- Research
- Open access
- Published:
Relationship between animal health and livestock farmers’ wellbeing in Ghana: beyond zoonoses
BMC Public Health volume 23, Article number: 1353 (2023)
Abstract
Introduction
Livestock production is a key livelihood source for many people in developing countries. Poor control of livestock diseases hamper livestock productivity, threatening farmers’ wellbeing and food security. This study estimates the effect of livestock mortalities attributable to disease on the wellbeing of livestock farmers.
Methods
Overall, 350 ruminant livestock farmers were randomly selected from three districts located in the north, middle and southern belts of Ghana. Mixed-effect linear regression models were used to estimate the relationship between animal health and farmer wellbeing. Farmer wellbeing was assessed using the WHOQOL-BREF tool, as the mean quality-of-life in four domains (physical, psychological, social, and environmental). Animal health was assessed as annual livestock mortalities to diseases adjusted for herd size, and standardized in tropical livestock units to account for different ruminant livestock species. We adjusted for the potential confounding effect of farmers’ age, sex, educational attainment, farmland size, socio-economic status, perception of disease risk to herd, satisfaction with health, previous experience of disease outbreaks in herds, and social support availability by including these as fixed effects, and community as random effects, in a pre-specified model.
Results
Our results showed that farmers had a median score of 65.5 out of 100 (IQR: 56.6 to 73.2) on the wellbeing scale. The farmers’ reported on average (median) 10% (IQR: 0 to 23) annual herd mortalities to diseases. There was a significantly negative relationship between increasing level of animal disease-induced mortality in herds and farmers’ wellbeing. Specifically, our model predicted an expected difference in farmers’ wellbeing score of 7.9 (95%CI 1.50 to 14.39) between a farmer without any herd mortalities to diseases compared to a (hypothetical) farmer with 100% of herd mortalities caused by diseases in a farming year. Thus, there is a reduction of approximately 0.8 wellbeing points of farmers, for the average of 10% disease-induced herd mortalities experienced.
Conclusions
Disease-induced livestock mortalities have a significant negative effect on farmers’ wellbeing, particularly in the physical and psychological domains. This suggests that veterinary service policies addressing disease risks in livestock, could contribute to improving the wellbeing of livestock dependent populations, and public food security.
Introduction
Livestock production remains a key source of livelihood for many people in developing countries, particularly for rural dwellers [1]. Livestock production contributes to public food security and revenues, as well as individual-level food resources, economic prosperity, and as an asset store against uncertainty [2, 3]. In spite of its value to society, livestock production is hampered by adverse events including climate variabilities, conflicts, and animal disease outbreaks. These adversities negatively affect the productivity of the livestock sector [2].
In many sub-Saharan African countries including Ghana, transboundary animal diseases are highly prevalent due to an inadequate adoption of disease prevention and control measures, causing significant herd mortalities [4]. The lack of adequate prevention of diseases in animals predisposes humans, and the ecosystem to heightened risks of zoonotic disease, antimicrobial residue spread and related antimicrobial resistant pathogens [5, 6]. Beyond these risks to human and ecosystem health, livestock mortalities could also affect the wellbeing of livestock dependent populations. Previous research has shown a negative effect of animal disease-related mortalities on livestock farmers’ psychological wellbeing [7, 8]. Although other dimensions of the wellbeing of livestock farmers could be affected by poor animal health, there is a dearth of evidence on the extent of these effects in the literature.
Human wellbeing and productivity are closely interconnected. Research has shown a strong two-way link between productivity and wellbeing of people; better wellbeing has a strong and positive impact on productive performance in work, while the productivity gains from high performance also contribute to better wellbeing of people through higher incomes, life and job satisfaction [9]. It is essential therefore, that challenges affecting the wellbeing of working people be addressed to foster better productivity. Wellbeing could be measured either objectively or subjectively. Objective measurements of wellbeing are often implemented as aggregate population level indexes of wellbeing using different indicators such as the human development index [10], while subjective wellbeing measures involve assessment of individual’s own perception of their wellbeing [11]. The WHO Quality of Life – BREF (WHOQOL – BREF) tool is often used to assess individual’s perception of their own wellbeing including their satisfaction with the level of functioning [12].
A livestock herd’s health is measured by the herd’s productivity and ability to limit the incidence and effect of economically important diseases [13]. Although previous research has highlighted significant connections between human and animal health, the majority of existing literature has predominantly focused on areas such as the potential for zoonotic diseases, impact of antimicrobial usage on the development of pathogen resistance, and the effect of animal diseases on food security [14,15,16,17,18,19]. It is worth noting that livestock farmers share strong bonds with their animals, with livestock fulfilling additional social roles, including serving as companion animals for farmers [20, 21]. Hence, the impact of poor animal health on livestock farmers can potentially extend beyond livelihood loss, zoonotic infections, and food insecurity. Our goal in this study therefore was to evaluate the average impact on a livestock farmer’s wellbeing that could be attributed to the health and mortality of animals in the farmer’s herd.
Materials and methods
Description of study area
This study was conducted in the Mion, Pru East and Kwahu Afram Plains South (KAPS) Districts, which are representative of the northern, middle and southern farming belts of Ghana. The districts lie in the Guinea Savannah, Transition and Deciduous forest Vegetation zones, which are the main livestock production zones in Ghana (Fig. 1) [22,23,24]. Agriculture contributed about one-fifth of the national gross domestic product of Ghana in 2019 with the livestock sector accounting for 14% of this production [25]. The selected districts are mainly rural and agrarian, with about one-third of the livestock holdings of households being ruminant species. The ruminant livestock species mainly reared by farmers include cattle, sheep, and goats. While the non-ruminant livestock species reared, include poultry, pigs, and rabbits [26].
Study design
This study was a cross-sectional survey involving 350 ruminant livestock owners. The survey was conducted as a part of a larger project that employed a convergent parallel mixed-method design to assess the effectiveness of veterinary interventions in Ghana. The full details of the project design is provided in an earlier paper [27]. In summary, the wellbeing of the ruminant livestock farmers in the study was assessed using the WHO Quality of life – BREF tool, and herd health was assessed as the proportion of annual herd mortalities attributable to diseases. We evaluate in this paper, the sensitivity of farmer’s wellbeing to the level of disease-induced animal mortalities in the farmer’s herd, adjusting for other pre-specified covariates.
Study population
The study population included all ruminant livestock farmers’ in the study area. We first obtained district maps and created a sampling frame of villages within the study area. Based on the population and housing census data available prior to the study (2010 Population and Housing Census), there was about 80,880, 54,694, and 47,230 tropical livestock units (TLUs) of ruminant livestock species in the KAPS, Mion and Pru East Districts respectively, with an average of about 10 holdings per household. We randomly drew from the sampling frame, 15 villages in the KAPS District, and 10 villages each in the Pru East and Mion Districts, proportional to the number of livestock farming households per district [22,23,24]. A household refers to a person or group of persons who normally live together and are catered for as one unit; members may or may not be related. Any member of the household who takes responsibility for the upkeep of the household’s livestock was eligible to participate in the study.
Sample size and sampling technique
The sample size determination and sampling procedure for the survey is described in detail in an earlier paper [27]. In summary, 350 livestock farmers were recruited from 38 villages in the three study districts, proportional to the size of ruminant livestock owning households using segmentation; where selected villages are divided into smaller equal units called segments depending on size, and all eligible households recruited in one randomly selected segment [28]. In selected segments of the study villages, all households who keep ruminant livestock were eligible to be selected and the households providing consent were recruited to participate in the survey. For villages where sufficient households were not attained due to low number of livestock-owning households, the adjoining village was selected in an attempt to reach the desired sample size. Overall, the median number of farmers recruited per village was 10 farmers [interquartile range (IQR) = 7 to 11].
Data collection and data management
The enumeration team visited the households keeping ruminant livestock to administer the questionnaires between November 2021 and January 2022. The survey questionnaire was administered to the respondents’ face-to-face using tablets with Open Data Kit (ODK) application [29]. The data collected included social support availability to farmers, farmers’ perception of disease risk to herd, farmers’ wellbeing and satisfaction with health, and other socio-demographic characteristics. The livestock farmers’ wellbeing was assessed using the WHO Quality of life – BREF (WHOQOL-BREF) tool [30]. The WHOQOL-BREF is a 26-item 5-point Likert scale, with scores ranging from 1 to 5; higher scores on the scale denote better wellbeing. Two of the items on the scale assesses the study subject’s own perception of quality of life or wellbeing and overall satisfaction with health status, and are excluded in the analysis for wellbeing. The 24 questions assess individual’s perception of their wellbeing on the physical, psychological, social, and environmental domains. Farmers’ perception of disease risk to herds was assessed on a five-item Likert scale with responses ranging from 1 to 5; higher scores indicate higher risk perception of the diseases to a herd. The social support level available to farmers was assessed on a 5-point Likert scale of the level of support, the farmers received from different facets of society including family, friends, law enforcement, credit institutions, community leaders and religious leaders, to aid them in livestock farming. We measured animal health using reported annual disease-induced mortalities of livestock relative to a herd size, and standardized in tropical livestock units [31]. The data was downloaded in Microsoft Excel format from ODK and imported into R version 4.1 [32] for analyses.
Data analyses
We performed descriptive analyses of the survey data, comparing the distribution of responses by study district. The farmers’ herd sizes were converted to tropical livestock units (TLU) to standardize livestock holdings as follows: 1 TLU corresponds to 0.75 cattle and 0.1 small ruminants (sheep and goats) [33]. The number of animal mortalities were also converted to TLUs. The relative wealth of households was determined using an index of household’s ownership of selected assets, such as televisions, refrigerators and bicycles [34]. We determined the severity of losses suffered as the proportion of a herd lost to different factors in TLUs. The social support available to a farmer was the sum of the reported support level received from the different sources. We derived the disease risk to herd perception score as the sum of the Likert scale scores. One item score on the perception scale (Q4) is reversed to achieve a similar direction of the perception score. For the wellbeing score, firstly three negatively framed items (Q3, Q4, and Q26) were reversed to achieve a similar direction of wellbeing scores. To obtain the scores for each wellbeing domain, the mean of all items included within each wellbeing domain is calculated, and multiplied by a factor of four and then transformed to a scale from 0 to 100, according to the tool’s guidelines [30]. We derived the overall wellbeing score as the average of the four wellbeing dimension scores [35].
We performed univariable analyses, using linear regression models to compare the relationship between farmers’ wellbeing and the level of mortalities in their herds [categorized in three quantiles (tertiles): low, moderate and severe] to all causes, and specifically to diseases. We present the results using boxplots, comparing the average wellbeing scores between the levels of herd mortalities. In a pre-specified linear regression model, we evaluated the hypothesis that the level of animal disease-induced mortality in herds (herd health) is associated with farmers’ overall wellbeing, accounting for the potential confounding effects of other covariates in a linear mixed effects model. The level of disease-induced herd mortality is derived as the number of animals lost to diseases relative to each farmers’ herd size (both in TLUs). The covariates included in the model were farmers’ age, sex, educational attainment, farmland size, wealth status, perception of disease risk to herds, overall satisfaction with health, and level of social support received as fixed effects, and village-level clusters as random effects in a linear mixed effect regression model. Values of p < 0.05 were considered statistically significant. We performed sensitivity analysis to assess the robustness of the findings, and examined model residuals to determine if key assumptions of model fit were met.
Results
Socio-demographic characteristics of study respondents
Table 1 presents the socio-demographic characteristics of all study respondents (N = 350) stratified by district. The median age of the farmers completing the survey was 45 years (IQR = 35 to 54 years). The median household size was 8 persons (IQR = 6 to 11 persons), with each household keeping on average (median) 2.5 TLUs of ruminant livestock per herd (IQR = 1.3 to 7.0 TLUs). More than 95% (333/350) of the respondents own the livestock themselves. The farmers also cultivated on average 7 acres of farmland (IQR = 3 to 15 acres) in addition to rearing livestock. More than two-thirds (71%) of the respondents were male, and about half of farmers had received no formal education (51%). The wealth index analysis of households showed that in the Mion District, 67% of households were in the poorest two wealth quintiles, while the same was true only for 42% of households in KAPS and for 16% of households in the Pru East Districts. On average, farmers ranked the social support received in the study year at 6 out of 30 (IQR = 6 to 8). The social support was received mainly from family and friend sources (Fig. 2). Farmers scored on average, 19 out of 25 (IQR = 17 to 21) on the disease risk perception scale.
Effect of livestock mortality on livestock farmers’ wellbeing
The farmers reported a median of 0.5 TLUs (IQR = 0.1 to 1.4 TLUs) of ruminant livestock mortalities per herd in the study year (2021), corresponding to an average (median) of 19% mortality per herd (IQR = 6 to 37%). Livestock diseases accounted for the majority of reported herd mortalities. The farmers reported a median disease-induced mortalities of 10% of the herds (IQR = 0 to 23%) (Fig. 3). About 45% (159/350) of farmers had past history of disease outbreaks in their herds, while 47% (164/350) of them reported a disease outbreak in the study year (2021).
Table 2 presents the farmers’ scores on the physical, psychological, social and environmental domains of wellbeing, as well as a pooled overall wellbeing score. The farmers scored on average (median) 71.4 out of 100 (IQR = 57.1 to 85.7) on the physical, 70.8 out of 100 (IQR = 58.3 to 79.2) on the psychological, 66.7 out of 100 (IQR = 50.0 to 75.0) on the social and 56.3 out of 100 (IQR = 43.8 to 65.6) on the environmental domains of wellbeing. The median overall wellbeing score was 65.5 out of 100 (IQR = 56.6 to 73.2). The farmers ranked their overall satisfaction with health at 75 out of 100 on average (IQR = 50 to 75).
We assessed the relationship between the level of mortality in herds and overall farmer wellbeing. The levels of herd mortality to all causes and specifically to diseases, was categorized into tertiles (three quantiles); low, moderate and severe, based on the distribution of proportions of herd mortalities. Figure 4 presents the relationship between farmers’ wellbeing in all domains and the three levels of herd mortalities (low, moderate and severe) to all causes. Farmers with severe herd mortalities (more than 31% of herd mortality) had significantly lower levels of overall (mean score of 60.5 versus 66.5, p < 0.001), physical (64.1 vs. 73.4, p < 0.001), psychological (64.6 vs. 69.2, p = 0.04), and social (60.2 vs. 68.2, p < 0.001) wellbeing, compared to farmers with low level of loss (less than 1% of herd mortality).
The relationship between levels of herd mortalities specific to diseases and farmers’ wellbeing is presented in Fig. 5. The level of disease-induced herd mortalities was significantly associated with farmers’ overall, physical, and psychological wellbeing. The farmers with severe herd losses (more than 18% of herd mortality to diseases), had significantly lower overall (mean score of 61.7 versus 66.9, p = 0.002), physical (65.1 vs. 74.6, p < 0.001), and psychological (65.7 vs. 70.6, p = 02) wellbeing scores, compared to the farmers with low level of losses (less than 1% of herd mortality to diseases). While farmers with moderate herd losses (between 1% and 18% of herd mortality) also had significantly lower physical (69.4 vs. 74.6, p = 0.02) and psychological (66.7 vs. 70.6, p = 0.04) wellbeing scores compared to the farmers with low level of loss.
Table 3 presents the results of the linear mixed effect regression model, with fixed effects for disease-related herd mortalities relative to the herd sizes (all in TLUs), farmers’ age, sex, educational attainment, farmland size, wealth index, social support level received, overall satisfaction with health, and perception of disease risk to herd and village-level clusters as random effects.
There was a significantly negative relationship between increasing levels of disease-induced herd mortalities and farmers’ overall wellbeing. Specifically, our model predicted an expected difference in farmers’ wellbeing score of 7.9 (95%CI 1.50 to 14.39) between a farmer without any animal mortalities compared to a hypothetical farmer with 100% of animal mortalities to diseases. Thus, there is a reduction of approximately 0.8 wellbeing points of farmers, for the average of 10% disease-induced herd mortalities experienced (Fig. 6). A likelihood-ratio test showed that the model including disease-induced herd mortalities provided a better fit for the data than a model without it, 𝒳2[1] = 6.13, p = 0.01. Excluding livestock farmers who did not own animals in their herds did not change the results and conclusions (Additional file 1). In addition, including the other causes of animal mortalities relative to the herd size did not change significantly the effect size (Additional file 2).
Discussion
In this study, we aimed to estimate the average effect on the wellbeing of a livestock farmer that can be attributed to disease-induced mortalities in the farmer’s herd. To achieve this goal, we adopted a cross-sectional survey design, in which we measured farmers’ wellbeing and annual herd mortalities and evaluated this association, accounting for specified covariates, using linear mixed effect models. Our results suggest that the level of animal disease-induced herd mortalities have a large and negative effect on farmers’ wellbeing significantly different from zero, particularly in the physical and psychological domains of wellbeing. The effect size did not change significantly after the inclusion of other causes of livestock mortality including theft, conflict, accidents and weather-related herd mortalities and control variables in the model.
These results underscore the need to consider the interdependencies between human, animal and ecosystem health, beyond zoonosis spread in health research. There exists substantial evidence supporting the impact on global health security, of pathogen spread between the animal, human, and environmental interfaces, in the absence of adequate control measures [6]. These health impact evaluations usually have a biomedical physical health focus. Thus, the observed impact could be even larger when the multidimensionality of health is fully considered. We have demonstrated in this study that the impact of poor animal health on farmers’ overall wellbeing is large and significant. Few studies have highlighted the strong link between poor animal health and the psychological wellbeing of livestock dependent populations [7, 8, 36, 37].
The effect of the severity of herd mortalities to diseases was more pronounced on the physical and psychological domains of health compared to the other wellbeing domains (i.e. social and environmental wellbeing). This finding is intuitive given the extensive nature of farming in the study area [26] and the relative emotional and security attachment between farmers and their livestock [7, 21, 38]. Other sources of herd mortality including livestock theft, conflict, and weather-related losses would affect more the social and environmental domains of wellbeing, compared to disease-induced losses as shown in our results. The extent of these associations could be assessed in future studies. In-depth studies from an ecosystem perspective, of the relationship between ecosystem challenges, and human and animal wellbeing, are needed.
Disease-induced livestock mortalities remain a significant barrier to the productivity and trade in the livestock sector in many African countries including Ghana [4]. Similar to our results, previous research in other countries identified animal diseases as a significant source of livestock herd mortalities for households [39,40,41,42]. Based on this impact of diseases on herds, studies have emphasized the effectiveness and profitability of applying preventive measures particularly vaccination to sustainably address disease-induced livestock mortalities [43,44,45,46]. Our findings in the earlier studies of the larger project showed that the main diseases causing livestock mortalities are Contagious Bovine Pleuropneumonia and Food and Mouth Disease in cattle, and Peste des Petits Ruminants in small ruminants (sheep and goats) [27]. Vaccination utilization by farmers to protect herds against these diseases was also very low [47] although observed as the key intervention that reduces the mortalities [43]. There is thus the need for transdisciplinary strategies that improve high quality vaccine adoption, given the availability of effective vaccines to control these diseases [48]. The evidence from our work suggests that, addressing animal health challenges through veterinary service policies could contribute to improving the wellbeing of livestock dependent populations. However, it should be noted that disease control policies should be adequate to the farming systems. For example the mass culling of livestock during the Foot and Mouth Disease epidemic in the United Kingdom led to larger mental health and suicide problems [49]. In this particular instance, a ring vaccination and quarantine policy might have been more appropriate.
Our study had some limitations. The nature of the design does not enable us to determine the temporal relationship between poor animal health (disease-induced mortalities) and farmer wellbeing. Furthermore, in our attempt to measure reliably the impact of diseases on farmers’ herds, we relied on only disease-induced herd mortalities. Thus, the impact of diseases resulting in only morbidity without the death of the infected animals was not accounted for in our measurements. We argue however that, the observed impact on farmers’ wellbeing is likely to be larger, if disease-induced morbidities should be considered. Future studies implementing interventions to reduce disease incidence using randomized controlled trials could evaluate the extent of this relationship more definitively, as well as assess the pathways of the impact. Our study focused on ruminant livestock farmers, however, based on our engagements with the farmers in our study who also own other species such as poultry and pigs, we understand that they experience similar challenges with diseases among these other species. Thus, future studies could further explore this missing perspective in our study. Additionally, despite efforts to obtain a representative sample of the different agro-ecological zones in Ghana, our study did not account for the two other minority agro-ecological zones namely the Evergreen and Coastal Savannah zones. Even though these zones are not typical areas for livestock production in Ghana, their inclusion would have improved the representativeness of our findings with diversification and the crop production as adaptations options. In spite of this missing perspective, we do not expect the parameters evaluated to be markedly different in these agro-ecological zones. Our study thus, has provided valuable information on the relationship between poor animal health and the wellbeing of livestock dependent populations, making a strong case for improvements in performance of veterinary services, for better animal health.
Conclusion
Our study has shown that diseases are the main cause of animal mortalities for ruminant livestock farmers in Ghana. The poor health of the livestock herds has a significant influence on the wellbeing of the livestock farmers. Given that, the main diseases accounting for these mortalities have effective vaccines for their control, and vaccination utilization is low among the farmers, our findings suggest that improvements in veterinary policies and service delivery, which address disease risks in livestock, would contribute to better wellbeing of livestock dependent populations. This study exemplifies the benefits of integrated human and animal health studies through a One Health approach, which cannot be achieved if human and animal health are studied in separation.
Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary information files].
References
Herrero M, Grace D, Njuki J, Johnson N, Enahoro D, Silvestri S, et al. The roles of livestock in developing countries. Animal. 2013;7(s1):3–18.
UNICEF, WFP, WHO. The state of Food Security and Nutrition in the World 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. Rome: FAO; 2021.
OECD FAO, OECD-FAO Agricultural. Outlook 2021–2030. Paris, France: OECD Publishing; 2021.
Grace D, Songe M, Knight-Jones T. Impact of neglected Diseases on Animal Productivity and Public Health in Africa. Ariana, Tunishia: WOAH; 2015.
Kimera ZI, Mshana SE, Rweyemamu MM, Mboera LEG, Matee MIN. Antimicrobial use and resistance in food-producing animals and the environment: an african perspective. Antimicrob Resist Infect Control. 2020;9(1):37.
Zinsstag J, Kaiser-Grolimund A, Heitz-Tokpa K, Sreedharan R, Lubroth J, Caya F et al. Advancing One human-animal-environment Health for global health security: what does the evidence say? Lancet. 2023.
Nuvey FS, Kreppel K, Nortey PA, Addo-Lartey A, Sarfo B, Fokou G, et al. Poor mental health of livestock farmers in Africa: a mixed methods case study from Ghana. BMC Public Health. 2020;20(1):825.
Mort M, Convery I, Baxter J, Bailey C. Psychosocial effects of the 2001 UK foot and mouth disease epidemic in a rural population: qualitative diary based study. BMJ. 2005;331(7527):1234.
Sharpe A, Fard SM. The current state of research on the two-way linkages between productivity and well-being. Geneva, Switzerland: ILO; 2022.
United Nations Development Programme. Human Development Index. New York, United States: UNDP; 2019.
OECD. How’s life? 2020: Measuring Well-being. Paris, France: OECD Publishing; 2020.
WHO. Programme on mental health: WHOQOL user manual. Geneva, Switzerland: World Health Organization; 1998 1998. Contract No.: WHO/HIS/HSI Rev.2012.03.
Bowen JS. Management of dairy animals: Goat: Health Management. Encyclopedia of dairy Sciences. Reference Module in Food Science. Volume 1. Amsterdam, The Netherlands: Elsevier Inc.; 2016. pp. 670–6.
Chitnis N, Zinsstag J, Fuhrimann S, Hattendorf J. Animal-human transmission models. In: Zinsstag J, Schelling E, Waltner-Toews D, Whittaker M, Tanner M, editors. One health: the theory and practice of integrated health approaches. Oxfordshire, UK: CABI International; 2015. pp. 122–33.
Cunningham AA, Daszak P, Wood JLN. One health, emerging infectious diseases and wildlife: two decades of progress? Philosophical Trans Royal Soc B: Biol Sci. 2017;372(1725):20160167.
Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990–3.
Rohr JR, Barrett CB, Civitello DJ, Craft ME, Delius B, DeLeo GA, et al. Emerging human infectious diseases and the links to global food production. Nat Sustain. 2019;2(6):445–56.
Van Boeckel TP, Glennon EE, Chen D, Gilbert M, Robinson TP, Grenfell BT, et al. Reducing antimicrobial use in food animals. Science. 2017;357(6358):1350–2.
Azabo R, Dulle F, Mshana SE, Matee M, Kimera S. Antimicrobial use in cattle and poultry production on occurrence of multidrug resistant Escherichia coli. A systematic review with focus on sub-saharan Africa. Front Veterinary Sci. 2022;9:1000457.
Petitt A. Cowboy masculinities in human-animal relations on a cattle ranch. Elore. 2013;20:67–82.
Hoffet F. Farm animals: between pet and livestock - a case study from a swiss alpine farm. Uppsala, Sweden: Swedish University of Agricultural Sciences; 2015.
GSS. District analytical report: Mion district. Accra, Ghana Statistical Service (GSS); 2014.
GSS. District analytical report: Pru district. Accra, Ghana: Statistical Service (GSS); 2014.
GSS. District analytical report: Kwahu Afram Plains South district. Accra, Ghana: Ghana Statistical Service (GSS); 2014.
GSS. Rebased 2013–2019 Annual Gross Domestic product. Accra, Ghana: Ghana Statistical Service; 2020.
GSS. 2017/18 Ghana Census of Agriculture: National report. Accra: Ghana Statistical Service; 2020.
Nuvey FS, Mensah GI, Zinsstag J, Hattendorf J, Fink G, Bonfoh B, et al. Management of diseases in a ruminant livestock production system: a participatory appraisal of the performance of veterinary services delivery, and utilization in Ghana. Research Square; 2023.
Himelein K, Eckman S, Murray S, Bauer J. Second-stage sampling for conflict areas: Methods and implications. World Bank Policy Research Working Paper. 2016(7617).
Hartung C, Lerer A, Anokwa Y, Tseng C, Brunette W, Borriello G, editors. Open data kit: tools to build information services for developing regions. ICTD ‘10; 2010 December 2010. London, United Kingdom: Association for Computing Machinery; 2010.
WHOQOL Group. WHOQOL-BREF: introduction, administration, scoring and generic version of the assessment. Geneva, Switzerland: WHO; 1996.
Farrell MJ, Davies TJ. Disease mortality in domesticated animals is predicted by host evolutionary relationships. PNAS. 2019;116(16):7911–5.
RStudio Team. RStudio: Integrated Development Environment for R. Boston, MA: RStudio, PBC; 2022.
Rothman-Ostrow P, Gilbert W, Rushton J. Tropical livestock Units: re-evaluating a methodology. Front Veterinary Sci. 2020;7.
ICF. Wealth Index Construction Rockville, MD: USAID. ; 2019 [Available from: https://dhsprogram.com/topics/wealth-index/index.cfm.
Feder K, Michaud DS, Keith SE, Voicescu SA, Marro L, Than J, et al. An assessment of quality of life using the WHOQOL-BREF among participants living in the vicinity of wind turbines. Environ Res. 2015;142:227–38.
Goffin A. Farmers’ mental health: a review of the literature. New Zealand: Accident Compensation Corporation; 2014. p. 1.
Hood B, Seedsman T. Psychosocial investigation of individual and community responses to the experience of Ovine Johne’s Disease in rural Victoria. Aust J Rural Health. 2004;12(2):54–60.
Vittersø J, Kaltenborn BP, Bjerke T. Attachment to Livestock and Attitudes toward large carnivores among Sheep Farmers in Norway. Anthrozoös. 1998;11(4):210–7.
Gizaw S, Desta H, Alemu B, Tegegne A, Wieland B. Importance of livestock diseases identified using participatory epidemiology in the highlands of Ethiopia. Trop Anim Health Prod. 2020;52(4):1745–57.
Admassu B, Nega SS, Haile TG, Abera B, Hussein A, Catley A. Impact Assessment of a community-based Animal Health Project in Dollo Ado and Dollo Bay Districts, Southern Ethiopia. Trop Anim Health Prod. 2004;37:33–48.
Catley A, Admassu B, Bekele G, Abebe D. Livestock mortality in pastoralist herds in Ethiopia and implications for drought response. Disasters. 2014;38(3):500–16.
Fadiga ML, Jost C, Ihedioha J. Financial costs of disease burden, morbidity and mortality from priority livestock diseases in Nigeria: Disease burden and cost-benefit analysis of targeted interventions. Nairobi, Kenya: ILRI; 2013.
Nuvey FS, Arkoazi J, Hattendorf J, Mensah GI, Addo KK, Fink G, et al. Effectiveness and profitability of preventive veterinary interventions in controlling infectious diseases of ruminant livestock in sub-saharan Africa: a scoping review. BMC Vet Res. 2022;18(1):332.
Zhang N, Huang D, Wu W, Liu J, Liang F, Zhou B, et al. Animal brucellosis control or eradication programs worldwide: a systematic review of experiences and lessons learned. Prev Vet Med. 2018;160:105–15.
Domenech J, Vallat B. [The fight against epizootics in the 21st Century]. CR Biol. 2012;335(5):356–69.
Campbell Z, Coleman P, Guest A, Kushwaha P, Ramuthivheli T, Osebe T, et al. Prioritizing smallholder animal health needs in East Africa, West Africa, and South Asia using three approaches: literature review, expert workshops, and practitioner surveys. Prev Vet Med. 2021;189:105279.
Nuvey FS, Fink G, Hattendorf J, Mensah GI, Addo KK, Bonfoh B et al. Access to vaccination services for priority ruminant livestock diseases in Ghana: barriers and determinants of service utilization by farmers. Prev Vet Med. 2023;215.
Donadeu M, Nwankpa N, Abela-Ridder B, Dungu B. Strategies to increase adoption of animal vaccines by smallholder farmers with focus on neglected diseases and marginalized populations. PLoS Negl Trop Dis. 2019;13(2):e0006989.
Zinsstag J, Weiss MG. Livestock Diseases and Human Health. Science. 2001;294(5542):477.
Acknowledgements
We would like to acknowledge the livestock farmers and agricultural department staff in all the study districts for their participation in this study. The corresponding author is grateful to the State Secretariat for Education, Research, and Innovation (SERI) of Switzerland for the scholarship to fund his doctoral studies during which this study was conducted.
Funding
This study was conducted within the framework of the DELTAS Africa Initiative [Afrique One-ASPIRE/DEL-15-008]. Afrique One-African Science Partnership for Intervention Research Excellence (Afrique One-ASPIRE) is funded by a consortium of donors including the: African Academy of Sciences (AAS), Alliance for Accelerating Excellence in Science in Africa (AESA), New Partnership for Africa’s Development Planning and Coordinating (NEPAD) Agency, Wellcome Trust [107753/A/15/Z] and UK government. The funders had no role in the study.
Open access funding provided by University of Basel
Author information
Authors and Affiliations
Contributions
Conceptualization, all authors; methodology, all authors; validation, D.T.H., J.H., K.K.A., G.I.M., G.F., J.Z., and B.B.; formal analysis, F.S.N.; investigation, F.S.N.; resources, D.T.H., J.H., J.Z., G.F. and B.B.; data curation, F.S.N.; writing—original draft preparation, F.S.N.; writing—review and editing, all authors; visualization, F.S.N. and J.H.; supervision, D.T.H., J.H., K.K.A., G.I.M., G.F., J.Z., and B.B.; project administration, F.S.N. and B.B.; funding acquisition, K.K.A. and B.B. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
The study was reviewed and approved by the Ghana Health Service Ethics Review Committee (approval number: GHS-ERC 006/09/20). In the study districts, permission was obtained from all the relevant authorities prior to data collection. The study participants provided written informed consent and the data generated are kept as confidential records. All the methods were carried out in accordance with relevant guidelines and regulations (Such as Declaration of Helsinki).
Consent for publication
Not applicable.
Competing interest
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Table S1
: Mixed effects model predicting the effect of level of herd mortalities to all causes on farmer wellbeing adjusting for other covariates. S1 Figure: Effect of the level of herd mortalities to diseases on farmers’ wellbeing (N = 333) The figure shows the actual and predicted relationship between the level of animal mortalities to diseases and farmers’ overall wellbeing. The overall wellbeing is the average score of wellbeing scores in physical, psychological, social, and environmental domains. Panel A shows the relationship between 10 percentage increments in relative herd mortalities to diseases and farmers overall wellbeing without accounting for the potential confounding effect of other covariates. Panel B presents the estimated marginal effect at different levels of disease-induced livestock mortalities, conditional on the other co-variates in the pre-specified linear mixed effect model. The slope of the marginal effect line with confidence intervals around the point estimates shows the extent and direction of the relationship between the levels of disease-induced herd mortalities and livestock farmers’ overall wellbeing
Table S2
: Mixed effects model predicting the effect of level of herd mortalities to all causes on farmer wellbeing adjusting for other covariates. S2 Figure: Effect of the level of herd mortalities suffered on farmers’ wellbeing The figure shows the actual and predicted relationship between the level of animal mortalities to all causes and farmers’ overall wellbeing. The overall wellbeing is the average score of wellbeing scores in physical, psychological, social, and environmental domains. Panel A shows the relationship between 10 percentage increments in relative herd mortalities to all causes and farmers overall wellbeing without accounting for the potential confounding effect of other covariates. Panel B presents the estimated marginal effect at different levels of livestock mortalities experienced, conditional on the other co-variates in the pre-specified linear mixed effect model. The slope of the marginal effect line with confidence intervals around the point estimates shows the extent and direction of the relationship between the levels of herd mortalities to all causes and livestock farmers’ overall wellbeing
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
About this article
Cite this article
Nuvey, F.S., Haydon, D.T., Hattendorf, J. et al. Relationship between animal health and livestock farmers’ wellbeing in Ghana: beyond zoonoses. BMC Public Health 23, 1353 (2023). https://doi.org/10.1186/s12889-023-16287-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s12889-023-16287-2