Price JF, Mowbray PI, Lee AJ, Rumley A, Lowe GD, Fowkes FG. Relationship between smoking and cardiovascular risk factors in the development of peripheral arterial disease and coronary artery disease: Edinburgh artery study. Eur Heart J. 1999;20(5):344–53.
Article
CAS
Google Scholar
Lu L, Mackay DF, Pell JP. Meta-analysis of the association between cigarette smoking and peripheral arterial disease. Heart. 2014;100(5):414–23.
Article
CAS
Google Scholar
How Tobacco Smoke Causes Disease. The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General. Atlanta (GA)2010. 9780160840784.
Criqui MH, Kamineni A, Allison MA, et al. Risk factor differences for aortic versus coronary calcified atherosclerosis: the multiethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30(11):2289–96.
Article
CAS
Google Scholar
Howard G, Wagenknecht LE, Burke GL, et al. Cigarette smoking and progression of atherosclerosis: the atherosclerosis risk in communities (ARIC) study. JAMA. 1998;279(2):119–24.
Article
CAS
Google Scholar
Kaufman DJ, Roman MJ, Devereux RB, et al. Prevalence of smoking and its relationship with carotid atherosclerosis in Alaskan Eskimos of the Norton sound region: the GOCADAN study. Nicotine Tob Res. 2008;10(3):483–91.
Article
Google Scholar
Solberg LA, Strong JP. Risk factors and atherosclerotic lesions. A review of autopsy studies. Arteriosclerosis. 1983;3(3):187–98.
Article
CAS
Google Scholar
Auerbach O, Carter HW, Garfinkel L, Hammond EC. Cigarette smoking and coronary artery disease. A macroscopic and microscopic study. Chest. 1976;70(6):697–705.
Article
CAS
Google Scholar
Strong JP, Richards ML. Cigarette smoking and atherosclerosis in autopsied men. Atherosclerosis. 1976;23(3):451–76.
Article
CAS
Google Scholar
Patel YC, Eggen DA, Strong JP. Obesity, smoking and atherosclerosis. A study of interassociations. Atherosclerosis. 1980;36(4):481–90.
Article
CAS
Google Scholar
Lifsic AM. Atherosclerosis in smokers. Bull World Health Organ. 1976;53(5–6):631–8.
CAS
PubMed
PubMed Central
Google Scholar
Fagerstrom K. Time to first cigarette; the best single indicator of tobacco dependence? Monaldi Arch Chest Dis. 2003;59(1):91–4.
CAS
PubMed
Google Scholar
Guertin KA, Gu F, Wacholder S, et al. Time to first morning cigarette and risk of chronic obstructive pulmonary disease: smokers in the PLCO Cancer screening trial. PLoS One. 2015;10(5):e0125973.
Article
Google Scholar
Selya AS, Oancea SC, Thapa S. Time to first cigarette, a proxy of nicotine dependence, increases the risk of pulmonary impairment, independently of current and lifetime smoking behavior. Nicotine Tob Res. 2016;18(6):1431–9.
Article
CAS
Google Scholar
Gu F, Wacholder S, Kovalchik S, et al. Time to smoke first morning cigarette and lung cancer in a case-control study. J Natl Cancer Inst. 2014;106(6) dju118.
Muscat JE, Ahn K, Richie JP Jr, Stellman SD. Nicotine dependence phenotype and lung cancer risk. Cancer. 2011;117(23):5370–6.
Article
CAS
Google Scholar
Ito H, Gallus S, Hosono S, et al. Time to first cigarette and lung cancer risk in Japan. Ann Oncol. 2013;24(11):2870–5.
Article
CAS
Google Scholar
Muscat JE, Ahn K, Richie JP Jr, Stellman SD. Nicotine dependence phenotype, time to first cigarette, and risk of head and neck cancer. Cancer. 2011;117(23):5377–82.
Article
CAS
Google Scholar
Kovalchik SA, Tammemagi M, Berg CD, et al. Targeting of low-dose CT screening according to the risk of lung-cancer death. N Engl J Med. 2013;369(3):245–54.
Article
CAS
Google Scholar
Arcadi T, Maffei E, Sverzellati N, et al. Coronary artery calcium score on low-dose computed tomography for lung cancer screening. World J Radiol. 2014;6(6):381–7.
Article
Google Scholar
Lumbreras B, Donat L, Hernandez-Aguado I. Incidental findings in imaging diagnostic tests: a systematic review. Br J Radiol. 2010;83(988):276–89.
Article
CAS
Google Scholar
Greenland P, Bonow RO, Brundage BH, et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol. 2007;49(3):378–402.
Article
Google Scholar
Hecht HS, Henschke C, Yankelevitz D, Fuster V, Narula J. Combined detection of coronary artery disease and lung cancer. Eur Heart J. 2014;35(40):2792–6.
Article
Google Scholar
Allison MA, Budoff MJ, Nasir K, et al. Ethnic-specific risks for atherosclerotic calcification of the thoracic and abdominal aorta (from the multi-ethnic study of atherosclerosis). Am J Cardiol. 2009;104(6):812–7.
Article
Google Scholar
Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO. The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom tolerance questionnaire. Br J Addict. 1991;86(9):1119–27.
Article
CAS
Google Scholar
Schnoll RA, Goren A, Annunziata K, Suaya JA. The prevalence, predictors and associated health outcomes of high nicotine dependence using three measures among US smokers. Addiction. 2013;108(11):1989–2000.
Article
Google Scholar
Maroules CD, Rosero E, Ayers C, Peshock RM, Khera A. Abdominal aortic atherosclerosis at MR imaging is associated with cardiovascular events: the Dallas heart study. Radiology. 2013;269(1):84–91.
Article
Google Scholar
Branstetter SA, Muscat JE. Time to first cigarette and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels in adult smokers; National Health and nutrition examination survey (NHANES), 2007-2010. Cancer Epidemiol Biomark Prev. 2013;22(4):615–22.
Article
CAS
Google Scholar
Muscat JE, Stellman SD, Caraballo RS, Richie JP Jr. Time to first cigarette after waking predicts cotinine levels. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2009;18(12):3415–20.
Article
CAS
Google Scholar
Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004;43(10):1731–7.
Article
CAS
Google Scholar
Mons U, Muscat JE, Modesto J, Richie JP Jr, Brenner H. Effect of smoking reduction and cessation on the plasma levels of the oxidative stress biomarker glutathione--post-hoc analysis of data from a smoking cessation trial. Free Radic Biol Med. 2016;91:172–7.
Article
CAS
Google Scholar
King CC, Piper ME, Gepner AD, Fiore MC, Baker TB, Stein JH. Longitudinal impact of smoking and smoking cessation on inflammatory markers of cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2017;37(2):374–9.
Article
CAS
Google Scholar
Burns A, Strawbridge JD, Clancy L, Doyle F. Exploring smoking, mental health and smoking-related disease in a nationally representative sample of older adults in Ireland - a retrospective secondary analysis. J Psychosom Res. 2017;98:78–86.
Article
Google Scholar
Vargas HO, Nunes SO, de Castro MR, et al. Oxidative stress and inflammatory markers are associated with depression and nicotine dependence. Neurosci Lett. 2013;544:136–40.
Article
CAS
Google Scholar
Selya AS, Hesse ND. Time to first cigarette and serum cholesterol levels. Soc Sci Med. 2016.
Cluette-Brown J, Mulligan J, Doyle K, Hagan S, Osmolski T, Hojnacki J. Oral nicotine induces an atherogenic lipoprotein profile. Proc Soc Exp Biol Med. 1986;182(3):409–13.
Article
CAS
Google Scholar
Hojnacki J, Mulligan J, Cluette-Brown J, Igoe F, Osmolski T. Oral nicotine impairs clearance of plasma low density lipoproteins. Proc Soc Exp Biol Med. 1986;182(3):414–8.
Article
CAS
Google Scholar
Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P. Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A. 2012;109(14):5541–6.
Article
CAS
Google Scholar
Brodsky SV, Barth RF, Mo X, et al. An obesity paradox: an inverse correlation between body mass index and atherosclerosis of the aorta. Cardiovasc Pathol. 2016;25(6):515–20.
Article
Google Scholar
Chan WC, Koelmeyer T. Polysarcia adiposa: morbid obesity. Am J Forensic Med Pathol. 2007;28(3):249–54.
Article
Google Scholar
Rastogi P, Pinto DS, Pai MR, Kanchan T. An autopsy study of coronary atherosclerosis and its relation to anthropometric measurements/indices of overweight and obesity in men. J Forensic Legal Med. 2012;19(1):12–7.
Article
Google Scholar
Okura Y, Urban LH, Mahoney DW, Jacobsen SJ, Rodeheffer RJ. Agreement between self-report questionnaires and medical record data was substantial for diabetes, hypertension, myocardial infarction and stroke but not for heart failure. J Clin Epidemiol. 2004;57(10):1096–103.
Article
Google Scholar
Dave GJ, Bibeau DL, Schulz MR, et al. Predictors of congruency between self-reported hypertension status and measured blood pressure in the stroke belt. J Am Soc Hypertens. 2013;7(5):370–8.
Article
Google Scholar
Jackson JM, DeFor TA, Crain AL, et al. Validity of diabetes self-reports in the Women's Health Initiative. Menopause. 2014;21(8):861–8.
Article
Google Scholar
Hebert PL, Geiss LS, Tierney EF, Engelgau MM, Yawn BP, McBean AM. Identifying persons with diabetes using Medicare claims data. Am J Med Qual. 1999;14(6):270–7.
Article
CAS
Google Scholar
Ngo DL, Marshall LM, Howard RN, Woodward JA, Southwick K, Hedberg K. Agreement between self-reported information and medical claims data on diagnosed diabetes in Oregon's Medicaid population. J Public Health Manag Pract. 2003;9(6):542–4.
Article
Google Scholar
Young RP, Duan F, Chiles C, et al. Airflow limitation and histology shift in the National Lung Screening Trial. The NLST-ACRIN cohort substudy. Am J Respir Crit Care Med. 2015;192(9):1060–7.
Article
Google Scholar