, et al. Development and deployment of the computer assisted neighborhood visual assessment system (CANVAS) to measure health-related neighborhood conditions. Health Place. 2015;31:163–72.
Article
PubMed
Google Scholar
Millington C, Thompson CW, Rowe D, Aspinall P, Fitzsimons C, Nelson N, et al. Development of the Scottish walkability assessment tool (SWAT). Health Place. 2009;15(2):474–81.
Article
PubMed
Google Scholar
Burton EJ, Mitchell L, Stride CB. Good places for ageing in place: development of objective built environment measures for investigating links with older people's wellbeing. BMC Public Health. 2011;11(1):839.
Article
PubMed
PubMed Central
Google Scholar
Boarnet MG, Forsyth A, Day K, Oakes JM. The street level built environment and physical activity and walking: results of a predictive validity study for the Irvine Minnesota inventory. Environ Behav. 2011;43(6):735–75.
Article
Google Scholar
Rodgers SE, Bailey R, Johnson R, Poortinga W, Smith R, Berridge D, et al., editors. The revised Residential Environment Assessment Tool. Health impact, and economic value, of meeting housing quality standards: a retrospective longitudinal data linkage study; 2018: NIHR Journals Library.
Carr LJ, Dunsiger SI, Marcus BH. Validation of walk score for estimating access to walkable amenities. Br J Sports Med. 2011;45(14):1144–8.
Article
PubMed
Google Scholar
Carr LJ, Dunsiger SI, Marcus BH. Walk score™ as a global estimate of neighborhood walkability. Am J Prev Med. 2010;39(5):460–3.
Article
PubMed
PubMed Central
Google Scholar
Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37–46.
Article
Google Scholar
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977:159–74.
Feinstein AR, Cicchetti DV. High agreement but low kappa: I. the problems of two paradoxes. J Clin Epidemiol. 1990;43(6):543–9.
Article
CAS
PubMed
Google Scholar
Shrout PE. Measurement reliability and agreement in psychiatry. Stat Methods Med Res. 1998;7(3):301–17.
Article
CAS
PubMed
Google Scholar
Vanwolleghem G, Van Dyck D, Ducheyne F, De Bourdeaudhuij I, Cardon G. Assessing the environmental characteristics of cycling routes to school: a study on the reliability and validity of a Google street view-based audit. Int J Health Geogr. 2014;13(1):19.
Article
PubMed
PubMed Central
Google Scholar
Van Cauwenberg J, Van Holle V, De Bourdeaudhuij I, Van Dyck D, Deforche B. Neighborhood walkability and health outcomes among older adults: the mediating role of physical activity. Health Place. 2016;37:16–25.
Article
PubMed
Google Scholar
Van Holle V, Van Cauwenberg J, Van Dyck D, Deforche B, Van de Weghe N, De Bourdeaudhuij I. Relationship between neighborhood walkability and older adults’ physical activity: results from the Belgian environmental physical activity study in seniors (BEPAS seniors). Int J Behav Nutr Phys Act. 2014;11(1):110.
Article
PubMed
PubMed Central
Google Scholar
Thornton CM, Conway TL, Cain KL, Gavand KA, Saelens BE, Frank LD, et al. Disparities in pedestrian streetscape environments by income and race/ethnicity. Soc Sci Med. 2016;2:206–16.
Google Scholar
Dannenberg AL, Jackson RJ, Frumkin H, Schieber RA, Pratt M, Kochtitzky C, et al. The impact of community design and land-use choices on public health: a scientific research agenda. Am J Public Health. 2003;93(9):1500–8.
Article
PubMed
PubMed Central
Google Scholar
Cunningham GO, Michael YL, Farquhar SA, Lapidus J. Developing a reliable senior walking environmental assessment tool. Am J Prev Med. 2005;29(3):215–7.
Article
PubMed
Google Scholar
Yin L, Cheng Q, Wang Z, Shao Z. ‘Big data’for pedestrian volume: exploring the use of Google street view images for pedestrian counts. Appl Geogr. 2015;63:337–45.
Article
Google Scholar
Yin L, Wang Z. Measuring visual enclosure for street walkability: using machine learning algorithms and Google street view imagery. Appl Geogr. 2016;76:147–53.
Article
Google Scholar
Liu L, Silva EA, Wu C, Wang H. A machine learning-based method for the large-scale evaluation of the qualities of the urban environment. Comput Environ Urban Syst. 2017;65:113–25.
Article
Google Scholar