De Bourdeaudhuij I, Van CE, Spittaels H, Oppert JM, Rostami C, Brug J, Van LF, Lobstein T, Maes L: School-based interventions promoting both physical activity and healthy eating in Europe: a systematic review within the HOPE project. Obes Rev. 2011, 12: 205-216.
Article
CAS
PubMed
Google Scholar
Dobbins M, De CK, Robeson P, Husson H, Tirilis D: School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6–18. Cochrane Database Syst Rev. 2009, 21: CD007651-
Google Scholar
Kriemler S, Meyer U, Martin E, van Sluijs EM, Andersen LB, Martin BW: Effect of school-based interventions on physical activity and fitness in children and adolescents: a review of reviews and systematic update. Br J Sports Med. 2011, 45: 923-930.
Article
CAS
PubMed
Google Scholar
Witherspoon Hansen L, Sanders S: Active gaming: a new paradigm in childhood physical activity. Digit Cult Educ. 2011
Google Scholar
Peng W, Crouse JC, Lin JH: Using active video games for physical activity promotion: a systematic review of the current state of research. Health Educ Behav. 2012, 40: 171-192.
Article
PubMed
Google Scholar
Maddison R, Foley L, Ni MC, Jiang Y, Jull A, Prapavessis H, Hohepa M, Rodgers A: Effects of active video games on body composition: a randomized controlled trial. Am J Clin Nutr. 2011, 94: 156-163.
Article
CAS
PubMed
Google Scholar
Staiano AE, Calvert SL: Exergames for Physical Education Courses: Physical, Social, and Cognitive Benefits. Child Dev Perspect. 2011, 5: 93-98.
Article
PubMed
PubMed Central
Google Scholar
Biddiss E, Irwin J: Active video games to promote physical activity in children and youth: a systematic review. Arch Pediatr Adolesc Med. 2010, 164: 664-672.
Article
PubMed
Google Scholar
Leblanc AG, Chaput JP, McFarlane A, Colley RC, Thivel D, Biddle SJ, Maddison R, Leatherdale ST, Tremblay MS: Active video games and health indicators in children and youth: a systematic review. PLoS One. 2013, 8: e65351-
Article
CAS
PubMed
PubMed Central
Google Scholar
Roland M, Torgerson DJ: What are pragmatic trials?. BMJ. 1998, 316: 285-
Article
CAS
PubMed
PubMed Central
Google Scholar
Lwin MO, Malik S: Can exergames impart health messages? Game play, framing, and drivers of physical activity among children. J Health Commun. 2014, 19: 136-151.
Article
PubMed
Google Scholar
Gao Z, Hannan P, Xiang P, Stodden DF, Valdez VE: Video game-based exercise, Latino children’s physical health, and academic achievement. Am J Prev Med. 2013, 44: S240-S246.
Article
PubMed
Google Scholar
O'Loughlin EK, Dugas EN, Sabiston CM, O’Loughlin JL: Prevalence and correlates of exergaming in youth. Pediatrics. 2012, 130: 806-814.
Article
PubMed
Google Scholar
Bohn-Goldbaum EE, Phongsavan P, Merom D, Rogers K, Kamalesh V, Bauman AE: Does playground improvement increase physical activity among children? A quasi-experimental study of a natural experiment. J Environ Public Health. 2013, 2013: 109841-
Article
PubMed
PubMed Central
Google Scholar
Edwards P, Steinbach R, Green J, Petticrew M, Goodman A, Jones A, Roberts H, Kelly C, Nellthorp J, Wilkinson P: Health impacts of free bus travel for young people: evaluation of a natural experiment in London. J Epidemiol Community Health. 2013, 67: 641-647.
Article
PubMed
Google Scholar
Stone MR, Faulkner GE, Zeglen-Hunt L, Bonne JC: The Daily Physical Activity (DPA) policy in Ontario: is it working? an examination using accelerometry-measured physical activity data. Can J Public Health. 2012, 103: 170-174.
PubMed
Google Scholar
Fitzhugh EC, Bassett DR, Evans MF: Urban trails and physical activity: a natural experiment. Am J Prev Med. 2010, 39: 259-262.
Article
PubMed
Google Scholar
Weitzman M: School absence rates as outcome measures in studies of children with chronic illness. J Chronic Dis. 1986, 39: 799-808.
Article
CAS
PubMed
Google Scholar
Craig P, Cooper C, Gunnell D, Haw S, Lawson K, Macintyre S, Ogilvie D, Petticrew M, Reeves B, Sutton M, Thompson S: Using natural experiments to evaluate population health interventions: new Medical Research Council guidance. J Epidemiol Community Health. 2012, 66: 1182-1186.
Article
PubMed
PubMed Central
Google Scholar
Clark JP: How to peer review a qualitative manuscript. Peer Review in Health Sciences. Edited by: Godlee F, Jefferson T. 2003, London: BMJ Books, 219-235. Second
Google Scholar
Chaput JP, Saunders TJ, Mathieu ME, Henderson M, Tremblay MS, O’Loughlin J, Tremblay A: Combined associations between moderate to vigorous physical activity and sedentary behaviour with cardiometabolic risk factors in children. Appl Physiol Nutr Metab. 2013, 38: 477-483.
Article
CAS
PubMed
Google Scholar
Ekelund U, Luan J, Sherar LB, Esliger DW, Griew P, Cooper A: Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012, 307: 704-712.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ness AR, Leary SD, Mattocks C, Blair SN, Reilly JJ, Wells J, Ingle S, Tilling K, Smith GD, Riddoch C: Objectively measured physical activity and fat mass in a large cohort of children. PLoS Med. 2007, 4: e97-
Article
PubMed
PubMed Central
Google Scholar
Hemming K, Girling AJ, Sitch AJ, Marsh J, Lilford RJ: Sample size calculations for cluster randomised controlled trials with a fixed number of clusters. BMC Med Res Methodol. 2011, 11: 102-
Article
PubMed
PubMed Central
Google Scholar
Wilson DK, Van Horn ML, Kitzman-Ulrich H, Saunders R, Pate R, Lawman HG, Hutto B, Griffin S, Zarrett N, Addy CL, Mansard L, Mixon G, Brown PV: Results of the “Active by Choice Today” (ACT) randomized trial for increasing physical activity in low-income and minority adolescents. Health Psychol. 2011, 30: 463-471.
Article
PubMed
PubMed Central
Google Scholar
Noble M, McLennan D, Barnes H, Garratt E, Davis J: The English Indices of Deprivation 2010. 2011, London, [https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/6320/1870718.pdf]
Google Scholar
Pate RR, Stevens J, Webber LS, Dowda M, Murray DM, Young DR, Going S: Age-related change in physical activity in adolescent girls. J Adolesc Health. 2009, 44: 275-282.
Article
PubMed
Google Scholar
McClain JJ, Abraham TL, Brusseau TA, Tudor-Locke C: Epoch length and accelerometer outputs in children: comparison to direct observation. Med Sci Sports Exerc. 2008, 40: 2080-2087.
Article
PubMed
Google Scholar
Esliger DW, Copeland JL, Barnes JD, Tremblay MS: Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. J Phys Act Health. 2005, 3: 366-383.
Google Scholar
Rich C, Geraci M, Griffiths L, Sera F, Dezateux C, Cortina-Borja M: Quality control methods in accelerometer data processing: defining minimum wear time. PLoS One. 2013, 8: e67206-
Article
CAS
PubMed
PubMed Central
Google Scholar
Cain KL, Sallis JF, Conway TL, Van DD, Calhoon L: Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013, 10: 437-450.
PubMed
Google Scholar
Mattocks C, Ness A, Leary S, Tilling K, Blair SN, Shield J, Deere K, Saunders J, Kirkby J, Smith GD, Wells J, Wareham N, Reilly J, Riddoch C: Use of accelerometers in a large field-based study of children: protocols, design issues, and effects on precision. J Phys Act Health. 2008, 5 (Suppl 1): S98-S111.
PubMed
Google Scholar
Plasqui G, Joosen AM, Kester AD, Goris AH, Westerterp KR: Measuring free-living energy expenditure and physical activity with triaxial accelerometry. Obes Res. 2005, 13: 1363-1369.
Article
PubMed
Google Scholar
Tanaka C, Tanaka S, Kawahara J, Midorikawa T: Triaxial accelerometry for assessment of physical activity in young children. Obesity (Silver Spring). 2007, 15: 1233-1241.
Article
Google Scholar
Howe CA, Staudenmayer JW, Freedson PS: Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis. Med Sci Sports Exerc. 2009, 41: 2199-2206.
Article
PubMed
Google Scholar
Kavouras SA, Sarras SE, Tsekouras YE, Sidossis LS: Assessment of energy expenditure in children using the RT3 accelerometer. J Sports Sci. 2008, 26: 959-966.
Article
PubMed
Google Scholar
Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG: Calibration of two objective measures of physical activity for children. J Sports Sci. 2008, 26: 1557-1565.
Article
PubMed
Google Scholar
Trost SG, Loprinzi PD, Moore R, Pfeiffer KA: Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011, 43: 1360-1368.
Article
PubMed
Google Scholar
Tudor-Locke C, Johnson WD, Katzmarzyk PT: U.S. population profile of time-stamped accelerometer outputs: impact of wear time. J Phys Act Health. 2011, 8: 693-698.
PubMed
Google Scholar
Eveleth PB: Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. Am J Hum Biol. 1996, 8: 786-787.
Article
Google Scholar
Lim JS, Hwang JS, Lee JA, Kim DH, Park KD, Jeong JS, Cheon GJ: Cross-calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6–18 years. Pediatr Int. 2009, 51: 263-268.
Article
PubMed
Google Scholar
Garcia AW, Pender NJ, Antonakos CL, Ronis DL: Changes in physical activity beliefs and behaviors of boys and girls across the transition to junior high school. J Adolesc Health. 1998, 22: 394-402.
Article
CAS
PubMed
Google Scholar
The KIDSCREEN Group Europe: The KIDSCREEN Questionnaires - Quality of Life Questionnaires for Children and Adolescents. Handbook. 2006, Lengerich: Pabst Science Publishers
Google Scholar
Leger LA, Lambert J: A maximal multistage 20-m shuttle run test to predict VO2 max. Eur J Appl Physiol Occup Physiol. 1982, 49: 1-12.
Article
CAS
PubMed
Google Scholar
Ramsbottom R, Brewer J, Williams C: A progressive shuttle run test to estimate maximal oxygen uptake. Br J Sports Med. 1988, 22: 141-144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kish L: Survey Sampling. 1965, New York: John Wiley & Sons
Google Scholar
Vickers AJ, Altman DG: Statistics notes: Analysing controlled trials with baseline and follow up measurements. BMJ. 2001, 323: 1123-1124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Senn S: Change from baseline and analysis of covariance revisited. Stat Med. 2006, 25: 4334-4344.
Article
PubMed
Google Scholar
Lipsey MW, Wilson D: Practical Meta-analysis: Applied Social Research Methods Series. 2001, California: Thousand Oaks
Google Scholar
Cohen J: Statistical Power Analysis for the Behavioral Sciencies. 1988, Hillsdale,NJ: Lawrence Earbaum Associates
Google Scholar
Glaser BG, Strauss AL: The Discovery of Grounded Theory: Strategies for Qualitative Research. 2009, New Jersey: Transaction Publishers
Google Scholar
Bailey BW, McInnis K: Energy cost of exergaming: a comparison of the energy cost of 6 forms of exergaming. Arch Pediatr Adolesc Med. 2011, 165: 597-602.
Article
PubMed
Google Scholar
Christison A, Khan HA: Exergaming for health: a community-based pediatric weight management program using active video gaming. Clin Pediatr (Phila). 2012, 51: 382-388.
Article
Google Scholar
Graves LE, Ridgers ND, Atkinson G, Stratton G: The effect of active video gaming on children’s physical activity, behavior preferences and body composition. Pediatr Exerc Sci. 2010, 22: 535-546.
PubMed
Google Scholar
Maddison R, Mhurchu CN, Jull A, Prapavessis H, Foley LS, Jiang Y: Active video games: the mediating effect of aerobic fitness on body composition. Int J Behav Nutr Phys Act. 2012, 9: 54-
Article
PubMed
PubMed Central
Google Scholar
Adamo KB, Rutherford JA, Goldfield GS: Effects of interactive video game cycling on overweight and obese adolescent health. Appl Physiol Nutr Metab. 2010, 35: 805-815.
Article
PubMed
Google Scholar
Murphy EC, Carson L, Neal W, Baylis C, Donley D, Yeater R: Effects of an exercise intervention using Dance Dance Revolution on endothelial function and other risk factors in overweight children. Int J Pediatr Obes. 2009, 4: 205-214.
Article
PubMed
Google Scholar
Douris PC, McDonald B, Vespi F, Kelley NC, Herman L: Comparison between Nintendo Wii Fit aerobics and traditional aerobic exercise in sedentary young adults. J Strength Cond Res. 2012, 26: 1052-1057.
Article
PubMed
Google Scholar
Palacio-Vieira JA, Villalonga-Olives E, Valderas JM, Espallargues M, Herdman M, Berra S, Alonso J, Rajmil L: Changes in health-related quality of life (HRQoL) in a population-based sample of children and adolescents after 3 years of follow-up. Qual Life Res. 2008, 17: 1207-1215.
Article
CAS
PubMed
Google Scholar
Bisegger C, Cloetta B, von RU, Abel T, Ravens-Sieberer U: Health-related quality of life: gender differences in childhood and adolescence. Soz Praventivmed. 2005, 50: 281-291.
Article
PubMed
Google Scholar
King AC, Stokols D, Talen E, Brassington GS, Killingsworth R: Theoretical approaches to the promotion of physical activity: forging a transdisciplinary paradigm. Am J Prev Med. 2002, 23: 15-25.
Article
PubMed
Google Scholar
Baker PR, Francis DP, Soares J, Weightman AL, Foster C: Community wide interventions for increasing physical activity. Cochrane Database Syst Rev. 2011, 13: CD008366-
Google Scholar