Our study revealed the presence of favourable environmental, socio-cultural and economic factors linked to the spread of recurrent meningitis in Kebbi State.
Our findings showed that the affected communities were aware and appreciated the existence of a temporal relationship between onset of the seasonal epidemic and the prevailing hot and dusty weather while the falling of the rains signified the end of the epidemic. A similar finding was reported in 2014 by Codjoe and colleagues, who conducted an FGD to elicit the perception of communities about the relationship between climatic conditions and the CSM epidemics [12] . They reported that “the majority of participants rightly linked CSM infections to dry, very hot and dusty conditions experienced during the dry season” [12]. Other studies have used different techniques to provide the relationship between CSM infection and certain favourable climatic conditions, such as dusty and windy atmosphere, long period of dry and hot weather, low rainfall and low humidity [13,14,15] .
The literature suggests that deforestation activities expose affected areas to the ventilation of aerosols and dust, thus increasing the risk of transmitting meningococcal infection [13, 16]. The impact of poor urban planning and building control reflects as the houses in the studied communities had poor ventilation (mainly small window size, person per room varies from 4 to 10) and congested structures. Our finding is in tandem with evidence from existing literature [12, 17] implicating the poorly ventilated rooms and congestion. However, Feraro and colleagues did not find an association between household crowding and self-reported respiratory symptoms in a study conducted in seven countries within the African meningitis belt [18]. This disparity in findings might be explained by the “unrestrictive definition” (those who eat from the same pot) of household used in the study [18].
The information from participants clearly demonstrated the role of poor economic condition as a risk factor for recurrent epidemic meningitis in the study areas (Aliero and Jega LGAs). The role of economic factors has been documented in the literature regarding resilience or individual and community vulnerabilities to infectious disease transmission [19,20,21]. Specifically, some studies have linked poor household income, unemployment, use of firewood for cooking and neighbourhood social deprivation role in the perpetuation of respiratory diseases and other communicable diseases epidemic [19,20,21]. There exists widespread poverty at household levels, and many of the neighbourhoods are socially-deprived with poor sanitation, poor nutrition, low level of education and massive unemployment as well as a disproportionately high number of low-income earners. We also observed that the major source of cooking fuel was firewood and could have a role in the spread of airborne infections or respiratory tract infections such as CSM. Some of the component of the fumes may stimulate inflammation, coupled with the dry and hot weather, and then facilitate the invasion of pathogenic meningococcal meningitis. All the economic indices at household and neighbourhood levels were poor. Hence, the communities are quite vulnerable to diseases, including recurrent meningitis.
Based on the results of this study, some socio-cultural factors seemed to be responsible for the recurrent transmission of epidemic Neisseria meningitidis in the study locations. For example, we identified that most women are housewives, usually with little or no formal education and unemployed, hence their inability to make informed decisions on family health. For instance, the decision to accept vaccination or when and where to seek medi-care rest essentially on the husband (men).
There seemed to be a preponderance of opinions regarding the use of alternative healthcare providers as a first referral centre. This choice was influenced by cultural practices and poor socio-economic status. Furthermore, patronage of government hospital was considered as the last resort- when the illness became severe and not amenable to alternative care.
Further, the local socio-cultural environment supports multi-dwelling housing, for instance, it is permissible for young couples to be accommodated at the family house (where the parents reside). The practice breeds over-crowding and over-stretches the available housing facilities. Multi-dwelling living pattern among close family members was widely reported in the course of our investigation in the communities surveyed. The socio-cultural practice has implications on family resilience to air-borne diseases like CSM, and general health and well-being of family or community.
The role of social mixing patterns was ascertained as a risk factor in this paper. For example, we found that even in the midst of outbreak, onion market which serves both local and international traders still opens without any form of precautionary measures.
There was a modest level of social interaction in the study areas. Most of the participants frequently engaged in social activities, such as wedding, market, burial, Islamic learning centre. These spaces were often crowded with people and often served as channels for infectious disease transmission. Previous studies or reports have also linked social mixing pattern to the spread of respiratory tract infections, including meningitis [17, 22].
Substantial progress has been made by WHO and other partners to create demand for routine and supplementary immunisation in Kebbi State [23]. Jega LGA (one of the two LGAs studied) was particularly known for non-compliance to immunisation as it was selected among the 77 LGAs that benefitted from various demand creation interventions aimed at making polio vaccines attractive and simultaneously, addressing other needs of the communities [23]. The existence of chronic non-compliance is not limited to polio immunisation (perhaps, worse with Oral Polio Vaccine) but also applicable to other routine or supplementary antigens. The social misconception came to fore during the 2015 reactive vaccination for meningitis where multiple demand creation interventions had to be instituted, even in the midst of the outbreak, to increase vaccination coverage. Non-compliance or vaccine hesitancy is an important social and communication barriers, and this has made control efforts difficult in the recent past.
We recognized the following limitations, though these might not have adversely affected the outcome of the study. Many of the participants did not understand English. Hence, translations were undertaken and might have introduced bias into the study findings. We were limited by the depth of knowledge of the participants in some aspects of the interview that are plausibly related to the recurrent transmission, for example, the role of deforestation and climate change. Further, we observed that the knowledge of the research assistants conducting the interviews seemed relatively limited and might have affected the quality of probing, and in turn, the depth of response from participants. Lastly, we did not fully explore the role of some social behaviours (e.g., smoking, going to clubs and bars) in the spread of CSM in this paper, though some of these elements are rare in the communities investigated.
Despite the limitations, we concluded that there were favourable environmental, socio-cultural and economic factors in the study areas that might have been driving recurrent epidemics of CSM. In a bid to addressing these recurrent CSM epidemics, the governments at various levels supported by health development partners can use the findings of this study to design policies and programmes targeting these factors towards complementing other preventive and control strategies.