This study estimated that 42.2% of individuals with diabetes in Eastern Libya had probable PDN, based on a S-LANSS score of ≥12. This estimate is similar to our pilot study that found that 41.3% of 109 individuals with diabetes had probable PDN [19]. The estimate is similar to the findings of our systematic review that estimated the prevalence of PDN in individuals with diabetes in the MENA region to be 43.2%, (95% CI = 30.1–57.2%, eight surveys, 7806 participants, 3761 women) [16]. Our estimate of prevalence of PDN in Libya is lower than that reported in Saudi Arabia (65.3%) [14] and higher than Turkey (14%) [15] and (23%) [24], but higher than the UK (33%) [25] and the United States of America USA (11–25%) [26].
Reasons for the differences in estimates between countries
There are variations in the estimates of the prevalence of PDN between and within countries in research literature. Reasons include disparities in study methodologies, sample characteristics, eligibility criteria for co-morbidities, treatments to manage diabetes and operational definitions and measurement techniques to identify neuropathic pain [27,28,29]. For example, a cross-sectional study conducted in the UK using a postal survey estimated that 64% of individuals with diabetes experienced neuropathic elements but this figure declined to 30% when these respondents were assessed using a neurological examination [27]. There has been a debate about the possibility of imprecise estimates of prevalence due to the use of neuropathic pain screening tools rather than full neurological examination [30,31,32,33]. Symptoms-based questionnaires including S-LANSS are widely used to screen for probable neuropathic characteristics by researchers and health care professionals prior to further examination if required. Thus, we decided to use the S-LANSS as it would enable direct comparison with previous studies. We intend to conduct a study using full neurological examination in the future [33].
Risk factors for the development of PDN
The main risk factors for PDN identified in our study were increased duration of diabetes (> 15 years), obesity (BMI ≥ 30 Kg/m2), high fasting plasma glucose concentration (> 125 mg/dl) and smoking (only for men). This is consistent with research findings from other studies in the MENA region [12,13,14,15, 24, 34, 35] and worldwide [36]. Other risk factors not measured in our study include hypertension and high cholesterol. Evidence also suggests that there is a higher incidence PDN in individuals with prolonged impaired glucose intolerance before diabetes has been diagnosed [37,38,39]. Socioeconomic factors including lifestyle, diet, and health care policies such as food labelling and the availability low glycaemic food items facilitating blood sugar level control contribute to higher incidence of diabetes and associated complications and may be one reason for country and regional differences in the prevalence of PDN [29].
Higher levels of education and employment were also associated with higher percentages of people with PDN possibly because they are more likely to have sedentary jobs and higher BMI.
Clinical implications of the findings
In our study, only 3.6% of individuals with PDN reported that they had received a diagnosis of PDN from their clinician and this was from consultations outside of Libya (Tunisia and Egypt). We speculate that clinicians in Libya may not be aware of the presence of PDN in patients or that they consider PDN to be an inevitable consequence of diabetes and not worthy of specific consideration and/or treatment. Clearly, there is a need to raise awareness of the importance of diagnosing and managing PDN including the consequence of inadequate control of diabetes in future policy. Our findings provide evidence that long-term glycaemic control is critical to reduce the incidence of PDN and that there is inadequate management of pain. This is not unique to Libya. For example, Daousi et al. reported that PDN was inadequately managed in more than 40% of individuals in the United Kingdom [29, 40], with similar findings in Canadian populations [41].
Strong evidence from systematic reviews suggest that PDN can be managed using pharmacological interventions including tricyclic antidepressants and gabapentin or pregabalin as first-line treatments and serotonin-norepinephrine reuptake inhibitors or opioids as second-line treatments [3, 12]. This approach has been endorsed by professional bodies, including the International Association for the Study of Pain (IASP) and the National Institute for health and Care Excellence (NICE) and has been adapted for use in the MENA region [12, 42]. However, treatments received by participants in our sample suggest that this approach was not implemented, with only four participants receiving a first-line drug (gabapentin) and 53 a second-line drug (either tramadol, co-codamol or codeine). Of the remaining participants who received treatment for their pain, some received analgesics not suitable for the neuropathic pain or alternative therapies such as herbal medicine or cupping.
Strengths and shortcomings of the study
This is the first attempt to estimate the prevalence of PDN in individuals living in Libya using an appropriately powered study with adequate sample size. The absence of diagnosis based on a full neurological examination is a limiting factor, although we estimated that the use of our validated Arabic version of the S-LANSS pain scale would identify at least 75% of individuals with PDN [43]. We measured fasting plasma glucose concentration rather than haemoglobin A1c (HbA1c) which is a more robust indicator of blood sugar control. We did not measure blood pressure, triglycerides and cholesterol levels and such data would have enabled determination of their role as probable risk factors.
The sample may be subject to selection bias because the study site clinic only services the Eastern region of Libya. However, there are no primary services for individuals with diabetes in Libya so individuals have to attend regional specialised clinics. Thus, the sample is likely to have captured all people with diabetes who were willing and able to attend the clinic. Nevertheless, we express caution in the generalisability of our estimate because of the use of a single-site and the impact of unmeasurable confounders.
Future directions
It is hope that our findings will be used to inform future policy for the diagnosis and management of PDN associated with diabetes in Libya, including the creation of a national prevention program [44]. Future epidemiological research is needed from resource limited countries to provide a more a balanced picture of the problem of PDN globally. There is an increasing focus on epigenetics to identify individuals susceptible to PDN [45], and studies investigating the incidence of microvascular pathology preceding diagnosis of diabetes would provide valuable insights into the pathogenesis of PDN. Microvascular pathology is known to contribute to neuropathy and may have clinical utility as a predictor of PDN.