World Health Organization (WHO): Basic documents. Fourty-fifth edition, Supplement October 2006. 2006, Geneva: WHO, Accessed 22nd Oct 2013 [http://www.who.int/governance/eb/who_constitution_en.pdf],
Google Scholar
Hamer M: Psychosocial stress and cardiovascular disease risk: the role of physical activity. Psychosom Med. 2012, 74 (9): 896-903.
PubMed
Google Scholar
Guszkowska M: [Effects of exercise on anxiety, depression and mood] Wplyw cwiczen fizycznych na poziom leku i depresji oraz stany nastroju. Psychiatr Pol. 2004, 38 (4): 611-620.
PubMed
Google Scholar
Brown HE, Gilson ND, Burton NW, Brown WJ: Does physical activity impact on presenteeism and other indicators of workplace well-being?. Sports Med. 2011, 41 (3): 249-262.
PubMed
Google Scholar
Peluso MA, de Andrade LH G: Physical activity and mental health: the association between exercise and mood. Clin (Sao Paulo). 2005, 60 (1): 61-70.
Google Scholar
Berchtold NC, Castello N, Cotman CW: Exercise and time-dependent benefits to learning and memory. Neuroscience. 2010, 167 (3): 588-597.
CAS
PubMed
PubMed Central
Google Scholar
Mitoma M, Yoshimura R, Sugita A, Umene W, Hori H, Nakano H, Ueda N, Nakamura J: Stress at work alters serum brain-derived neurotrophic factor (BDNF) levels and plasma 3-methoxy-4-hydroxyphenylglycol (MHPG) levels in healthy volunteers: BDNF and MHPG as possible biological markers of mental stress?. Prog Neuropsychopharmacol Biol Psychiatry. 2008, 32 (3): 679-685.
CAS
PubMed
Google Scholar
Ikenouchi-Sugita A, Yoshimura R, Sugita K, Hori H, Yamada K, Sakaue M, Nakamura J: The effects of a walking intervention on depressive feelings and social adaptation in healthy workers. J Uoeh. 2013, 35 (1): 1-8.
PubMed
Google Scholar
Penedo FJ, Dahn JR: Exercise and well-being: a review of mental and physical health benefits associated with physical activity. Curr Opin Psychiatr. 2005, 18 (2): 189-193.
Google Scholar
Eime RM, Young JA, Harvey JT, Charity MJ, Payne WR: A systematic review of the psychological and social benefits of participation in sport for adults: informing development of a conceptual model of health through sport. Int J Behav Nutr Phys Act. 2013, 10: 135-
PubMed
PubMed Central
Google Scholar
Conn VS: Depressive symptom outcomes of physical activity interventions: meta-analysis findings. Ann Behav Med. 2010, 39 (2): 128-138.
PubMed
PubMed Central
Google Scholar
Martin A, Sanderson K, Cocker F: Meta-analysis of the effects of health promotion intervention in the workplace on depression and anxiety symptoms. Scand J Work Environ Health. 2009, 35 (1): 7-18.
PubMed
Google Scholar
Puig-Ribera A, McKenna J, Gilson N, Brown WJ: Change in work day step counts, wellbeing and job performance in Catalan university employees: a randomised controlled trial. Promot Educ. 2008, 15 (4): 11-16.
PubMed
Google Scholar
World Health Organization (WHO): The workplace as a setting for interventions to improve diet and promote physical activity. http://www.who.int/dietphysicalactivity/Quintiliani-workplace-as-setting.pdf Accessed 30/05/2014. Edited by: Quintiliani L, Sattelmair J, Sorensen G. 2008, Geneva: WHO
Google Scholar
World Health Organization (WHO): Global strategy on diet, physical activity and health. Edited by: the 57th World Health Assembly. 2004, Geneva: WHO
Google Scholar
Freak-Poli RL, Cumpston M, Peeters A, Clemes SA: Workplace pedometer interventions for increasing physical activity. Cochrane Database Syst Rev. 2013, 4: CD009209
Google Scholar
Freak-Poli R, Wolfe R, Backholer K, de Courten M, Peeters A: Impact of a pedometer-based workplace health program on cardiovascular and diabetes risk profile. Prev Med. 2011, 53 (3): 162-171.
PubMed
Google Scholar
Bravata D, Smith-Spangler C, Sundaram V, Gienger A, Lin N, Lewis R, Stave C, Olkin I, Sirard J: Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007, 298 (19): 2296-2304.
CAS
PubMed
Google Scholar
Speck BJ, Looney SW: Effects of a minimal intervention to increase physical activity in women: daily activity records. Nurs Res. 2001, 50 (6): 374-378.
CAS
PubMed
Google Scholar
Croteau KA: Strategies used to increase lifestyle physical activity in a pedometer-based intervention. J Allied Health. 2004, 33 (4): 278-281.
PubMed
Google Scholar
Murphy MH, Murtagh EM, Boreham CA, Hare LG, Nevill AM: The effect of a worksite based walking programme on cardiovascular risk in previously sedentary civil servants [NCT00284479]. BMC Public Health. 2006, 6: 136-
PubMed
PubMed Central
Google Scholar
Thomas L, Williams M: Promoting physical activity in the workplace: using pedometers to increase daily activity levels. Health Promot J Austr. 2006, 17 (2): 97-102.
PubMed
Google Scholar
Gilson N, McKenna J, Cooke C, Brown W: Walking towards health in a university community: a feasibility study. Prev Med. 2007, 44 (2): 167-169.
PubMed
Google Scholar
Haines DJ, Davis L, Rancour P, Robinson M, Neel-Wilson T, Wagner S: A pilot intervention to promote walking and wellness and to improve the health of college faculty and staff. J Am Coll Health. 2007, 55 (4): 219-225.
PubMed
Google Scholar
Low D, Gramlich M, Engram BW: Self-paced exercise program for office workers: impact on productivity and health outcomes. Aaohn J. 2007, 55 (3): 99-105.
PubMed
Google Scholar
Faghri PD, Omokaro C, Parker C, Nichols E, Gustavesen S, Blozie E: E-technology and pedometer walking program to increase physical activity at work. J Prim Prev. 2008, 29 (1): 73-91.
PubMed
Google Scholar
Gemson DH, Commisso R, Fuente J, Newman J, Benson S: Promoting weight loss and blood pressure control at work: impact of an education and intervention program. J Occup Environ Med. 2008, 50 (3): 272-281.
PubMed
Google Scholar
Naito M, Nakayama T, Okamura T, Miura K, Yanagita M, Fujieda Y, Kinoshita F, Naito Y, Nakagawa H, Tanaka T, Ueshima H: Effect of a 4-year workplace-based physical activity intervention program on the blood lipid profiles of participating employees: the high-risk and population strategy for occupational health promotion (HIPOP-OHP) study. Atherosclerosis. 2008, 197 (2): 784-790.
CAS
PubMed
Google Scholar
Dishman RK, Vandenberg RJ, Motl RW, Wilson MG, Dejoy DM: Dose relations between goal setting, theory-based correlates of goal setting and increases in physical activity during a workplace trial. Health Educ Res. 2009, 25 (4): 620-631.
PubMed
Google Scholar
Gilson ND, Puig-Ribera A, McKenna J, Brown WJ, Burton NW, Cooke CB: Do walking strategies to increase physical activity reduce reported sitting in workplaces: a randomized control trial. Int J Behav Nutr Phys Act. 2009, 6: 43-
PubMed
PubMed Central
Google Scholar
Racette SB, Deusinger SS, Inman CL, Burlis TL, Highstein GR, Buskirk TD, Steger-May K, Peterson LR: Worksite Opportunities for Wellness (WOW): effects on cardiovascular disease risk factors after 1 year. Prev Med. 2009, 49 (2–3): 108-114.
PubMed
PubMed Central
Google Scholar
Farag NH, Moore WE, Thompson DE, Kobza CE, Abbott K, Eichner JE: Evaluation of a community-based participatory physical activity promotion project: effect on cardiovascular disease risk profiles of school employees. BMC Public Health. 2010, 10 (1): 313-
PubMed
PubMed Central
Google Scholar
Kwak L, Kremers SP, Candel MJ, Visscher TL, Brug J, van Baak MA: Changes in skinfold thickness and waist circumference after 12 and 24 months resulting from the NHF-NRG In Balance-project. Int J Behav Nutr Phys Act. 2010, 7: 26-
PubMed
PubMed Central
Google Scholar
Warren BS, Maley M, Sugarwala LJ, Wells MT, Devine CM: Small steps are easier together: a goal-based ecological intervention to increase walking by women in rural worksites. Prev Med. 2010, 50 (5–6): 230-234.
PubMed
Google Scholar
Aittasalo M, Miilunpalo S, Suni J: The effectiveness of physical activity counseling in a work-site setting. A randomized, controlled trial. Patient Educ Couns. 2004, 55 (2): 193-202.
PubMed
Google Scholar
Behrens TK, Domina L, Fletcher GM: Evaluation of an employer-sponsored pedometer-based physical activity program. Percept Mot Skills. 2007, 105 (3 Pt 1): 968-976.
PubMed
Google Scholar
De Cocker KA, De Bourdeaudhuij IM, Cardon GM: The effect of a multi-strategy workplace physical activity intervention promoting pedometer use and step count increase. Health Educ Res. 2009, 25 (4): 608-619.
PubMed
Google Scholar
Speck RM, Hill RK, Pronk NP, Becker MP, Schmitz KH: Assessment and outcomes of healthpartners 10,000 steps(R) program in an academic work site. Health Promot Pract. 2009, 11 (5): 741-750.
PubMed
Google Scholar
Maruyama C, Kimura M, Okumura H, Hayashi K, Arao T: Effect of a worksite-based intervention program on metabolic parameters in middle-aged male white-collar workers: a randomized controlled trial. Prev Med. 2010, 51 (1): 11-17.
PubMed
Google Scholar
Bauman A, Bellew B, Vita P, Brown W, Owen N: Getting Australia active: towards better practice for the promotion of physical activity. 2002, Melbourne, Australia: National Public Health Partnership. In
Google Scholar
Culos-Reed C, Gyurcsik N, Brawley L: Using theories of motivated behaviour to understand physical activity. Handbook of Sport Psychology. Edited by: Singer RN HH, Janelle CM. 2001, New York: John Wiley & Sons, Inc, 695-717.
Google Scholar
Freak-Poli R, Cumpston M, Peeters A, Clemes S: Workplace pedometer interventions for increasing physical activity (Protocol). Cochrane Database Syst Rev. 2011, CD009209-7
Lemon SC, Zapka J, Li W, Estabrook B, Rosal M, Magner R, Andersen V, Borg A, Hale J: Step ahead a worksite obesity prevention trial among hospital employees. Am J Prev Med. 2010, 38 (1): 27-38.
PubMed
PubMed Central
Google Scholar
Lubans DR, Morgan PJ, Collins CE, Warren JM, Callister R: Exploring the mechanisms of weight loss in the SHED-IT intervention for overweight men: a mediation analysis. Int J Behav Nutr Phys Act. 2009, 6: 76-
PubMed
PubMed Central
Google Scholar
Prabhakaran D, Jeemon P, Goenka S, Lakshmy R, Thankappan KR, Ahmed F, Joshi PP, Mohan BV, Meera R, Das MS, Ahuja RC, Saran RK, Chaturvedi V, Reddy KS: Impact of a worksite intervention program on cardiovascular risk factors: a demonstration project in an Indian industrial population. J Am Coll Cardiol. 2009, 53 (18): 1718-1728.
PubMed
Google Scholar
Prodaniuk TR, Plotnikoff RC, Spence JC, Wilson PM: The influence of self-efficacy and outcome expectations on the relationship between perceived environment and physical activity in the workplace. Int J Behav Nutr Phys Act. 2004, 1 (1): 7-
PubMed
PubMed Central
Google Scholar
Tudor-Locke C: Promoting lifestyle physical activity: experiences with the first step program. Am J Lifestyle Med. 2009, 3 (1 Suppl): 508-548.
PubMed
PubMed Central
Google Scholar
Egan M, Tannahill C, Petticrew M, Thomas S: Psychosocial risk factors in home and community settings and their associations with population health and health inequalities: a systematic meta-review. BMC Public Health. 2008, 8: 239-
PubMed
PubMed Central
Google Scholar
Freak-Poli R, Harding J, Backholer K, Peeters A: Changes in health-related quality of life amongst participants in a four-month pedometer-based workplace health program. J Phys Act Health. 2013, 10 (4): 533-543.
PubMed
Google Scholar
Touger-Decker R, Denmark R, Bruno M, O'Sullivan-Maillet J, Lasser N: Workplace weight loss program; comparing live and internet methods. J Occup Environ Med. 2010, 52 (11): 1112-1118.
PubMed
Google Scholar
Freak-Poli R, Wolfe R, Brand M, de Courten M, Peeters A: Eight-month postprogram completion: change in risk factors for chronic disease amongst participants in a 4-month pedometer-based workplace health program. Obesity (Silver Spring). 2013, 21 (9): E360-E368.
Google Scholar
Freak-Poli R, Wolfe R, Peeters A: Risk of cardiovascular disease and diabetes in a working population with sedentary occupations. J Occup Environ Med. 2010, 52 (11): 1132-1137.
PubMed
Google Scholar
Freak-Poli R, Backholer K, Peeters A: Daily step-count and change in waist circumference during a workplace pedometer program. Open J Prev Med. 2012, 2 (2): 249-256.
Google Scholar
Freak-Poli RL, Wolfe R, Walls H, Backholer K, Peeters A: Participant characteristics associated with greater reductions in waist circumference during a four-month, pedometer-based, workplace health program. BMC Public Health. 2011, 11 (1): 824-
PubMed
PubMed Central
Google Scholar
Ng W, Freak-Poli R, Peeters A: The Prevalence and Characteristics Associated With Excessive Daytime Sleepiness Among Australian Workers. J Occup Environ Med. 2014, [Epub ahead of print]
Google Scholar
The Global Corporate Challenge. [http://www.gettheworldmoving.com/what-is-the-gcc],
World Health Organization (WHO): The WHO STEPwise approach. Surveillence of risk factors for noncommunicable diseases: Step 1, 2 & 3. 2002, Switzerland: WHO
Google Scholar
Dunstan DW, Zimmet PZ, Welborn TA, Cameron AJ, Shaw J, de Courten M, Jolley D, McCarty DJ: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab)–methods and response rates. Diabetes Res Clin Pract. 2002, 57 (2): 119-129.
PubMed
Google Scholar
Giles GG, English DR: The Melbourne collaborative cohort study. IARC Sci Publ. 2002, 156: 69-70.
CAS
PubMed
Google Scholar
Ball K, Brown W, Crawford D: Who does not gain weight? Prevalence and predictors of weight maintenance in young women. Int J Obes Relat Metab Disord. 2002, 26 (12): 1570-1578.
CAS
PubMed
Google Scholar
WHO-Five Well-being Index (WHO-5). [http://www.who-5.org],
Bech P: Quality of life in the psychiatric patient. 1998, London: Mosby-Wolfe
Google Scholar
Bech P: Male depression: stress and aggression as pathways to major depression. Depression: Social and economic timebomb. 2001, London: BMJ Books, 63-66.
Google Scholar
Shea S, Skovlund S, Bech P, Kalo I, Home P: Routine assessment of psychological well-being in people with diabetes - validation of the WHO-5 Well-being Index in six countries. 18th International Diabetes Federation Congress. 2003, Paris: Diabetologia, A88 [no.245]
Google Scholar
Lowe B, Spitzer R, Grafe K, Kroenke K, Quenter A, Zipfel S, Buchholz C, Witte S, Herzog W: Comparative validity of three screening questionnaires for DSM-IV depressive disorders and physicians' diagnoses. J Affect Disord. 2004, 78: 131-140.
PubMed
Google Scholar
Australian Institute of Health and Welfare (AIHW): Australia’s health 2008. Cat. no. AUS 99. 2008, Canberra: AIHW
Google Scholar
Commonwealth Government Department of Health and Aged Care (DHAC): National physical activity guidelines for Australians. 1999, Canberra: DHAC
Google Scholar
Royal Australian College of General Practitioners: National Preventive and Community Medicine Committee: Guidelines for preventive activities in general practice, 7th edition. 2009, Victoria: The Royal Australian College of General Practitioners
Google Scholar
National Health and Medical Research Council (NHMRC): Food for health: Dietary Guidelines for all Australians. 2003, Canberra: NHMRC
Google Scholar
Glymour MM, Weuve J, Berkman LF, Kawachi I, Robins JM: When is baseline adjustment useful in analyses of change? An example with education and cognitive change. Am J Epidemiol. 2005, 162 (3): 267-278.
PubMed
Google Scholar
Stata Corporation: College Station. TX, http://www.stata.com,
Linden A: Estimating the effect of regression to the mean in health management programs. Dis Manag Health Outcomes. 2007, 15 (1): 7-12.
Google Scholar
Delaney L, Doyle O, Mckenzie K, Wall P: The distribution of wellbeing in Ireland. Irish J Psychol Med. 2009, 26: 119-126.
Google Scholar
Aujla N, Abrams KR, Davies MJ, Taub N, Skinner TC, Khunti K: The prevalence of depression in white-European and South-Asian people with impaired glucose regulation and screen-detected type 2 diabetes mellitus. PLoS One. 2009, 4 (11): e7755-
PubMed
PubMed Central
Google Scholar
Hajos TR, Pouwer F, de Grooth R, Holleman F, Twisk JW, Diamant M, Snoek FJ: The longitudinal association between glycaemic control and health-related quality of life following insulin therapy optimisation in type 2 diabetes patients. A prospective observational study in secondary care. Qual Life Res. 2011, 21 (8): 1359-1365.
PubMed
PubMed Central
Google Scholar
Due-Christensen M, Zoffmann V, Hommel E, Lau M: Can sharing experiences in groups reduce the burden of living with diabetes, regardless of glycaemic control?. Diabet Med. 2011, 29 (2): 251-256.
Google Scholar
Newnham EA, Hooke GR, Page AC: Monitoring treatment response and outcomes using the World Health Organization's Wellbeing Index in psychiatric care. J Affect Disord. 2010, 122 (1–2): 133-138.
PubMed
Google Scholar
Conn VS, Hafdahl AR, Brown LM: Meta-analysis of quality-of-life outcomes from physical activity interventions. Nurs Res. 2009, 58 (3): 175-183.
PubMed
PubMed Central
Google Scholar
Chu AH, Koh D, Moy FM, Muller-Riemenschneider F: Do workplace physical activity interventions improve mental health outcomes?. Occup Med (Lond). 2014, 64 (4): 235-245.
CAS
Google Scholar
Christie J, O'Halloran P, Caan W, Cardwell C, Young T, Rao M: Workplace-based organisational interventions to prevent and control obesity by improving dietary intake and/or increasing physical activity (Protocol). Cochrane Database Syst Rev. 2010, CD008546-6
Centers for Disease Control and Prevention Health-Related Quality-of-Life 14-Item Measure. [http://www.cdc.gov/hrqol/hrqol14_measure.htm],
Saris-Baglama R, Dewey C, Chisholm G, Plumb E, King J, Kosinski M, BJorner JB, Ware JE: QualityMetric Health Outcomes Scoring Software 3.0 User’s Guide. 2007, Lincoln, USA: QualityMetric Incorporated
Google Scholar
Chan CB, Ryan DA, Tudor-Locke C: Health benefits of a pedometer-based physical activity intervention in sedentary workers. Prev Med. 2004, 39 (6): 1215-1222.
PubMed
Google Scholar