NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet Lond Engl. 2016;387:1513–30.
Article
Google Scholar
International Diabetes Federation. IDF diabetes atlas. Brussels: International Diabetes Federation; 2015.
Google Scholar
Breton M-C, Guénette L, Amiche MA, Kayibanda J-F, Grégoire J-P, Moisan J. Burden of diabetes on the ability to work: a systematic review. Diabetes Care. 2013;36:740–9.
Article
PubMed
PubMed Central
Google Scholar
Virtanen M, Ervasti J, Mittendorfer-Rutz E, Tinghög P, Lallukka T, Kjeldgård L, et al. Trends of diagnosis-specific work disability after newly diagnosed diabetes: a 4-year Nationwide prospective cohort study. Diabetes Care. 2015;38:1883–90.
Article
PubMed
Google Scholar
Kouwenhoven-Pasmooij TA, Burdorf A, Roos-Hesselink JW, Hunink MGM, Robroek SJW. Cardiovascular disease, diabetes and early exit from paid employment in Europe; the impact of work-related factors. Int J Cardiol. 2016;215:332–7.
Article
CAS
PubMed
Google Scholar
Ervasti J, Virtanen M, Pentti J, Lallukka T, Tinghög P, Kjeldgard L, et al. Work disability before and after diabetes diagnosis: a nationwide population-based register study in Sweden. Am J Public Health. 2015;105:e22–9.
Article
PubMed
PubMed Central
Google Scholar
Lallukka T, Ervasti J, Mittendorfer-Rutz E, Tinghög P, Kjeldgård L, Pentti J, et al. The joint contribution of diabetes and work disability to premature death during working age: a population-based study in Sweden. Scand J Public Health. 2016;44:580–6.
Article
PubMed
Google Scholar
Asay GRB, Roy K, Lang JE, Payne RL, Howard DH. Absenteeism and employer costs associated with chronic diseases and health risk factors in the US workforce. Prev Chronic Dis. 2016;13:E141.
Article
PubMed
PubMed Central
Google Scholar
Bishu KG, Gebregziabher M, Dismuke CE, Egede LE. Quantifying the incremental and aggregate cost of missed workdays in adults with diabetes. J Gen Intern Med. 2015;30:1773–9.
Article
PubMed
PubMed Central
Google Scholar
Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet Lond. Engl. 2017;389:2239–51.
Article
CAS
Google Scholar
Beagley J, Guariguata L, Weil C, Motala AA. Global estimates of undiagnosed diabetes in adults. Diabetes Res Clin Pract. 2014;103:150–60.
Article
PubMed
Google Scholar
Roglic G, editor. World Health Organization, editors. Global report on diabetes. Geneva, Switzerland: World Health Organization; 2016.
Google Scholar
Merlotti C, Morabito A, Pontiroli AE. Prevention of type 2 diabetes; a systematic review and meta-analysis of different intervention strategies. Diabetes Obes Metab. 2014;16:719–27.
Article
CAS
PubMed
Google Scholar
Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the diabetes prevention program outcomes study. Lancet Diabetes Endocrinol. 2015;3:866–75.
Article
PubMed Central
Google Scholar
Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet Lond. Engl. 2014;383:1999–2007.
Article
CAS
Google Scholar
Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017;15:131.
Article
PubMed
PubMed Central
Google Scholar
Nagayoshi M, Punjabi NM, Selvin E, Pankow JS, Shahar E, Iso H, et al. Obstructive sleep apnea and incident type 2 diabetes. Sleep Med. 2016;25:156–61.
Article
PubMed
PubMed Central
Google Scholar
Reutrakul S, Mokhlesi B. Obstructive Sleep Apnea and Diabetes: A State of the Art Review. Chest. 2017;
Google Scholar
Gan Y, Yang C, Tong X, Sun H, Cong Y, Yin X, et al. Shift work and diabetes mellitus: a meta-analysis of observational studies. Occup Environ Med. 2015;72:72–8.
Article
PubMed
Google Scholar
Wang F, Zhang L, Zhang Y, Zhang B, He Y, Xie S, et al. Meta-analysis on night shift work and risk of metabolic syndrome. Obes Rev Off J Int Assoc Study Obes. 2014;15:709–20.
Article
CAS
Google Scholar
Bannai A, Yoshioka E, Saijo Y, Sasaki S, Kishi R, Tamakoshi A. The risk of developing diabetes in association with long working hours differs by shift work schedules. J Epidemiol. 2016;26:481–7.
Article
PubMed
Google Scholar
Li J, Jarczok MN, Loerbroks A, Schöllgen I, Siegrist J, Bosch JA, et al. Work stress is associated with diabetes and prediabetes: cross-sectional results from the MIPH industrial cohort studies. Int J Behav Med. 2013;20:495–503.
Article
PubMed
Google Scholar
Yu H, Liu J, Fan Y, Li C, Zhang L, Chen X, et al. Association between occupational stressors and type 2 diabetes among Chinese police officers: a 4-year follow-up study in Tianjin. China Int Arch Occup Environ Health. 2016;89:277–88.
Article
PubMed
Google Scholar
Hedén Stahl C, Novak M, Hansson P-O, Lappas G, Wilhelmsen L, Rosengren A. Incidence of type 2 diabetes among occupational classes in Sweden: a 35-year follow-up cohort study in middle-aged men. Diabet Med J Br Diabet Assoc. 2014;31:674–80.
Article
Google Scholar
Quintiliani L, Sattelmair J, Sorensen G. The workplace as a setting for interventions to improve diet and promote physical activity. Doc. Téc. Prep. Para El Even. Conjunto OMSForo Económico Mund. Sobre Prev. Las Enfermedades No Transm. En El Lugar Trab. Ginebra Organ. Mund. Salud [Internet]. 2007 [cited 2016 Feb 1]; Available from: http://www.who.int/entity/dietphysicalactivity/Quintiliani-workplace-as-setting.pdf.
Hymel PA, Loeppke RR, Baase CM, Burton WN, Hartenbaum NP, Hudson TW, et al. Workplace health protection and promotion: a new pathway for a healthier--and safer--workforce. J Occup Environ Med. 2011;53:695–702.
Article
PubMed
Google Scholar
WHO | Workplace health promotion. WHO. [cited 2016 Dec 16]. Available from: http://www.who.int/occupational_health/topics/workplace/en/index1.html.
Bjerregaard A-L, Maindal HT, Bruun NH, Sandbæk A. Patterns of attendance to health checks in a municipality setting: the Danish ‘check your health preventive program.’. Prev Med Rep. 2017;5:175–82.
Article
PubMed
Google Scholar
Hoebel J, Starker A, Jordan S, Richter M, Lampert T. Determinants of health check attendance in adults: findings from the cross-sectional German health update (GEDA) study. BMC Public Health. 2014;14:913.
Article
PubMed
PubMed Central
Google Scholar
Ganz ML, Wintfeld N, Li Q, Alas V, Langer J, Hammer M. The association of body mass index with the risk of type 2 diabetes: a case-control study nested in an electronic health records system in the United States. Diabetol Metab Syndr. 2014;6:50.
Article
PubMed
PubMed Central
Google Scholar
Chevreul K, Berg Brigham K, Bouché C. The burden and treatment of diabetes in France. Glob Health. 2014;10:6.
Article
Google Scholar
INSERM, TNS Healthcare, Roche. Enquête épidémiologique nationale sur le surpoids et l’obésité, 2012.
Google Scholar
Ziemer DC, Kolm P, Foster JK, Weintraub WS, Vaccarino V, Rhee MK, et al. Random plasma glucose in serendipitous screening for glucose intolerance: screening for impaired glucose tolerance study 2. J Gen Intern Med. 2008;23:528–35.
Article
PubMed
PubMed Central
Google Scholar
Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A consensus statement from the international diabetes federation. Diabet. Med. J. Br. Diabet. Assoc. 2006;23:469–80.
Article
CAS
Google Scholar
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285:2486–97.
Article
Google Scholar
Global BMI Mortality Collaboration. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet Lond Engl. 2016;388:776–86.
Article
CAS
Google Scholar
WHO : Global Database on Body Mass Index [Internet]. [cited 2013 Jul 23]. Available from: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html.
James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth joint National Committee (JNC 8). JAMA. 2014;311:507–20.
Article
CAS
PubMed
Google Scholar
Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.
Article
PubMed
Google Scholar
World Health Organization. A global brief on hypertension. Silent killer, global public health crisis. 2013.
Google Scholar
Department of Health. The general practice physical activity questionnaire: a screening tool to assess adult physical activity levels, within primary care. 2009.
Google Scholar
Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP. Using the berlin questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med. 1999;131:485–91.
Article
CAS
PubMed
Google Scholar
Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379:2279–90.
Article
PubMed
PubMed Central
Google Scholar
Oberlinner C, Neumann SM, Ott MG, Zober A. Screening for pre-diabetes and diabetes in the workplace. Occup Med Oxf Engl. 2008;58:41–5.
Article
Google Scholar
Kalyani RR, Egan JM. Diabetes and altered glucose metabolism with aging. Endocrinol Metab Clin N Am. 2013;42:333–47.
Article
CAS
Google Scholar
Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011;14:575–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34:2436–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danaei G, Lawes CMM, Vander Hoorn S, Murray CJL, Ezzati M. Global and regional mortality from ischaemic heart disease and stroke attributable to higher-than-optimum blood glucose concentration: comparative risk assessment. Lancet Lond. Engl. 2006;368:1651–9.
Article
Google Scholar
Beckman JA, Paneni F, Cosentino F, Creager MA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur Heart J. 2013;34:2444–52.
Article
PubMed
Google Scholar
Ezzati M, Riboli E. Behavioral and dietary risk factors for noncommunicable diseases. N Engl J Med. 2013;369:954–64.
Article
CAS
PubMed
Google Scholar
Basu S, Yoffe P, Hills N, Lustig RH. The relationship of sugar to population-level diabetes prevalence: an econometric analysis of repeated cross-sectional data. PLoS One. 2013;8:e57873.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macdonald IA. A Review of recent evidence relating to sugars, insulin resistance and diabetes. Eur J Nutr. 2016;55:17–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rippe J, Angelopoulos T. Relationship between added sugars consumption and chronic disease risk factors: current understanding. Nutrients. 2016;8:697.
Article
PubMed Central
Google Scholar
Johnson RK, Appel LJ, Brands M, Howard BV, Lefevre M, Lustig RH, et al. Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation. 2009;120:1011–20.
Article
CAS
PubMed
Google Scholar
Wang P-Y, Fang J-C, Gao Z-H, Zhang C, Xie S-Y. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: a meta-analysis. J Diabetes Investig. 2016;7:56–69.
Article
CAS
PubMed
Google Scholar
Chen M, Sun Q, Giovannucci E, Mozaffarian D, Manson JE, Willett WC, et al. Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Med. 2014;12:215.
Article
PubMed
PubMed Central
Google Scholar
Carter P, Gray LJ, Talbot D, Morris DH, Khunti K, Davies MJ. Fruit and vegetable intake and the association with glucose parameters: a cross-sectional analysis of the Let’s prevent diabetes study. Eur J Clin Nutr. 2013;67:12–7.
Article
CAS
PubMed
Google Scholar
Shin H, Yoon YS, Lee Y, Kim C, Oh SW. Dairy product intake is inversely associated with metabolic syndrome in Korean adults: Anseong and Ansan cohort of the Korean genome and epidemiology study. J Korean Med Sci. 2013;28:1482.
Article
CAS
PubMed
PubMed Central
Google Scholar
Babio N, Becerra-Tomás N, Martínez-González MÁ, Corella D, Estruch R, Ros E, et al. Consumption of yogurt, low-fat milk, and other low-fat dairy products is associated with lower risk of metabolic syndrome incidence in an elderly Mediterranean population. J Nutr. 2015;145:2308–16.
Article
CAS
PubMed
Google Scholar
Kim NH, Cho NH, Yun C-H, Lee SK, Yoon DW, Cho HJ, et al. Association of obstructive sleep apnea and glucose metabolism in subjects with or without obesity. Diabetes Care. 2013;36:3909–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moody A, Cowley G, Ng Fat L, Mindell JS. Social inequalities in prevalence of diagnosed and undiagnosed diabetes and impaired glucose regulation in participants in the health surveys for England series. BMJ Open. 2016;6:e010155.
Article
PubMed
PubMed Central
Google Scholar
Miller TM, Abdel-Maksoud MF, Crane LA, Marcus AC, Byers TE. Effects of social approval bias on self-reported fruit and vegetable consumption: a randomized controlled trial. Nutr J. 2008;7:18.
Article
PubMed
PubMed Central
Google Scholar
Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay MA. Comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56.
Article
PubMed
PubMed Central
Google Scholar
Lissner L. Measuring food intake in studies of obesity. Public Health Nutr. 2002;5:889–92.
Article
PubMed
Google Scholar
Corti R. Coffee acutely increases sympathetic nerve activity and blood pressure independently of caffeine content: role of habitual versus nonhabitual drinking. Circulation. 2002;106:2935–40.
Article
PubMed
Google Scholar
Williams ED, Magliano DJ, Tapp RJ, Oldenburg BF, Shaw JE. Psychosocial stress predicts abnormal glucose metabolism: the Australian diabetes, obesity and lifestyle (AusDiab) study. Ann Behav Med Publ Soc Behav Med. 2013;46:62–72.
Article
Google Scholar
Kauh E, Mixson L, Malice M-P, Mesens S, Ramael S, Burke J, et al. Prednisone affects inflammation, glucose tolerance, and bone turnover within hours of treatment in healthy individuals. Eur J Endocrinol. 2012;166:459–67.
Article
CAS
PubMed
Google Scholar
Rafacho A, Ortsater H, Nadal A, Quesada I. Glucocorticoid treatment and endocrine pancreas function: implications for glucose homeostasis, insulin resistance and diabetes. J Endocrinol. 2014;223:R49–62.
Article
CAS
PubMed
Google Scholar
Garbarino S, Magnavita N. Work stress and metabolic syndrome in police officers. A prospective study. PLoS One. 2015;10:e0144318.
Article
PubMed
PubMed Central
Google Scholar
Bergmann N, Gyntelberg F, Faber J. The appraisal of chronic stress and the development of the metabolic syndrome: a systematic review of prospective cohort studies. Endocr. Connect. 2014;3:R55–80.
CAS
Google Scholar
Kahn-Marshall JL, Gallant MP. Making healthy behaviors the easy choice for employees: a review of the literature on environmental and policy changes in worksite health promotion. Health Educ Behav. 2012;39:752–76.
Article
PubMed
Google Scholar
Quintiliani L, Poulsen S, Sorensen G. Healthy eating strategies in the workplace. Int J Workplace Health Manag. 2010;3:182–96.
Article
PubMed
PubMed Central
Google Scholar
Allan J, Querstret D, Banas K, de Bruin M. Environmental interventions for altering eating behaviours of employees in the workplace: a systematic review. . Obes. Rev. Off. J. Int. Assoc. Study Obes. 2017;18:214–226.
Hollands GJ, Shemilt I, Marteau TM, Jebb SA, Kelly MP, Nakamura R, et al. Altering micro-environments to change population health behaviour: towards an evidence base for choice architecture interventions. BMC Public Health. 2013;13:1218.
Article
PubMed
PubMed Central
Google Scholar