- Research
- Open access
- Published:
Prevalence of insufficient physical activity among adult residents of Tehran: a cross-sectional report from Tehran Cohort Study (TeCS)
BMC Public Health volume 24, Article number: 1722 (2024)
Abstract
Background
Insufficient physical activity (PA) is a major risk factor for non-communicable diseases (NCDs) and one of the leading causes of premature mortality worldwide. This study examined the prevalence and independent determinants of insufficient PA among adults resident of Tehran utilizing Tehran Cohort Study Data (TeCS).
Method
We used the recruitment phase data from the TeCS with complete data on PA. PA was assessed through a Likert-scaled question and categorized into three groups. Utilizing data from the 2016 national census, the age- and sex-weighted prevalence of insufficient PA in Tehran was determined. The adjusted logistic regression model is used to neutralize influencing factors and determine the factors associated with insufficient PA.
Result
The weighted prevalence of insufficient PA was 16.9% among the 8213 adult citizens of Tehran, with a greater prevalence among females (19.0% vs. 14.8% among males). Additionally, older age groups, unemployed, housewives, and illiterate educated participants displayed a much higher prevalence of insufficient PA (p < 0.001). Moreover, Tehran’s central and southern districts had higher rates of insufficient PA. Concerning the adjusted regression model, older age (Odds ratio [OR]: 4.26, 95% confidence interval [95% CI]: 3.24–5.60, p < 0.001), a lower education level (p < 0.001), unemployment (OR: 1.80, 95% CI: 1.28–2.55, p = 0.001), being a housewife (OR: 1.44, 95% CI: 1.15–1.80, p = 0.002), higher body mass index (BMI) (OR for BMI > 30: 1.85, 95% CI: 1.56–2.18, p < 0.001), opium consumption (OR: 1.92, 95% CI: 1.46–2.52, p < 0.001), diabetes mellitus (OR: 1.25, 95% CI: 1.06–1.48, p = 0.008), hypertension (OR: 1.29, 95% CI: 1.11–1.50, p = 0.001), and coronary artery diseases (OR: 1.30, 95% CI: 1.05–1.61, p = 0.018), were significantly associated with insufficient PA.
Conclusions
The identified associated factors serve as a valuable guide for policymakers in developing tailored intervention strategies to address the needs of high-risk populations, particularly among older adults and females.
Introduction
According to recent World Health Organization (WHO) guidelines on physical activity (PA) and sedentary behavior, insufficient PA, also known as physical inactivity or low PA, is fewer than 150 min of moderate-intensity aerobic PA or 75 min of vigorous-intensity aerobic PA per week or an equivalent combination of both for adults aged 18 to 64 [1]. Approximately one in three women and one in four men worldwide were insufficiently physically active in 2016, and the rate was higher for high-income countries [2]. As a critical worldwide issue, lack of adequate PA is strongly correlated with the risk of non-communicable diseases (NCDs), such as hypertension, type 2 diabetes mellitus (DM), breast cancer, colorectal cancer, chronic pain, and depression, estimated as the fourth leading cause of mortality which results in 5.3 million premature deaths each year [3]. Global healthcare costs directly associated with insufficient PA were estimated to be $54 billion in 2013, with another $14 billion correlated with lost productivity [4]. Additionally, 1–3% of national healthcare expenditures are attributed to inactivity [5].
Numerous studies have examined the prevalence of insufficient PA and its evolution over time in developing regions, such as the Middle East and North Africa [6, 7]. Moreover, several investigations have estimated that there is insufficient PA in Iran as a developing country. Regarding recent reports, the prevalence of insufficient PA in Iran is about 51.3% for the entire population [8]. In addition, the prevalence of insufficient PA in Iranian adults over 18 has doubled from 2001 to 2016, which means more than half of the population had insufficient PA as of 2016 [9]. Further, estimates for insufficient PA were more prevalent among females and ranged from 39.5 to 78.7% among Iranian cities, showing a noticeable difference among Iranian regions. Moreover, insufficient PA accounted for about 3.7% of all-cause mortalities in Iran in 2019 [10].
Even though Tehran is Iran’s capital and most densely populated city, and there are changes in the number of growing dwellers, few epidemiological studies have addressed the prevalence of insufficient PA. Moreover, it should be considered that insufficient PA poses a serious health risk for general populations, particularly among older adults, and existing reports are nearly outdated, and their samples did not cover all districts [11, 12]. In light of this issue, a comprehensive report on the insufficient PA status among Tehran residents is required to establish proper health-related management and policies. Therefore, we sought to estimate PA levels among adult residents of Tehran with a focus on sex and age subgroups regarding the Tehran Cohort Study (TeCS) data.
Methods
Study design and participants
We retrieved data from the recruitment phase of the TeCS in this cross-sectional study. The details of the TeCS protocol have been explained previously [13]. Briefly, TeCS is a longitudinal cohort study in Tehran aiming to identify the incidence, prevalence, and trend of cardiovascular diseases and their associated risk factors in a random sample of Tehran’s adult population. Between March 2016 and March 2019, 4,215 households consisting of 8,296 adults 35 years or older were enrolled in the TeCS data bank. Several demographic and medical data were obtained, including past medical history, medications, and familial history, as well as anthropometric and physiological measurements, biochemistry, and laboratory tests. During this analysis, we selected participants with complete PA data. The Research Council and Medical Ethics Committee at Tehran University of Medical Sciences ratified the protocols of TeCS (IR.TUMS.MEDICINE.REC.1399.074). All participants signed the informed consent form upon enrollment. Moreover, in the case of members, they may not be capable of providing informed consent for their participation (Illiterate), or in such instances, the legal guardian or an appropriate representative of these participants provided informed consent on their behalf.
Data collection and measurements
Predesigned checklists were developed to assess demographic information, occupation, marital status, ethnicity, education level, preexisting comorbidities, and metabolic risk factors. Furthermore, an experienced nurse measured anthropometric indices, including weight, height, body mass index (BMI), waist circumference, and hip circumference. BMI was expressed as weight fractioned by height square (kg/m2) [14]. The hip was metered around the widest part of the buttocks and waist circumferences at the midpoint between the lower margin of the lowest palpable rib and the top of the iliac crest [15]. Fasting venous blood samples were collected after 8–12 h of fasting to measure fasting blood glucose (FBG), creatinine, and lipid profiles. Furthermore, a digital brachial cuff sphygmomanometer was used to measure blood pressure after at least five minutes of rest in a sitting position. In addition, as part of our in-person interview checklist, prior to answering, our expert nurse completely explained each part of the study form based on the subject level of education about the question and the exact meaning of each score. In the case of physical activity, we utilized a subjective five-score Likert scale. The term “inactive” was applied to individuals who, for any reason, lacked the ability to move. “Low activity” described those who were capable of movement but did not engage in any walking activities beyond basic necessities, such as going to the restroom or kitchen. “Moderate activity” refers to individuals who engage in walking as part of their daily routines, such as shopping or going to the park. An “active” individual was someone who, in addition to walking, participated in simple and amateur sports sessions up to two or three times a week. Finally, the “very active” category was designated for those who engaged in professional and regular sports activities on a daily basis. Finally, all subjects were classified as average daily PA in three levels, including low, intermediate, and high activity.
Definitions
Defining the terms tobacco use, opium and alcohol consumption, and glycemic conditions, as well as preexisting comorbidities such as chronic kidney diseases (CKD) and coronary artery disease (CAD), were comprehensively expounded in our previous studies [16, 17]. Briefly, current tobacco use is defined as the daily or occasional smoking of cigarettes, pipes, or hookahs [17]. Quitted tobacco users were those who had quit smoking one month before the interview. The definition of opium consumption was any use of opium or its derivatives during the previous year. Alcohol use was labeled as drinking any alcoholic beverages in the previous year. Moreover, DM is defined by previously diagnosed type 2 diabetes by healthcare providers, or FBG over 126 mg/dl following an overnight fast of 8–12 h or taking glucose-lowering medications such as oral hypoglycemic agents or insulin. The condition of impaired fasting glucose was identified as an FBS level spanning from 100 to 125 mg/dl in individuals without a prior diagnosis of diabetes or utilizing any glucose-lowering drugs [18]. Hypertension is also described as a self-reported previous diagnosis of hypertension or measurements showing systolic blood pressure (BP) of 140 mmHg or higher, as well as diastolic BP of 90 mmHg or higher, or the use of antihypertensive drugs [19]. Systolic BP between 130 and 140 mmHg and/or Diastolic BP between 85 and 90 mmHg were classified as high normal blood pressure. Dyslipidemia is classified to suboptimal levels of high-density lipoprotein (HDL) cholesterol and/or increased levels of triglyceride or low-density lipoprotein (LDL) cholesterol, along with the usage of lipid-lowering medications.
Statistical analysis
Normally distributed continuous variables were described as mean with standard deviation (SD) and were compared between the PA levels using a One-way analysis of variance (ANOVA) test. Skewed distributed continuous variables were expressed as median with 25th and 75th percentiles (interquartile range boundaries) and were compared between PA levels applying the Kruskal-Wallis test. The normality of the continuous variables was assessed using descriptive measures as well as histogram charts. Categorical variables were presented as the frequency with percentages and compared between PA levels using the Chi-square test. The adjusted association between low PA and baseline covariates was assessed using a logistic regression model. Age, gender, marital status, level of education, ethnicity, occupation, tobacco, opium, and alcohol use, BMI, Glycemic condition, hyperlipidemia, hypertension, chronic kidney disease, coronary artery diseases, and family history of coronary artery diseases were all adjusted for. Their adjusted association of the variables with low effects was reported via odds ratio (OR) with a 95% confidence interval (CI). The calibration of the logistic regression model was assessed utilizing the Hosmer-Lemeshow goodness of fit test. Also, the multicollinearity of the multivariable model was evaluated using the variance inflation factors (VIFs) for each covariate using the command collin in Stata statistical software, release 14.2 (College Station, TX: Stata Corp LP.). The sex and age-weighted standardized prevalence of PA levels, based on their age distribution, among the grownup citizens of Tehran was calculated according to the Iran Population and Housing Census 2016 [20] and provided a 95% confidence interval (CI). The frequency of low levels of PA in different regions of Tehran was drawn based on the initial three digits of the postal code using the spmap module in Stata statistical software, release 14.2 (College Station, TX: Stata Corp LP.). For other analyses, we used STATA version 14.2 (College Station, TX: Stata Corp LP). Statistical significance was attributed to p-values lower than 0.05.
Results
General characteristics of the study population
Out of 8,296 participants, 8213 adults met our study inclusion criteria (females: 54.1%; mean age: 53.7 ± 12.7 years), and 83 (1.0%) had missing or incomplete data on their PA and were excluded from the final analysis. As illustrated in Tables 1 and 1449 (17.4%) of participants reported low PA levels (females: 59.6%) and tended to be older in comparison with other groups (p < 0.001). In the details, low-active had the lowest and highest prevalence among the age group of 35–44 years (11.8%) and > 75 (48.8%), respectively. The most significant jump in low PA reports was seen between the age group of 64–75 years and > 75 years (Fig. 1). Also, the age pattern of low PA prevalence was affected by gender. A higher proportion of low-active participants were female, while a higher proportion of high-active participants were male (p < 0.001). The low-active group has a higher percentage of individuals with lower education levels (illiterate and 1–5 years of education) and a lower percentage with higher education levels (> 12 years) than the other groups (p < 0.001). In addition, most participants of the low-active group were not employed (72%, p < 0.001) than their peers. Moreover, there was a statistically higher prevalence of opium consumption, diabetes, hypertension, dyslipidemia, CKD, and CAD in the low-active group compared with other groups (p < 0.001). Comparative to those with a moderate or high level of activity, low-active individuals had a considerable elevation in BMI, with the highest percentage of individuals with a BMI > 30, a larger waist and hip circumference, as well as higher levels of systolic and diastolic BP values (p < 0.001). According to laboratory measurements, the low-active group also had higher FBG, urea, creatinine, and triglycerides levels than their peers in other groups (p < 0.001). The percentage of participants’ physical activity levels regarding age and sex are detailed in Table S1.
Age and gender distribution of insufficient physical activity
The age and gender-weighted prevalence of low PA was 16.9% (95% CI: 15.2–18.6) among citizens of Tehran aged 35 years or older. The age-weighted prevalence of insufficient PA was 14.8% (95% CI: 12.5–17.4) in males and 19.0% (95% CI: 16.6–21.4) in females. As depicted in Fig. 2, people in Tehran’s central and eastern districts were more physically inactive.
Determinants associated with insufficient physical activity
Regarding insufficient PA determinants, individuals in the 65–74 age group have 1.46 times higher odds of being low active than those in the 35–44 age group (95% CI: 1.15–1.84, p = 0.002). Further, participants aged more than 75 have the highest odds of being insufficiently active (OR:4.26, 95% CI: 3.24–5.60, p < 0.001). Interestingly, there was an inverse association between education and low PA. By detail, individuals with 1–5, 6–12, and over 12 years of education have 46% (95% CI: 0.42–0.70), 55% (95% CI: 0.36–0.56), and 47% (95% CI: 0.41–0.69) lower odds of being in the low active group, respectively (p < 0.001). In addition, lower PA had a statistically significant correlation with unemployment and being a housewife (OR: 1.80, 95% CI: 1.28–2.55 p = 0.001; OR: 1.44, 95% CI: 1.15–1.80 p = 0.002, respectively), opium consumption (OR: 1.92, 95% CI: 1.46–2.52, p < 0.001), hypertension (OR: 1.29, 95% CI: 1.11–1.50, p = 0.001), and CAD (OR: 1.30, 95% CI: 1.05–1.61, p = 0.018). Moreover, the odds of insufficient PA in obese participants (BMI > 30) were 85% higher than in healthy people (BMI < 25) (OR for BMI > 30: 1.85, 95% CI: 1.56–2.18, p < 0.001). In the case of the glycemic condition, a strong relationship was found between the presence of diabetes mellitus and lower PA (OR:1.25, 95% CI: 1.06–1.48, p = 0.008). Further, no considerable connection was identified between lower PA and gender, marital status, ethnicity, and alcohol consumption. Table 2 comprehensively depicts the correlation between the study variables and the low level of PA.
Discussion
In the current study, we observed that the weighted prevalence of insufficient PA among Tehran adult citizens is about 16.9%, with a higher prevalence in female participants (19.0% vs. 14.8% in men). Moreover, we determined older age, lower education level, unemployment, being a housewife, higher BMI, and opium use, as well as the presence of DM, hypertension, and CAD, were independent determinants of insufficient PA among our study population.
Few studies have investigated insufficient PA in the different geographical areas of Iran. As reported by the Tehran Lipid and Glucose Study (TLGS), approximately half of the Tehran population experienced insufficient PA from Phase II to Phase IV during seven years of follow-up, with rates at 45.9% and 42.6%, respectively [11]. Nonetheless, their study was carried out within a single district of Tehran with identical socioeconomic backgrounds and smaller sample sizes compared to our study. Another investigation performed in Kurdistan province utilized data collected from individuals aged 15 to 64 years [21]. Based on their results, insufficient PA increased from 16.9 to 26.8% within a 4-year follow-up period. A similar investigation conducted in Kerman Province indicated that 47.2% of 3416 adult participants reported low PA levels [22]. However, recent results from the STEP survey study concerning PA among all regions of Iran expounded that Yazd province exhibited the highest prevalence of insufficient PA (63.45%), whereas West Azerbaijan province displayed the lowest prevalence (39.53%) [8]. In accordance with STEP survey results, other recent national studies have indicated that the incidence of sedentary behavior among Iranian adults surpasses the global average and reported a higher prevalence of insufficient PA compared to the present study. [23,24,25]. These differences in results among studies may be explained by variations in the methodology utilized for gathering data on PA as well as discrepancies in the operational definition of the term “insufficient PA.” Furthermore, it appears that the citizens of Tehran exhibited a higher level of activity in the execution of their daily routine.
Interestingly, the present study revealed that Tehran’s lower socioeconomic districts exhibited a higher prevalence of insufficient PA. It seems that the level of socioeconomic status is inversely related to PA. This result is in accordance with other reports from developed countries, especially when education is considered [26,27,28]. However, a recent study in western Iranian cities found no significant correlation between PA and socioeconomic status [29]. Nonetheless, it can be observed that with advancement in socioeconomic status, an increasing amount of time is devoted to engaging in physically active leisure activities.
Moreover, participants aged 35 to 44 demonstrated the least amount of insufficient PA, whereas those 75 years of age and older depicted the greatest levels. Consistent with previous studies, there is an inverse relationship between age and low PA, which has been identified as a significant determinant of PA [30,31,32,33]. Apparently, with increasing age, older people seem to be less motivated to be physically active and prefer quiet activities. Additionally, the presence of different comorbidities among the older adult can negatively affect their daily activities.
Unlike prior studies suggesting a correlation between gender and insufficient PA, our study found no remarkable relationship [23, 30, 33, 34]. Concerning this finding, gender-based cultural and social barriers appear to have been mostly dismantled in Tehran, and women are involved in more physically active occupations and positions. With this trend, it is expected that this gap will gradually narrower and narrower over time.
The current study corroborates a positive two-way relationship between sedentary behavior and BMI. Additional investigations have also discovered an inverse association linking BMI and PA [35, 36]. Nevertheless, some studies have failed to support this correlation [37, 38]. Overall, it seems that engaging in PA is followed by an increase in muscle mass rather than total body fat, which leads to a decrease in BMI [39].
Based on prior studies, the association between insufficient PA and tobacco and alcohol consumption has also been controversial. While several studies have suggested that smoking can lead to less PA, other studies have expounded a correlation between occasional smoking and increased levels of PA [12, 25, 40]. However, in our study, we observed no significant association between insufficient PA and tobacco or alcohol use.
Clinical and epidemiological evidence indicates that higher levels of PA are associated with reduced risk for CAD, DM hypertension, and dyslipidemia [41,42,43]. As an observational study, the current study cannot prove a causal relationship; however, our results align with other studies, illustrating that increased PA is associated with lower occurrences of DM, hypertension, and CAD.
Given the increasing prevalence of non-communicable diseases, it is imperative to formulate strategies that promote greater PA among individuals. Government authorities and policy creators should proactively offer increased incentives and opportunities for adults, particularly the elderly population, to partake in everyday activities and actively seek methods to reduce their sedentary periods. This is essential for the preservation of their holistic well-being and health. Furthermore, our study provides valuable insights into the associations between variables and insufficient PA within our study participants, so future investigations should be conducted with larger sample sizes and longitudinal follow-up to evaluate specific and causal associations more comprehensively. Such studies would enhance the external validity and applicability of the findings, allowing for broader generalization across different populations and settings. This future research is essential to confirm and extend our results, thereby providing a more robust understanding of the factors influencing insufficient PA.
Strengths and limitations
This study is particularly noteworthy for being the initial survey to examine the prevalence of insufficient PA in a broad, diverse sample across all regions of Tehran. Nevertheless, it has its limitations. First, the study’s cross-sectional nature cannot establish the causal relationship between PA and its correlates. Next, while surveys are frequently utilized in cross-sectional and epidemiological research, there is a possibility for either underestimation or overestimation of the gathered information. Third, the participants’ PA level was assessed using a Likert-scaled self-report question, which cannot be relied upon as an entirely accurate measure. To overcome this shortcoming, we are using a detailed questionnaire on daily PA in the first follow-up of TeCS that would complete the findings of the current analysis.
Conclusion
The prevalence of insufficient PA was found to be about half of the reported global statistics among adult citizens of Tehran. However, the older age groups showed a much higher prevalence of insufficient PA, and it is necessary to prompt decisions for improving this situation in the future. We also determined unemployment, being a housewife, illiterate education, higher BMI, DM, hypertension, CAD, and opium use as independent determinants of PA. Policymakers can use these results as a basis to develop tailored intervention strategies aimed at providing for the requirements of high-risk individuals. It is also imperative that the nation establishes a policy to encourage PA to improve its citizens’ well-being and reduce sedentariness. Moreover, we recommend future studies with larger sample sizes and longitudinal follow-up to evaluate specific and causal associations more thoroughly. These investigations are crucial to confirm and expand upon our results, providing a more comprehensive understanding of the factors influencing insufficient PA.
Data availability
All the data generated or analyzed during the current study are available from the corresponding author upon reasonable request.
References
Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, Carty C, Chaput JP, Chastin S, Chou R, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451–62.
Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health. 2018;6(10):e1077–86.
Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.
Ding D, Lawson KD, Kolbe-Alexander TL, Finkelstein EA, Katzmarzyk PT, van Mechelen W, Pratt M. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet. 2016;388(10051):1311–24.
World Health O. Global action plan on physical activity 2018–2030: more active people for a healthier world. Geneva: World Health Organization; 2018.
Niessen LW, Mohan D, Akuoku JK, Mirelman AJ, Ahmed S, Koehlmoos TP, Trujillo A, Khan J, Peters DH. Tackling socioeconomic inequalities and non-communicable diseases in low-income and middle-income countries under the Sustainable Development agenda. Lancet. 2018;391(10134):2036–46.
Chaabane S, Chaabna K, Abraham A, Mamtani R, Cheema S. Physical activity and sedentary behaviour in the Middle East and North Africa: an overview of systematic reviews and meta-analysis. Sci Rep. 2020;10(1):9363.
Nejadghaderi SA, Ahmadi N, Rashidi MM, Ghanbari A, Noori M, Abbasi-Kangevari M, Nasserinejad M, Rezaei N, Yoosefi M, Fattahi N, et al. Physical activity pattern in Iran: findings from STEPS 2021. Front Public Health. 2022;10:1036219.
Kamalian A, Khosravi Shadmani F, Yoosefi M, Mohajer B, Mohebi F, Naderimagham S, Rezaei N, Ghasemi E, Rouhifard Khalilabad M, Hassanmirzaei B, et al. A national and sub-national metaregression of the trend of insufficient physical activity among Iranian adults between 2001 and 2016. Sci Rep. 2021;11(1):21441.
Global Burden of Disease Report. [https://vizhub.healthdata.org/gbd-compare/].
Afghan M, Ghasemi A, Azizi F. Seven-year changes of leisure-time and occupational physical activity among Iranian adults (Tehran lipid and glucose study). Iran J Public Health. 2016;45(1):41–7.
Sheikholeslami S, Ghanbarian A, Azizi F. The impact of physical activity on non-communicable diseases: findings from 20 years of the Tehran lipid and glucose study. Int J Endocrinol Metab. 2018;16(4 Suppl):e84740.
Shafiee A, Saadat S, Shahmansouri N, Jalali A, Alaeddini F, Haddadi M, Tajdini M, Ashraf H, Omidi N, Masoudkabir F, et al. Tehran cohort study (TeCS) on cardiovascular diseases, injury, and mental health: design, methods, and recruitment data. Global Epidemiol. 2021;3:100051.
Zierle-Ghosh A, Jan A. Physiology, Body Mass Index. In: StatPearls edn. Treasure Island (FL): StatPearls Publishing. Copyright © 2024, StatPearls Publishing LLC.; 2024.
Casadei K, Kiel J. Anthropometric Measurement. In: StatPearls edn. Treasure Island (FL): StatPearls Publishing. Copyright © 2024, StatPearls Publishing LLC.; 2024.
Shafiee A, Oraii A, Jalali A, Alaeddini F, Saadat S, Masoudkabir F, Tajdini M, Ashraf H, Omidi N, Heidari A, et al. Epidemiology and prevalence of tobacco use in Tehran; a report from the recruitment phase of Tehran cohort study. BMC Public Health. 2023;23(1):740.
Masoudkabir F, Shafiee A, Heidari A, Mohammadi NSH, Tavakoli K, Jalali A, Nayebirad S, Alaeddini F, Saadat S, Vasheghani-Farahani A, et al. Epidemiology of substance and opium use among adult residents of Tehran; a comprehensive report from Tehran cohort study (TeCS). BMC Psychiatry. 2024;24(1):132.
Oraii A, Shafiee A, Jalali A, Alaeddini F, Saadat S, Masoudkabir F, Vasheghani-Farahani A, Heidari A, Sadeghian S, Boroumand M, et al. Prevalence, awareness, treatment, and control of type 2 diabetes mellitus among the adult residents of tehran: Tehran Cohort Study. BMC Endocr Disorders. 2022;22(1):248.
Oraii A, Shafiee A, Jalali A, Alaeddini F, Saadat S, Sadeghian S, Poorhosseini H, Boroumand M, Karimi A, Franco OH. Prevalence, awareness, treatment, and Control of Hypertension among adult residents of Tehran: the Tehran Cohort Study. Glob Heart. 2022;17(1):31.
et al, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet. 2017;390(10100):1211–59.
Moradi G, Mohammad K, Majdzadeh R, Ardakani HM, Naieni KH. Socioeconomic inequality of non-communicable risk factors among people living in Kurdistan Province, Islamic Republic of Iran. Int J Prev Med. 2013;4(6):671–83.
Najafipour H, Kahnooji M, Baneshi MR, Yeganeh M, Ahmadi Gohari M, Shadkam Farokhi M, Mirzazadeh A. The prevalence and 5-Year incidence rate of low physical activity in an Urban Population of 10,000 in Southeastern Iran: Relationship With Other Cardiovascular Risk factors. J Phys Act Health. 2020;17(4):435–42.
Kolahi AA, Moghisi A, Kousha A, Soleiman-Ekhtiari Y. Physical activity levels and related sociodemographic factors among Iranian adults: results from a population-based national STEPS survey. Med J Islam Repub Iran. 2020;34:172.
Sahebkar M, Heidarian Miri H, Noormohammadpour P, Akrami R, Mansournia N, Tavana B, Mansournia MA, Stamatakis E. Prevalence and correlates of low physical activity in the Iranian population: National survey on non-communicable diseases in 2011. Scand J Med Sci Sports. 2018;28(8):1916–24.
Mohebi F, Mohajer B, Yoosefi M, Sheidaei A, Zokaei H, Damerchilu B, Mehregan A, Shahbal N, Rezaee K, Khezrian M, et al. Physical activity profile of the Iranian population: STEPS survey, 2016. BMC Public Health. 2019;19(1):1266.
More money, more fitness. Why people in the wealthiest states get more exercise [https://www.washingtonpost.com/news/wonk/wp/2018/07/03/more-money-more-fitness-why-people-in-the-wealthiest-states-get-more-exercise/].
Dowler E. Inequalities in diet and physical activity in Europe. Public Health Nutr. 2001;4(2B):701–9.
Fong CW, Bhalla V, Heng D, Chua AV, Chan ML, Chew SK. Educational inequalities associated with health-related behaviours in the adult population of Singapore. Singap Med J. 2007;48(12):1091–9.
Rajabi Gilan N, Khezeli M, Zardoshtian S. The effect of self-rated health, subjective socioeconomic status, social capital, and physical activity on life satisfaction: a cross-sectional study in urban western Iran. BMC Public Health. 2021;21(1):233.
Emdadi S, Hazavehei SM, Soltanian A, Bashirian S, Moghadam RH. Physical activity status and related factors among middle-aged women in West of Iran, Hamadan: a cross-sectional study. Glob J Health Sci. 2016;8(10):52166.
Sadrollahi A, Hosseinian M, Masoudi Alavi N, Khalili Z, Esalatmanesh S. Physical activity patterns in the Elderly Kashan Population. Iran Red Crescent Med J. 2016;18(6):e25008.
Lau JH, Nair A, Abdin E, Kumarasan R, Wang P, Devi F, Sum CF, Lee ES, Muller-Riemenschneider F, Subramaniam M. Prevalence and patterns of physical activity, sedentary behaviour, and their association with health-related quality of life within a multi-ethnic Asian population. BMC Public Health. 2021;21(1):1939.
Ramamoorthy T, Kulothungan V, Mathur P. Prevalence and correlates of Insufficient Physical activity among adults aged 18–69 years in India: findings from the National Noncommunicable Disease Monitoring Survey. J Phys Act Health. 2022;19(3):150–9.
Najafipour H, Moazenzadeh M, Afshari M, Nasri HR, Khaksari M, Forood A, Mirzazadeh A. The prevalence of low physical activity in an urban population and its relationship with other cardiovascular risk factors: findings of a community-based study (KERCADRS) in southeast of Iran. ARYA Atheroscler. 2016;12(5):212–9.
Du H, Bennett D, Li L, Whitlock G, Guo Y, Collins R, Chen J, Bian Z, Hong LS, Feng S, et al. Physical activity and sedentary leisure time and their associations with BMI, waist circumference, and percentage body fat in 0.5 million adults: the China Kadoorie Biobank study. Am J Clin Nutr. 2013;97(3):487–96.
Aminian O, Saraei M, Najieb Pour S, Eftekhari S. Association between type of physical activity and risk factors for cardiovascular disease, Islamic Republic of Iran. East Mediterr Health J. 2021;27(11):1061–8.
Mirzaei M, Dastgiri S, Aminisani N, Asghari-Jafarabadi M. Sociodemographic Pattern of Physical Activity in the Northwest of Iran: results of the pilot phase of the Azar Cohort Study. Int J Prev Med. 2019;10:154.
Motefaker M, Sadrbafghi SM, Rafiee M, Bahadorzadeh L, Namayandeh SM, Karimi M, Abdoli AM. SuicEpidemiology of physical activity: a population based study in Yazd Cityide attempt and its relation to stressors and supportive systems: a study in Karaj city. Tehran-Univ-Med-J. 2007;65(4):77–81.
Cameron N, Godino J, Nichols JF, Wing D, Hill L, Patrick K. Associations between physical activity and BMI, body fatness, and visceral adiposity in overweight or obese latino and non-latino adults. Int J Obes (Lond). 2017;41(6):873–7.
Heydari G, Hosseini M, Yousefifard M, Asady H, Baikpour M, Barat A. Smoking and physical activity in healthy adults: a cross-sectional study in Tehran. Tanaffos. 2015;14(4):238–45.
Pedersen BK, Saltin B. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015;25(Suppl 3):1–72.
Wahid A, Manek N, Nichols M, Kelly P, Foster C, Webster P, Kaur A, Friedemann Smith C, Wilkins E, Rayner M et al. Quantifying the Association between Physical Activity and Cardiovascular Disease and Diabetes: a systematic review and Meta-analysis. J Am Heart Assoc 2016, 5(9).
Winzer EB, Woitek F, Linke A. Physical activity in the Prevention and Treatment of Coronary Artery Disease. J Am Heart Assoc 2018, 7(4).
Acknowledgements
The Tehran Cohort Study team thanks all the study participants for their time and cooperation. The drafting of this manuscript was supported by the Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.
Funding
This study was financially supported by the Iranian Ministry of Health and the Tehran Heart Center.
Author information
Authors and Affiliations
Contributions
SM and AV: study concept, data collecting, and drafting the initial manuscript and final approval; AH: drafting the initial manuscript, revision critically, and final approval; AS: drafting the initial manuscript, revised the study critically and final approval; AJ: study design, supervision, data cleaning, interpretation, analysis, and final approval; FA, SoSa, FM, and KH: revised the study critically and final approval; AV: study management, revised the study critically and final approval; SaSa, MB, AK: supervision, study management, revision, and final approval. All authors reviewed and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
This project was approved by the Tehran Heart Center’s review board and the ethical committee of the Tehran University of Medical Sciences (ID: IR.TUMS.MEDICINE.REC.1399.074). All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all study participants before enrollment. Moreover, in the case of members, they may not be capable of providing informed consent for their participation (Illiterate), or in such instances, the legal guardian or an appropriate representative of these participants provided informed consent on their behalf.
Consent for publication
Not applicable.
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
About this article
Cite this article
Mossavarali, S., Vaezi, A., Heidari, A. et al. Prevalence of insufficient physical activity among adult residents of Tehran: a cross-sectional report from Tehran Cohort Study (TeCS). BMC Public Health 24, 1722 (2024). https://doi.org/10.1186/s12889-024-19201-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s12889-024-19201-6