Flynn MA, McNeil DA, Maloff B, Mutasingwa D, Wu M, Ford C, et al: Reducing obesity and related chronic disease risk in children and youth: a synthesis of evidence with ‘best practice’ recommendations. Obes Rev. 2006, 7 (Suppl 1): 7-66.
Article
PubMed
Google Scholar
Andersen LB, Harro M, Sardinha LB, Froberg K, Ekelund U, Brage S, et al: Physical activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). Lancet. 2006, 368: 299-304. 10.1016/S0140-6736(06)69075-2.
Article
PubMed
Google Scholar
Cooper C, Cawley M, Bhalla A, Egger P, Ring F, Morton L, et al: Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res. 1995, 10: 940-947.
Article
CAS
PubMed
Google Scholar
Hamer M, Stamatakis E, Mishra G: Psychological distress, television viewing, and physical activity in children aged 4 to 12 years. Pediatrics. 2009, 123: 1263-1268. 10.1542/peds.2008-1523.
Article
PubMed
Google Scholar
Parfitt G, Eston RG: The relationship between children’s habitual activity level and psychological well-being. Acta Paediatr. 2005, 94: 1791-1797. 10.1080/08035250500268266.
Article
PubMed
Google Scholar
Fedewa AL, Ahn S: The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes: a meta-analysis. Res Q Exerc Sport. 2011, 82: 521-535. 10.1080/02701367.2011.10599785.
Article
PubMed
Google Scholar
World Health Organization: Global Recommendations on Physical Activity for Health. 2011, Switzerland: WHO press, Ref Type: Online Source
Google Scholar
Janssen I, Leblanc AG: Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010, 7: 40-10.1186/1479-5868-7-40.
Article
PubMed
PubMed Central
Google Scholar
Pate RR, O’Neill JR, Lobelo F: The evolving definition of “sedentary”. Exerc Sport Sci Rev. 2008, 36: 173-178. 10.1097/JES.0b013e3181877d1a.
Article
PubMed
Google Scholar
Ekelund U, Brage S, Froberg K, Harro M, Anderssen SA, Sardinha LB, et al: TV viewing and physical activity are independently associated with metabolic risk in children: the European Youth Heart Study. PLoS Med. 2006, 3: e488-10.1371/journal.pmed.0030488.
Article
PubMed
PubMed Central
Google Scholar
Biddle SJ, Gorely T, Marshall SJ, Murdey I, Cameron N: Physical activity and sedentary behaviours in youth: issues and controversies. J R Soc Promot Health. 2004, 124: 29-33. 10.1177/146642400312400110.
Article
PubMed
Google Scholar
American Academy of Pediatrics: American Academy of Pediatrics: Children, adolescents, and television. Pediatrics. 2001, 107: 423-426.
Article
Google Scholar
Verloigne M, Van Lippevelde W, Maes L, Yildirim M, Chinapaw M, Manios Y, et al: Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 European countries using accelerometers: an observational study within the ENERGY-project. Int J Behav Nutr Phys Act. 2012, 9: 34-10.1186/1479-5868-9-34.
Article
PubMed
PubMed Central
Google Scholar
Van Mechelen W, Twisk JW, Post GB, Snel J, Kemper HC: Physical activity of young people: the Amsterdam Longitudinal Growth and Health Study. Med Sci Sports Exerc. 2000, 32: 1610-1616.
Article
CAS
PubMed
Google Scholar
Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, et al: Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002, 34: 350-355. 10.1097/00005768-200202000-00025.
Article
PubMed
Google Scholar
Riddoch CJ, Bo AL, Wedderkopp N, Harro M, Klasson-Heggebo L, Sardinha LB, et al: Physical activity levels and patterns of 9- and 15-yr-old European children. Med Sci Sports Exerc. 2004, 36: 86-92. 10.1249/01.MSS.0000106174.43932.92.
Article
PubMed
Google Scholar
Brown T, Summerbell C: Systematic review of school-based interventions that focus on changing dietary intake and physical activity levels to prevent childhood obesity: an update to the obesity guidance produced by the National Institute for Health and Clinical Excellence. Obes Rev. 2009, 10: 110-141. 10.1111/j.1467-789X.2008.00515.x.
Article
CAS
PubMed
Google Scholar
Ridgers ND, Stratton G, Fairclough SJ: Physical activity levels of children during school playtime. Sports Med. 2006, 36: 359-371. 10.2165/00007256-200636040-00005.
Article
PubMed
Google Scholar
Ridgers ND, Stratton G, Fairclough SJ: Assessing physical activity during recess using accelerometry. Prev Med. 2005, 41: 102-107. 10.1016/j.ypmed.2004.10.023.
Article
PubMed
Google Scholar
Verstraete SJ, Cardon GM, De Clercq DL, De Bourdeaudhuij IM: Increasing children’s physical activity levels during recess periods in elementary schools: the effects of providing game equipment. Eur J Public Health. 2006, 16: 415-419. 10.1093/eurpub/ckl008.
Article
PubMed
Google Scholar
Ickes MJ, Erwin H, Beighle A: Systematic review of recess interventions to increase physical activity. J Phys Act Health. 2013, 10: 910-926.
PubMed
Google Scholar
Parrish AM, Okely AD, Stanley RM, Ridgers ND: The effect of school recess interventions on physical activity : a systematic review. Sports Med. 2013, 43: 287-299. 10.1007/s40279-013-0024-2.
Article
PubMed
Google Scholar
Stanley RM, Boshoff K, Dollman J: Voices in the playground: a qualitative exploration of the barriers and facilitators of lunchtime play. J Sci Med Sport. 2012, 15: 44-51. 10.1016/j.jsams.2011.08.002.
Article
PubMed
Google Scholar
Ridgers ND, Fairclough SJ, Stratton G: Variables associated with children’s physical activity levels during recess: the A-CLASS project. Int J Behav Nutr Phys Act. 2010, 7: 74-10.1186/1479-5868-7-74.
Article
PubMed
PubMed Central
Google Scholar
Harten N, Olds T, Dollman J: The effects of gender, motor skills and play area on the free play activities of 8–11 year old school children. Health Place. 2008, 14: 386-393. 10.1016/j.healthplace.2007.08.005.
Article
PubMed
Google Scholar
Van Cauwenberghe E, De Bourdeaudhuij I, Maes L, Cardon G: Efficacy and feasibility of lowering playground density to promote physical activity and to discourage sedentary time during recess at preschool: a pilot study. Prev Med. 2012, 55: 319-321. 10.1016/j.ypmed.2012.07.014.
Article
PubMed
Google Scholar
De Meester A, Aelterman N, Cardon G, De Bourdeaudhuij I, Haerens L: After-school sports as a motivating vehicle towards sport participation in youth: a cross-sectional study. Submitted to Int J Behav Nutr Phys Act. 2013
Google Scholar
Fremeaux AE, Mallam KM, Metcalf BS, Hosking J, Voss LD, Wilkin TJ: The impact of school-time activity on total physical activity: the activitystat hypothesis (EarlyBird 46). Int J Obes (Lond). 2011, 35: 1277-1283. 10.1038/ijo.2011.52.
Article
CAS
Google Scholar
Rowland TW: The biological basis of physical activity. Med Sci Sports Exerc. 1998, 30: 392-399. 10.1097/00005768-199803000-00009.
Article
CAS
PubMed
Google Scholar
Reilly JJ, Penpraze V, Hislop J, Davies G, Grant S, Paton JY: Objective measurement of physical activity and sedentary behaviour: review with new data. Arch Dis Child. 2008, 93: 614-619. 10.1136/adc.2007.133272.
Article
CAS
PubMed
Google Scholar
Van Stralen MM, Te Velde SJ, Singh AS, De BI, Martens MK, Van der Sluis M, et al: EuropeaN Energy balance Research to prevent excessive weight Gain among Youth (ENERGY) project: Design and methodology of the ENERGY cross-sectional survey. BMC Public Health. 2011, 11: 65-10.1186/1471-2458-11-65.
Article
PubMed
PubMed Central
Google Scholar
Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG: Calibration of two objective measures of physical activity for children. J Sports Sci. 2008, 26: 1557-1565. 10.1080/02640410802334196.
Article
PubMed
Google Scholar
Ojiambo R, Cuthill R, Budd H, Konstabel K, Casajus JA, Gonzalez-Aguero A, et al: Impact of methodological decisions on accelerometer outcome variables in young children. Int J Obes (Lond). 2011, 35 (Suppl 1): S98-103.
Article
Google Scholar
Rowlands AV, Pilgrim EL, Eston RG: Seasonal changes in children’s physical activity: an examination of group changes, intra-individual variability and consistency in activity pattern across season. Ann Hum Biol. 2009, 36: 363-378. 10.1080/03014460902824220.
Article
PubMed
Google Scholar
Spittaels H, Van Cauwenberghe E, Verbestel V, De Meester F, Van Dyck D, Verloigne M, et al: Objectively measured sedentary time and physical activity time across the lifespan: a cross-sectional study in four age groups. Int J Behav Nutr Phys Act. 2012, 9: 149-10.1186/1479-5868-9-149.
Article
PubMed
PubMed Central
Google Scholar
Rowlands AV, Pilgrim EL, Eston RG: Patterns of habitual activity across weekdays and weekend days in 9-11-year-old children. Prev Med. 2008, 46: 317-324. 10.1016/j.ypmed.2007.11.004.
Article
PubMed
Google Scholar
Trost SG, Loprinzi PD, Moore R, Pfeiffer KA: Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011, 43: 1360-1368. 10.1249/MSS.0b013e318206476e.
Article
PubMed
Google Scholar
Ridgers ND, Stratton G, Fairclough SJ, Twisk JW: Children’s physical activity levels during school recess: a quasi-experimental intervention study. Int J Behav Nutr Phys Act. 2007, 4: 19-10.1186/1479-5868-4-19.
Article
PubMed
PubMed Central
Google Scholar
Twisk J: Applied Multilevel Analysis. 2006, Cambridge: Cambridge University Press
Book
Google Scholar
Stratton G, Mullan E: The effect of multicolor playground markings on children’s physical activity level during recess. Prev Med. 2005, 41: 828-833. 10.1016/j.ypmed.2005.07.009.
Article
PubMed
Google Scholar
Bundy AC, Luckett T, Tranter PJ, Naughton GA, Wyver SR, Ragen J, et al: The risk is that there is “no risk”: a simple, innovative intervention to increase children s activity levels. Int J Early Years Educ. 2009, 17: 33-45. 10.1080/09669760802699878.
Article
Google Scholar
Loucaides CA, Jago R, Charalambous I: Promoting physical activity during school break times: piloting a simple, low cost intervention. Prev Med. 2009, 48: 332-334. 10.1016/j.ypmed.2009.02.005.
Article
PubMed
Google Scholar
Stratton G: Promoting children’s physical activity in primary school: an intervention study using playground markings. Ergonomics. 2000, 43: 1538-1546. 10.1080/001401300750003961.
Article
CAS
PubMed
Google Scholar
Ridgers ND, Stratton G, Fairclough SJ, Twisk JW: Long-term effects of a playground markings and physical structures on children’s recess physical activity levels. Prev Med. 2007, 44: 393-397. 10.1016/j.ypmed.2007.01.009.
Article
PubMed
Google Scholar
Tudor-Locke C, Lee SM, Morgan CF, Beighle A, Pangrazi RP: Children’s pedometer-determined physical activity during the segmented school day. Med Sci Sports Exerc. 2006, 38: 1732-1738. 10.1249/01.mss.0000230212.55119.98.
Article
PubMed
Google Scholar
Blatchford P, Baines E, Pellegrini A: The social context of school playground games: Sex and ethnic differences, and changes over time after entry to junior school. Br J Dev Psychol. 2003, 21: 481-505. 10.1348/026151003322535183.
Article
Google Scholar
Mota J, Silva P, Santos MP, Ribeiro JC, Oliveira J, Duarte JA: Physical activity and school recess time: differences between the sexes and the relationship between children’s playground physical activity and habitual physical activity. J Sports Sci. 2005, 23: 269-275. 10.1080/02640410410001730124.
Article
PubMed
Google Scholar
Sallis JF, McKenzie TL, Conway TL, Elder JP, Prochaska JJ, Brown M, et al: Environmental interventions for eating and physical activity: a randomized controlled trial in middle schools. Am J Prev Med. 2003, 24: 209-217. 10.1016/S0749-3797(02)00646-3.
Article
PubMed
Google Scholar