This study identified the presence or absence of BCTs in popular physical activity and/or dietary behaviour apps. There was substantial variation in the numbers of BCTs present, with an average of eight techniques per app. Using a taxonomy and coding manual it was possible to identify BCTs used in smartphone health behaviour change applications. Beyond these general observations, specific issues are outlined below.
Previous research has already highlighted the shortage of theoretical content present in interactive technologies such as web sites [20] and apps [10, 12, 14] designed to promote health behaviour change [11, 13, 15, 21, 22]. Consistent with previous research, our findings demonstrate the relative absence of behaviour change strategies present in physical activity and dietary apps. Moreover, this study highlights the potential to improve future app development by incorporating key strategies known to enhance behaviour change. For example, existing technologies permit real time assessment, feedback, and tailoring, however, in the present study, only 38% and 23% of the apps prompted specific goal setting or prompted review of behavioural goals, respectively.
The five BCTs shown to be commonly associated with greater effectiveness for modifying physical activity and diet in previous studies were present to varying degrees in the apps reviewed here (i.e. self-monitoring – 60% of apps, intention formation – 50%, specific goal setting – 38%, review of behavioural goals – 23% and feedback on performance – 53%). However, these five BCTs were in general more common in paid versus free apps. BCTs such as relapse prevention, which is important for sustained behavioural change [23] was not present in any of the reviewed apps, which questions the value of these apps for changing behaviour in the long-term.
The observed differences in reliability identifying BCTs indicate the need to clarify definitions and/or coding instructions. We evaluated the presence of BCTs using a coding instrument originally developed to identify BCTs from written text in published papers describing an intervention [17]. Perhaps specific coding instructions to apply when assessing the active ingredients of mHealth or interactive technologies such as apps or video games can be developed. The present research included a taxonomy of 26 techniques; however, subsequent taxonomies have been developed [24]. Future content analysis of apps should apply this updated hierarchical version of the BCT taxonomy.
While identifying the active content of health behaviour change interventions is crucial, researchers must be aware of the caveats of ascribing effectiveness to certain BCTs or combinations of BCTs. To do so, researchers should also consider the parameters for effectiveness for each BCT. These are the required characteristics that a translation of a BCT to usable intervention elements must incorporate (i.e., an effective BCT is undermined if not correctly applied) [25]. Additionally, the effectiveness of BCTs is determined by contextual factors such as target population (e.g., sample characteristics), behavioural domain (e.g., physical activity, smoking) and study design factors (e.g., follow-up period, blinding). Further, BCTs frequently co-occur in interventions and they can interact with each other [25]. Hence, conclusions about the behaviour change potential of apps based on incorporation of BCTs should be interpreted cautiously as BCTs are not effective under all conditions. Caution interpreting our findings in terms of differences in the number of BCTs between apps is also warranted as we did not conduct formal statistical comparisons.
The increasing number and diversity of apps available makes its assessment a difficult task for the public and clinicians to differentiate which apps can be useful in promoting behaviour change. Presumably, the value of apps can be enhanced by developers incorporating more features, theory, and BCTs into their apps, which in turn will increase the behaviour change potential of the app. The current study suggests the higher potential quality of paid apps should be a factor to weigh when selecting and using apps for personal use, clinical intervention, or future research. Furthermore, guidelines can be created to influence and help app developers as to which BCTs (and other components) to include that likely will enhance the behaviour change potential of apps.
Despite the proliferation of physical activity and dietary apps, it is not clear whether they are effective at modifying behaviour. At present, there is a dearth of effectiveness data of app-based interventions to promote healthy behaviours [26], and robust, rigorously conducted and adequately powered trials are required to determine their effectiveness. On the other hand, app development proceeds at a rate that far out paces time frames typically observed in trial development and conduct. Thus, more dynamic forms of evaluation methods are required to determine the effectiveness of such technologies [27]. Generally, the effectiveness of mHealth interventions such as text messaging for modifying health behaviours (e.g., smoking cessation) has been established [28]; however the effectiveness of more complex and dynamic mHealth interventions including apps has yet to be determined.
A strength of this study was the use of an established instrument to systematically rate the incorporation of BCTs in the respective apps. However, in the present study, the presence of BCTs was determined by user-testing the apps rather than from text descriptions. Some app features were not explicit during use. For example, reminders, weekly updates, and pop-up feedback, etc, may have occurred for one, but not all raters at any given time. Despite these issues, modest reliability between raters was observed (0.6). Another strength was the use of four raters, with a range of behaviour change experiences, which provided a more comprehensive assessment of the apps and the use of the taxonomy checklist. A major limitation of this study was not including apps from other app stores such as the Google Play Store/Android platform, or app stores from other countries besides NZ, which limits the generalisability of the findings. Nevertheless, we investigated the most popular and commonly downloaded apps of the iTunes Apple App Store Health & Fitness category, which represent a sample of apps that many people are using and therefore increases the study relevance. Of note, apps may exist that incorporate more evidence based BCTs than those included in the study sample as we only rated the most popular apps. Furthermore, technology has a dynamic nature with new apps and updates developed every day, consequently, these evaluations need to be updated periodically.
The advantages of mobile phone (mHealth) solutions compared to other health intervention delivery modes include the persistent interactivity, personalisation and engagement, potential to make healthcare more accessible and scalable, more cost-effective and more equitable [29]. Such characteristics provide significant potential to assist in disease prevention strategies and supporting sustained change in lifestyle behaviours. However, there are too many apps for consumers and professionals to choose from [30]. In addition, the majority within the health & fitness category of the Apple iTunes U.S. store scored less than 40 out of a possible 100 for functionality according to a recent report from the IMS Institute for Healthcare Informatics that concluded apps do little more than providing information [31]. Emerging evidence demonstrates the need for collaboration between health behaviour change experts and app developers to create apps that include effective BCTs. Future research is also needed to better understand how individuals use apps after downloading them, and to investigate features that may impact user acceptability and preference [32].