Andersen LB, Riddoch C, Kriemler S, Hills A. Physical activity and cardiovascular risk factors in children. Br J Sport Med. 2011;45(11):871–6.
Article
Google Scholar
Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7(1):40.
Article
PubMed
PubMed Central
Google Scholar
Kriemler S, Zahner L, Schindler C, Meyer U, Hartmann T, Hebestreit H, Brunner-La Rocca HP, van Mechelen W, Puder JJ. Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: cluster randomised controlled trial. BMJ. 2010;340(feb23 1):c785.
Article
PubMed
PubMed Central
Google Scholar
Strong WB, Malina RM, Blimkie CJR, Daniels SR, Dishman RK, Gutin B, Hergenroeder AC, Must A, Nixon PA, Pivarnik JM, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146(6):732–7.
Article
PubMed
Google Scholar
Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181.
Article
PubMed
Google Scholar
Story M, Nanney MS, Schwartz MB. Schools and obesity prevention: creating school environments and policies to promote healthy eating and physical activity. Milbank Q. 2009;87(1):71–100.
Article
PubMed
PubMed Central
Google Scholar
Lounsbery MA, McKenzie TL, Trost S, Smith NJ. Facilitators and barriers to adopting evidence-based physical education in elementary schools. J Phys Act Health. 2011;8(1):S17.
Article
Google Scholar
Cox L, Berends V, Sallis JE, St. John JM, McNeil B, Gonzalez M, Agron P. Engaging school governance leaders to influence physical activity policies. J Phys Act Health. 2011;8(1):S40.
Article
PubMed
Google Scholar
Eveland-Sayers BM, Farley RS, Fuller DK, Morgan DW, Caputo JL. Physical fitness and academic achievement in elementary school children. J Phys Act Health. 2009;6(1):99–104.
Article
PubMed
Google Scholar
Kim H-YP, Frongillo EA, Han S-S, Oh S-Y, Kim W-K, Jang Y-A, Won H-S, Lee H-S, Kim S-H. Academic performance of Korean children is associated with dietary behaviours and physical status. Asia Pac J Clin. 2003;12(2):186–92.
Google Scholar
Roberts CK. Low aerobic fitness and obesity are associated with lower standardized test scores in children. J Pediatr. 2010;156(5):711–8, 718.e711.
Article
Google Scholar
Sallis JF, McKenzie TL, Kolody B, Lewis M, Marshall S, Rosengard P. Effects of health-related physical education on academic achievement: project SPARK. Res Q Exerc Sport. 1999;70(2):127–34.
Article
CAS
PubMed
Google Scholar
Trudeau F, Shephard RJ. Physical education, school physical activity, school sports and academic performance. Int J Behav Nutr Phys Act. 2008;5(1):10.
Article
PubMed
PubMed Central
Google Scholar
Institute of Medicine. Educating the student body: taking physical activity and physical education to school. Washington: National Academies Press; 2013.
Google Scholar
Singh A, Uijtdewilligen L, Twisk JW, van Mechelen W, Chinapaw MJ. Physical activity and performance at school: a systematic review of the literature including a methodological quality assessment. Arch Pediatr Adolesc Med. 2012;166(1):49–55.
Article
PubMed
Google Scholar
McCullick BA, Baker T, Tomporowski PD, Templin TJ, Lux K, Isaac T. An analysis of state physical education policies. J Teach Phys Educ. 2012;31(2):200–10.
Article
Google Scholar
Carlson JA, Mignano AM, Norman GJ, McKenzie TL, Kerr J, Arredondo EM, Madanat H, Cain KL, Elder JP, Saelens BE. Socioeconomic disparities in elementary school practices and children’s physical activity during school. Am J Health Promot. 2014;28(sp3):S47–53.
Article
PubMed
PubMed Central
Google Scholar
UCLA Center to Eliminate Health Disparities and Samuels & Associates. Failing fitness: physical activity and physical education in schools. Funded by the California endowment. 2007. http://sallis.ucsd.edu/Documents/Measures_documents/ASAP_Failing%20Fitness%20w-refs%200207.pdf Accessed 1 Aug 2016.
Google Scholar
Kibbe DL, Hackett J, Hurley M, McFarland A, Schubert KG, Schultz A, Harris S. Ten years of TAKE 10!®: integrating physical activity with academic concepts in elementary school classrooms. Prev Med. 2011;52(Supplement):S43–50.
Article
PubMed
Google Scholar
Mahar MT. Impact of short bouts of physical activity on attention-to-task in elementary school children. Prev Med. 2011;52(Supplement):S60–4.
Article
PubMed
Google Scholar
Hatfield DP, Lynskey VM, Economos CD, Nichols ER, Whitman NB, Nelson ME. Crowdsourcing innovative physical activity programs: active schools acceleration project case study. Transl J Am College Sports Med. 2016;1(1):1–9.
Google Scholar
Active Schools Acceleration Project [Internet]. Boston (MA): Active Schools Acceleration Project http://www.activeschoolsasap.org. Accessed 1 Aug 2016
Franks AL, Kelder SH, Dino GA, Horn KA, Gortmaker SL, Wiecha JL, Simoes EJ. School-based programs: lessons learned from CATCH, planet health, and not-on-tobacco. Prev Chronic Dis. 2007;4(2):A33.
PubMed
PubMed Central
Google Scholar
Child and Adolescent Health Measurement Initiative 2005/06 NS-CSHCN. Health conditions and functional difficulties. Data Resource Center, supported by Cooperative Agreement 1‐U59‐MC06980‐01 from the U.S. Department of Health and Human Services, Health Resources and Services Administration (HRSA), Maternal and Child Health Bureau (MCHB). 2012. http://www.childhealthdata.org. Accessed 1 Aug 2016.
Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, Mei Z, Curtin LR, Roche AF, Johnson CL. CDC growth charts: United States. Adv Data. 2000;314:1–27.
Google Scholar
Puyau MR, Adolph AL, Vohra FA, Butte NF. Validation and calibration of physical activity monitors in children. Obes Res. 2002;10(3):150–7.
Article
PubMed
Google Scholar
National Oceanic and Atmospheric Association. National Climactic Data Center http://www.ncdc.noaa.gov/cdo-web/datasets. Accessed 1 Aug 2016.
Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.
Article
PubMed
Google Scholar
Taylor AF, Kuo FE. Children with attention deficits concentrate better after walk in the park. J Atten Disord. 2009;12(5):402–9.
Article
PubMed
Google Scholar
van der Niet AG, Smith J, Oosterlaan J, Scherder EJA, Hartman E, Visscher C. Effects of a cognitively demanding aerobic intervention during recess on children’s physical fitness and executive functioning. Pediatr Exerc Sci. 2016;28(1):64–70.
Article
PubMed
Google Scholar
Golden CJ, Freshwater SM. Stroop color and word test. 1978.
Google Scholar
Buck SM, Hillman CH, Castelli DM. The relation of aerobic fitness to stroop task performance in preadolescent children. Med Sci Sports Exerc. 2008;40(1):166–72.
Article
PubMed
Google Scholar
Hollar D, Messiah SE, Lopez-Mitnik G, Hollar TL, Almon M, Agatston AS. Effect of a two-year obesity prevention intervention on percentile changes in body mass index and academic performance in low-income elementary school children. Am J Public Health. 2010;100(4):646–53.
Article
PubMed
PubMed Central
Google Scholar
Chomitz VR, Slining MM, McGowan RJ, Mitchell SE, Dawson GF, Hacker KA. Is there a relationship between physical fitness and academic achievement? Positive results from public school children in the northeastern United States. J Sch Health. 2009;79(1):30–7.
Article
PubMed
Google Scholar
Trost SG, McCoy TA, Vander Veur SS, Mallya G, Duffy ML, Foster GD. Physical activity patterns of inner-city elementary schoolchildren. Med Sci Sports Exerc. 2013;45(3):470–4.
Article
PubMed
Google Scholar
Saunders RP, Pate RR, Felton G, Dowda M, Weinrich MC, Ward DS, Parsons MA, Baranowski T. Development of questionnaires to measure psychosocial influences on children’s physical activity. Prev Med. 1997;26(2):241–7.
Article
CAS
PubMed
Google Scholar
Harter S. Self-perception profile for children. University of Denver. 2012. https://portfolio.du.edu/SusanHarter/page/44210. Accessed 1 Aug 2016.
Harter S. The perceived competence scale for children. Child Dev. 1982;53(1):87–97.
Cooper SB, Bandelow S, Nevill ME. Breakfast consumption and cognitive function in adolescent schoolchildren. Physiol Behav. 2011;103(5):431–9.
Article
CAS
PubMed
Google Scholar
Cullen KW, Watson K, Zakeri I. Relative reliability and validity of the Block Kids questionnaire among youth aged 10 to 17 years. J Am Diet Assoc. 2008;108(5):862–6.
Article
CAS
PubMed
Google Scholar
Rockett HR, Breitenbach M, Frazier AL, Witschi J, Wolf AM, Field AE, Colditz GA. Validation of a youth/adolescent food frequency questionnaire. Prev Med. 1997;26(6):808–16.
Article
CAS
PubMed
Google Scholar
Smith C, Fila S. Comparison of the Kid’s Block food frequency questionnaire to the 24‐hour recall in urban Native American youth. Am J Hum Biol. 2006;18(5):706–9.
Article
PubMed
Google Scholar
Block G, Murphy M, Roullet J, Wakimoto P, Crawford P, Block T. Pilot validation of a FFQ for children 8–10 years. In: Fourth International Conference on Dietary Assessment Methods: 2000. 2000.
Google Scholar
USDA and USDHHS. Dietary Guidelines for Americans, 2010. 7th ed. Washington: U.S. Government Printing Office; 2010.
Google Scholar
Todd V, Aaron LC, Jens CE, David BA. Reliable prediction of insulin resistance by a school-based fitness test in middle-school children. Int J Pediatr Endocrinol. 2009;2009:487804.
Article
Google Scholar
Leger L, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93–101.
Article
CAS
PubMed
Google Scholar
Plowman SA, Meredith MD, editors. Fitnessgram/Activitygram reference guide. 4th ed. Dallas: The Cooper Institute; 2013.
Google Scholar
Lounsbery MAF, McKenzie TL, Morrow Jr JR, Holt KA, Budnar RG. School physical activity policy assessment. J Phys Act Health. 2013;10(4):496–503.
Article
PubMed
Google Scholar
Hubbard K, Economos CD, Bakun P, Boulos R, Chui K, Mueller MP, Smith K, Sacheck J. Disparities in moderate-to-vigorous physical activity among girls and overweight and obese schoolchildren during school-and out-of-school time. Int J Behav Nutr Phys Act. 2016;13(1):1.
Article
Google Scholar
Schwartz MB, Lund AE, Grow HM, McDonnell E, Probart C, Samuelson A, Lytle L. A comprehensive coding system to measure the quality of school wellness policies. J Am Diet Assoc. 2009;109(7):1256–62.
Article
PubMed
Google Scholar
Verstraete SJM, Cardon GM, De Clercq DLR, De Bourdeaudhuij IMM. Increasing children’s physical activity levels during recess periods in elementary schools: the effects of providing game equipment. Eur J Public Health. 2006;16(4):415–9.
Article
PubMed
Google Scholar
Donnelly JE, Greene JL, Gibson CA, Sullivan DK, Hansen DM, Hillman CH, Poggio J, Mayo MS, Smith BK, Lambourne K, et al. Physical activity and academic achievement across the curriculum (A + PAAC): rationale and design of a 3-year, cluster-randomized trial. BMC Public Health. 2013;13(1):307.
Article
PubMed
PubMed Central
Google Scholar
Hemming K, Girling AJ, Sitch AJ, Marsh J, Lilford RJ. Sample size calculations for cluster randomised controlled trials with a fixed number of clusters. BMC Med Res Methodol. 2011;11(1):102.
Article
PubMed
PubMed Central
Google Scholar
Singh GK, Siahpush M, Kogan MD. Rising Social Inequalities in US childhood obesity, 2003–2007. Ann Epidemiol. 2010;20(1):40–52.
Article
PubMed
Google Scholar
Fairchild AJ, MacKinnon DP. A general model for testing mediation and moderation effects. Prev Sci. 2009;10(2):87–99.
Article
PubMed
PubMed Central
Google Scholar
Belcher BR, Berrigan D, Dodd KW, Emken BA, Chou CP, Spruijt-Metz D. Physical activity in US youth: effect of race/ethnicity, Age, gender, and weight status. Med Sci Sports Exerc. 2010;42(12):2211–21.
Article
PubMed
PubMed Central
Google Scholar
Siceloff ER, Wilson DK, Van Horn L. A longitudinal study of the effects of instrumental and emotional social support on physical activity in underserved adolescents in the ACT trial. Ann Behav Med. 2014;48(1):71–9.
PubMed
PubMed Central
Google Scholar
Wilson DK, Lawman HG, Segal M, Chappell S. Neighborhood and parental supports for physical activity in minority adolescents. Am J Prev Med. 2011;41(4):399–406.
Article
PubMed
PubMed Central
Google Scholar