Skip to main content

Stressors related to the Covid-19 pandemic, climate change, and the Ukraine crisis, and their impact on stress symptoms in Germany: analysis of cross-sectional survey data



Climate change, the Covid-19 pandemic, and the Ukraine crisis are considered unprecedented global stressors, potentially associated with serious health consequences. However, simultaneous effects of these stressors are not yet understood, making it difficult to evaluate their relative contribution to the population burden and potential future manifestations in clinically significant psychiatric disorders. This study aimed at disentangling the relative contribution of the three stressor groups on current sub-clinical stress symptoms.


A cross-sectional, representative survey study was conducted two months after the outbreak of the Ukraine war in Germany. Proportional quota sampling was applied for age, gender, income, and regional characteristics. Data were recruited by means of an online survey. 3094 data sets (1560 females) were included. Age ranged from 18–89 (M: 50.4 years; SD: 17.2). The Subclinical Stress Questionnaire (SSQ-25) served as main outcome measure. In collaboration with a professional media agency, 20 items were generated to capture salient population stressors. A three-factor exploratory structural equation model confirmed the appropriateness of this scale.


(1) Differences in subjective rankings revealed that stressors related to the Ukraine crisis were rated as most worrying, followed by climate change, and the Covid-19 pandemic (Generalized-Linear-Model: Epsilon = .97; F(1.94, 6001.14) = 1026.12, p < .001; ηp2 = .25). (2) In a linear regression model (R2 = .39), Covid-19 pandemic stressors were the only meaningful predictors for current ill-health (standardized β = .48). Ukraine crisis did not predict stress symptom profiles in the present sample. (3) Older and male individuals report less and/or less severe stress symptoms, although effect sizes were small (range: η2 .11—.21). An older age also reduced the impact of Covid-19 stressors.


Researchers from the health sciences must consider overlapping effects from population stressors. Although the Ukraine crisis and climate change mark salient stressors, including economic threats, the Covid-19 pandemic still has a profound effect on ill-health and must be considered as a relevant factor in future manifestations of psychiatric and associated health consequences.

Peer Review reports


Population stressors, i.e. stressors that may leave lasting imprints on an entire population and often result in serious health consequences, have well been investigated in former crises and conflict regions globally. Stressors include natural disasters [1, 2], outbreaks of infectious diseases [3, 4], or violent crises [5, 6]. Lazarus and Folkman [7] state that stress occurs when the demands of the environment exceed the resources available to cope with a threatening situation. Most etiological risk models for mental disorders suggest that chronic stress, as well as highly salient stressors, that are characteristic for times of crisis, can deteriorate mental health [8] and have both, short- and long-term adverse effects [9]. Psychiatric research, in particular in the field of psychotraumatology, consistently demonstrates that population stressors may manifest in clinically significant disorders even years after exposure [10, 11]. Outside Europe, researchers have started to disentangle the mental health effects of different population stressors in societies that have faced more than one adverse population stressor: The reciprocal effects of abduction and HIV infections in former Ugandan child soldiers [12] or the interplay between displacement and poverty in conflict-affected populations in Sudan [13] are just few examples that stress the necessity to differentiate between stressors simultaneously affecting populations and recruit distinct and effective countermeasures. With an increasing awareness for the adverse mental health consequences of climate change, the global health effects of the Covid-19 pandemic, and the recent outbreak of the Ukraine crisis, western European currently face a series of significant population stressors. But what are their differential effects on mental health?

(1) Climate change as a direct cause for mental disorders, for example due to exposure with natural disasters, has received considerable attention in the scientific literature [14, 15]. In the past years, the existential threat, as well as psychological distress and anxiety about climate associated future crises have gained attention in the literature, focusing on the perceived threat -beyond actual natural disasters- as a risk factor for mental health issues [16, 17]. (2) For the case of Covid-19, previous epidemics already indicated that mental health can be severely affected [18, 19]. A large study showed that COVID-19 stressors were associated with psychopathological symptoms in more than half of the respondents [20]. Stress occurred through insufficient information, fear of infection, and duration of quarantine [21,22,23]. Far-reaching consequences of a COVID-19-associated lockdown affecting daily routines and social interactions have also been linked to considerable mental health issues [24]. These factors may generate a feeling of loss of control and reduce the people’s sense of coherence, both associated with psychopathological reactions [25]: the feeling of security taken for granted in everyday life and the anticipated predictability of the future appear increasingly uncertain. In addition, research on consequences of the COVID pandemic identified vulnerable subgroups, such as young people, women, and employees in helping professions [26, 27]. (3) For the burden related to the recent Ukraine crisis, researchers address the direct health consequences for the Ukrainian society [28, 29], as well as challenges for countries hosting refugees [30, 31]. To the best of the authors’ knowledge, no research has been conducted yet that acknowledges mental health consequences of perceived threats in neighboring countries due to direct and indirect consequences of the war, although research from other conflict zones demonstrates adverse consequences of enduring tensions [32, 33].

A distinctive feature of the three recent population stressors currently affecting western European societies is their timely overlap and research so far is often limited to the study of single effects. In addition, these events may require social and individual adaptation efforts that go far beyond the usual extent of individual coping capacities. In particular, the Covid-related measures led to a temporary shutdown of the usual public life in many countries. Findings from standard stress research may fall short in explaining effects of these current stressors, when stressor groups are analyzed independently. Recent research has already started to point out the significance of disentangling the differential effects population stressors may have simultaneously. In recent studies on youth and young adults in the United Kingdom and Germany, it could be demonstrated that the Covid-19 pandemic and climate change are both associated with distress but evoke different emotional reponses [34, 35]. Likewise, it could be demonstrated in another study in UK residents on worries related to the Covid-19 pandemic and climate change that although people have no finite pool of worries, different stressor groups may have differential behavioral effects [36] Other studies, for example from China, could demonstrate that worries in relation to different stressor groups can even fuel each other [37] Thus, the analysis of distinct effects of different stressor groups on population health can be considered topical, as such global population stressors may leave lasting imprints on mental health at least in Western or high-income countries.

The study aimed to (1) compare the perceived worries about the three population stressors, and (2) disentangle their relationship with current subclinical stress symptoms in a representative German community sample.


Samples and procedures

Respondents were 3101 adults from a representative, cross-sectional community sample in Germany. Sampling took place in the last week of April and first week of May 2022, about two months after the outbreak of the Ukraine crisis, and immediately after the second peak of Corona wave five in Germany, in February and April 2022 (Variant of Concern: Omikron BA.2; phase 7b [38]). Seven respondents indicated a diverse gender and could not be considered in subgroup analyses for power reasons. The remaining n = 3094 data sets included 1560 females and 1534 males. Participants’ age ranged from 18–89 years (M = 50.4; SD = 17.2 years). Table 1displays sample characteristics.

Table 1 Sociodemographic data (No. (%))

Although quota sampling considered equal distributions, respondents were free to report their net income for consideration in the data analysis. Therefore, significant differences for income across female and male respondents were found. Inclusion criteria were fluency in German, access to Internet and fully written informed consent. No further exclusion criteria were applied. The Ethics Committee of the Medical School Hamburg provided ethical clearance. The KANTAR agency recruited data by means of an online survey. Proportional quota sampling was applied for age, sex, income, and regional characteristics for a representative weighting method. A forced answering option was chosen so that missing data was not an issue. All respondents received financial compensation.


Assessment of subclinical stress symptoms

The Subclinical Stress Questionnaire (SSQ-25) [39, 40] is a validated 25-item self-rating instrument (5-point Likert rating scale; 0 = not at all; 4 = extremely). It contains two subscales (psychological stress symptoms (15 items); physiological stress symptoms (10 items)). A sum-score as well as the two subscale scores were computed. In the present sample, good internal consistency of Cronbach's alpha = 0.96 for the sum score was found (psychological subscale: 0.96; physiological subscale: 0.90).

Assessment of sub-clinical stress symptoms related to stressor groups

Further 20 items related to the population stressors were generated (climate change stressors: 5 items: Covid-19 pandemic stressors: 8 items; Ukraine crisis stressors: 7 items). Items were generated on basis of current population fears discussed in the public media with support of media experts, aiming to capture the most relevant stressors. Climate change stressors included for example worries about natural disasters, adverse consequences for future generations, or an increase in geopolitical conflicts (sample items: “I’m worried that the number of natural disasters in Germany will increase”; “I’m worried that future generations might suffer from the consequences of climate change”; “I’m worried that climate change will lead to an increase in geopolitical conflicts”). Covid-19 pandemic stressors covered worries about the respondent’s own health, the health of family members, restrictions in daily life, economic consequences, or social erosion (sample items: “Due to the Covid-19 pandemic, I’m worried about my own health”; “Due to the Covid-19 pandemic, I’m concerned about my own economic situation”; “I’m worried about social erosion in Germany, due to the Pandemic”). The stressors related to the Ukraine crisis covered worries about the fate of the Ukrainian people, economic consequences (including inflation), or an extension of the war (sample items: “I’m worried about the Ukranian people”, “I’m worried about the economic consequences of the war, for example an increase in energy costs”; “I’m worried that the war might have an impact on geopolitical safety, for example in terms of a third world war”). Current subclinical stress symptoms were rated on a 5-point Likert scale (0 = not at all; 4 = extremely). Satisfying internal consistency was achieved, with Cronbach's alpha of 0.88, 0.90, and 0.89 for the three scales. Exploratory Structure Equation Model (ESEM) [41, 42] was applied using a three-factor model to prove the validity and distinctiveness of the three scales. Assessment of overall model fit was based on fit indices, including Root Mean Square Error of Approximation (RMSEA), Standardized Root Mean Square Residuals (SRMR), Tucker-Lewis reliability Index (TLI) and Comparative Fit Index (CFI). According to Hu & Bentler [43], values < 0.08 for RMSEA and SRMR represent good model fit. Hoyle [44] and Byrne [45] propose values between 0.90-0.95 for CFI and TLI, also representing good model fit. The proposed factor structure achieved satisfying fits (RMSEA = 0.07; SRMR = 0.03.; CFI = 0.95; TLI = 0.92). Due to the unequal number of items per scale, scale item means were calculated. Additionally, scale means for the stressor groups were ranked within individuals.

Statistical analysis

Descriptive sample characteristics were calculated. Non-parametric zero-order-correlations between SSQ-25 sum score and subscales, stressor scales, and age. For gender-differences, non-parametric comparisons (U-test) were performed. Scale rankings were compared applying Friedman test statistics for paired samples. Pair-wise comparisons utilized Wilcoxon tests. Multivariate linear regression analyses (backward exclusion) were calculated with the sum score of SSQ-25 as dependent variable, and the following predictors: Age, gender, climate change scale, Covid-19 pandemic scale, Ukraine crisis scale. Further, two-way mean-centered interactions between age, sex, and stressor scales were added to the regression model. Calculation of Cook’s distances and the variance inflation factors (VIF) were applied analyzing outliers and multi-collinearity. Analyses were performed using SPSS and AMOS 28 for windows, as well as R statistics and MPlus [45, 46]. Effect sizes were calculated using G*power 3.1 [47]. Level of significance was set to 0.05.


Inter-correlations between the main outcome variables

Zero-order correlations were calculated between outcome variables (Table 2). All variables showed statistically significant correlations, except for age and climate change stressors. Effect sizes (r2, “shared variance”) were mostly moderate to large. Correlations between age and stressor groups were low. As indicated by the 95% confidence intervals, the relationships between the Covid-19 stressors and all three SSQ scores showed statistically higher correlations than the relationships with the two other stressor groups.

Table 2 Gender differences and zero-order correlations between aga and all main outcome variables

Gender-differences across sub-clinical stress and stressor scale scores

Differences between male and female participants were calculated. Although male participants scored lower on all variables (SSQ sum: U = 1,029,016.5, Z = 6.74, p < 0.001, η = 0.12; SSQ psychological: U = 1,031,668.0, Z = 6.64, p < 0.001, η = 0.12; SSQ physical: U = 1,049,763.0, Z = 5.92, p < 0.001, η = 0.11; Covid-19 pandemic stressors: U = 978,200.0, Z = 8.80, p < 0.001, η = 0.16; Ukraine crisis stressors: U = 919,160.5, Z = 11.18, p < 0.001, η = 0.21; climate change stressors: U = 992,839.0, Z = 8.22, p < 0.001, η = 0.15), effect sizes were too small to be considered meaningful.

Differences in rankings between stressor scales

Figure 1 displays the mean ranks for the three stressor groups, as well as the interquartile range (IQR). Individuals prioritized worries related to the stressor groups significantly different (Chi2 (2) = 1541.50, p < 0.001; W = 0.25). All pairwise comparisons were statistically significant too (climate change stressors – Ukraine crisis stressors: Z = 29.65; p < 0.001; r = 0.53; climate change stressors – Covid-19 pandemic stressors: Z = 8.27; p < 0.001; r = 0.15; Ukraine crisis stressors – Covid 19-pandemic stressors: Z = 33.94; p < 0.001; r = 0.61). In summary, Ukraine crisis stressors were rated as the most significant stressor group (mean rank: 1.46; IQR: 1 – 2), followed by climate change stressors (mean rank: 2.17; IQR: 2 – 3), and Covid-19 pandemic stressors (mean rank: 2.37; IQR: 2 – 3).

Fig. 1
figure 1

Mean ranks (paired samples) and interquartile ranges for the three stress groups. Note. Asterisks indicate statistically significant pairwise comparisons on a p < .001 – level

Predicting subclinical stress from stressor scales, age, and gender

Table 3 displays the full and the final multiple linear regression model for the prediction of the SSQ sum score, including standardized beta-values as well as 95% confidence intervals. The final model fitted the data (F(5, 3088) = 393.16, p < 0.001, maximum VIF = 1.45, may cook’s d = 0.01). As indicated by the significant gender effect, female respondents experienced higher stress symptoms in general. The significant interaction implies a less significant impact of Covid-19 stressors on stress symptoms with increasing age. Ukraine crisis stressors were excluded from the final model, as they had no statistically significant impact on the SSQ sum score, when controlling for other stressor types. The Covid-19 stressors main effect had the highest effect size. Stress symptoms also increased with worries about climate related stressors, but only with a low effect size. The final model also fitted the two SSQ subscales (psychological (F(5, 3088) = 381.54, p < 0.001, maximum VIF = 1.45, may cook’s d = 0.02, R2 = 0.38) and physical subclinical stress symptoms (F(5, 3088) = 267.04, p < 0.001, maximum VIF = 1.45, may cook’s d = 0.01, R2 = 0.30)), except that the gender effect was no longer a significant predictor in the latter model.

Table 3 Multivariate linear regression models for the prediction of the SSQ sum score for the full model and final model after stepwise backward exclusion


This study aimed to disentangle the worries related to the three recent population stressors (climate change, Covid-19 pandemic, and Ukraine crisis) from its impact on current subclinical stress symptoms. As a major finding, the most recent Ukraine crisis ranked number one as the most worrying stressor at the time of assessment. However, only the Covid-19 related stressors were significantly related to stress symptoms with a reasonable effect size when controlling for other stressors in the immediate aftermath of the fifth Covid-19 wave in Germany.

One evident explanation for the obtained results lies in the temporal proximity of the stressors: Longitudinal research has demonstrated that the existence of the Covid-10 pandemic per se is not stressful, but that the stress it exerts varies by the different phases of it [48, 49]. The sampling took place in close temporal proximity to the fifth Covid-19 wave in Germany. Thus, the direct consequences of the pandemic, which are associated with adverse mental health effects, such as social distancing [50, 51], direct health consequences [52, 53], or everyday activitiesx [54, 55] might have been among the directly perceivable consequences of the Covid-19 pandemic. Another explanation may refer to trauma research: Stressful events are associated with stress reactions when directly addressing aspects of our sense of coherence [25, 56], for example one's sense of control, security, or predictability of events. This loss of a sense of control and its relation to Covid-19 related health effects has also been already discussed in recent publications [57, 58]: The threat is omnipresent as soon as one enters the public. In addition, the virus as a potential aggressor cannot directly be encountered and effective treatment options were sparse in the beginning. For the absence of an effect of the Ukraine war -though generating intense compassion for war victims, strongly focused by media coverage- it could we proposed that this population stressor possesses no threat to one’s own security and the sense of control in everyday life, in terms of the proximity of the stressor. Moreover, research on the impact of an individual’s locus of control on stress demonstrates that compassion and the ability to grant support (internal locus of control) is associated with better stress-regulation abilities [59,60,61]. This is also supported by researcher that demonstrates differences in risk perception and the people’s actions in relation to the Covid-19 pandemic and climate change, which may apply to the war too [62]. Thus, it could be speculated that Germans who might develop stress symptoms related to the Ukraine crisis might buffer this risk by for example actively engaging into aid activities. The present study does not provide data on this manner but could guide future investigations in this field. The climate crisis in turn could be similarly abstract regarding the feeling of subjective threat. Although its medium-term threats to our way of life are well known, the concrete effects are probably not yet sufficiently noticeable (apart from individuals who had directly experienced events such as the recent flood disaster in north-western/south Germany).

An alternative explanation may address the temporal duration of events that becomes necessary to generate stress symptoms: This would be consistent with findings of physiological stress research indicating that chronic stress exposure leads to maladaptation and a variety of stress-associated symptoms at the physiological level due to prolonged cortisol exposure [63]. The Covid-19 pandemic has already been affecting society for more than two years, whereas the war in Ukraine may not have lasted long enough to generate pronounced stress responses yet. This would mean that with continued duration, this war could also generate stress and associated symptoms. However, this contrasts with the current discussion of a so-called "war fatigue" that seems to be spreading among the German population, and which has already described in the context of other violent conflicts [8]. This phenomenon is associated with the “compassion fatigue”, an emotional, physical, and social exhaustion that overcomes a person when continually confronted with the suffering of others, leading to a profound decline in their ability to empathize compassionately with others [64]. This phenomenon is sufficiently described among professionals working in crisis regions [65]. It is conceivable that a similar compassion fatigue in the sense of a non-clinically relevant habituation to terrifying images from the media may also occur within the general population that is not directly exposed to the events war. Initially, people may feel a strong compassion with the war victims due to dramatic images of media coverage, followed by habituation. Research on adverse effects of the Covid-19 pandemic has also demonstrated that some personally traits may be advantageous as they help individuals to distance themselves from the potential stressors and adapt to daily hassles [66]. The climate crisis, finally, has been going on for a long time, but the sense of concrete threat has probably not yet reached the population. This is in line with latest research, suggesting that people in the global south experience climate change stressors more directly, while populations that do not suffer direct consequences may experience a collective state of denial [52]. Taken together, it may be precisely the combination of long duration and the threat to the sense of coherence and security that leads to a measurable stress response in people due to the COVID-19 pandemic. A longitudinal follow-up assessment would shed light on the differential effects of those potential factors.

Regarding specific vulnerable subgroups, older individuals and male respondents reported less and/or less severe stress symptoms, and an older age further decreased the impact of Covid-19 stressors on subclinical stress symptoms. Our findings are in line with previous research of other groups [27]. In a recent U.S. sample, younger age, female sex, and caregiver status were associated with higher levels of stress response to the Covid-19 pandemic [44]. The same findings revealed a recent Chinese study: Although the exact mechanisms were unclear, authors supposed that older persons may direct more cognitive effort to maintaining positive effects, or that younger individuals might experience greater responsibilities to their and younger generations. Women’s higher stress, on the other hand, was explained with research suggesting that women are generally at higher risk for mental health outcomes [67]. Further, higher psychological stress in women may be partly explained by their work being professionally closer to Covid-19 victims and the care burden in home [68]. To investigate this hypothesis, future research should include measures on factors that help to shed light on specific mechanisms in this subgroup.

The present study also faces some limitations: One limiting parameter was its online format. Although the age range also covered older respondents, limited access to mobile devices could have been a barrier for participation. Likewise, individuals with severe health deficits might have been prevented from participation. Furthermore, the cross-sectional design is only correlational in nature. The composition of stressor scales could also not be based on an exhaustive and systematic review of public media.


In summary, it is conceivable that a measurable stress response particularly occurs if several parameters of stressful events co-occur. Special preventive attention should be paid to young people and women because they show more pronounced stress reactions. Taken together, the present study disentangled the impact of three major population stressors currently affecting Germany, as a high-income western European country. It sheds light on the significance of different stressors and has the potential to inform future studies that target etiological risk factors and health trajectories not only for future clinically significant psychiatric and associated disorders from a contemporary perspective, but also for minor impacts on psychosocial wellbeing and functioning in the aftermath of crises. In particular, it is suggested that researchers and practitioners in the field of global health and prevention do not only consider the worries people have about certain population stressors, but that they in particular acknowledge the special and temporal proximity of those stressors.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.


  1. Cénat JM, McIntee S-E, Blais-Rochette C. Symptoms of posttraumatic stress disorder, depression, anxiety and other mental health problems following the 2010 earthquake in Haiti: a systematic review and meta-analysis. J Affect Disord. 2020;273:55–85.

    Article  PubMed  Google Scholar 

  2. Kino S, Aida J, Kondo K, Kawachi I. Long-term trends in mental health disorders after the 2011 Great East Japan earthquake and tsunami. JAMA Netw Open. 2020;3(8):e2013437.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cénat JM, Mukunzi JN, Noorishad P-G, Rousseau C, Derivois D, Bukaka J. A systematic review of mental health programs among populations affected by the Ebola virus disease. J Psychosom Res. 2020;131:109966.

    Article  PubMed  Google Scholar 

  4. Dessauvagie AS, Jörns-Presentati A, Napp A-K, Stein DJ, Jonker D, Breet E, et al. The prevalence of mental health problems in sub-Saharan adolescents living with HIV: a systematic review. Glob Ment Health (Camb). 2020;7:e29.

    Article  CAS  PubMed  Google Scholar 

  5. Hassan A. The Syrian mental health crisis: present findings and future directions. Harvard Public Health Rev. 2019;21:1–5. Available from:

  6. Musanabaganwa C, Jansen S, Fatumo S, Rutembesa E, Mutabaruka J, Gishoma D, et al. Burden of post-traumatic stress disorder in postgenocide Rwandan population following exposure to 1994 genocide against the Tutsi: a meta-analysis. J Affect Disord. 2020;275:7–13.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lazarus RS, Folkman S. Stress, appraisal, and coping. New York: Springer Publishing Company; 1984. Available from:

  8. Russell G, Lightman S. The human stress response. Nat Rev Endocrinol. 2019;15(9):525–34.

    Article  PubMed  Google Scholar 

  9. Gili M, Roca M, Basu S, McKee M, Stuckler D. The mental health risks of economic crisis in Spain: evidence from primary care centres, 2006 and 2010. Eur J Public Health. 2013;23(1):103–8.

    Article  PubMed  Google Scholar 

  10. Neugebauer R, Turner JB, Fisher PW, Yamabe S, Zhang B, Neria Y, et al. Posttraumatic stress reactions among Rwandan youth in the second year after the genocide: rising trajectory among girls. Psychol Trauma Theory Res Pract Policy. 2014;6(3):269–79.

    Article  Google Scholar 

  11. Mota N, Tsai J, Kirwin PD, Harpaz-Rotem I, Krystal JH, Southwick SM, et al. Late-life exacerbation of PTSD symptoms in US veterans: results from the National Health and Resilience in Veterans Study. J Clin Psychiatry. 2016;77(3):348–54.

    Article  PubMed  Google Scholar 

  12. Patel S, Schechter MT, Sewankambo NK, Atim S, Oboya C, Kiwanuka N, et al. Comparison of HIV-related vulnerabilities between former child soldiers and children never abducted by the LRA in northern Uganda. Confl Health. 2013;7(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roberts B, Damundu EY, Lomoro O, Sondorp E. The influence of demographic characteristics, living conditions, and trauma exposure on the overall health of a conflict-affected population in Southern Sudan. BMC Public Health. 2010;10:518.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Berry HL, Bowen K, Kjellstrom T. Climate change and mental health: a causal pathways framework. Int J Public Health. 2010;55(2):123–32.

    Article  PubMed  Google Scholar 

  15. Page LA, Howard LM. The impact of climate change on mental health (but will mental health be discussed at Copenhagen?). Psychol Med. 2010;40(2):177–80. Available from:

  16. Clayton S. Climate anxiety: psychological responses to climate change. J Anxiety Disord. 2020;74:102263.

    Article  PubMed  Google Scholar 

  17. Palinkas LA, Wong M. Global climate change and mental health. Curr Opin Psychol. 2020;32:12–6.

    Article  PubMed  Google Scholar 

  18. Magnavita N, Chirico F, Garbarino S, Bragazzi NL, Santacroce E, Zaffina S. SARS/MERS/SARS-CoV-2 outbreaks and burnout syndrome among healthcare workers. An umbrella systematic review. Int J Environ Res Public Health. 2021;18(8):4361.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chirico F, Ferrari G, Nucera G, Szarpak L, Crescenzo P, Ilesanmi O. Prevalence of anxiety, depression, burnout syndrome, and mental health disorders among healthcare workers during the COVID-19 pandemic: a rapid umbrella review of systematic reviews. J Health Soc Sci. 2021;6(2):209–20.

    Google Scholar 

  20. Wang C, Pan R, Wan X, Tan Y, Xu L, Ho CS, et al. Immediate psychological responses and associated factors during the initial stage of the 2019 Coronavirus Disease (COVID-19) epidemic among the general population in China. Int J Environ Res Public Health. 2020;17(5):1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Agius A-M, Gatt G, Vento Zahra E, Busuttil A, Gainza-Cirauqui ML, Cortes ARG, et al. Self-reported dental student stressors and experiences during the COVID-19 pandemic. J Dent Educ. 2021;85(2):208–15.

    Article  PubMed  Google Scholar 

  22. Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395(10227):912–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khan AH, Sultana MS, Hossain S, Hasan MT, Ahmed HU, Sikder MT. The impact of COVID-19 pandemic on mental health & wellbeing among home-quarantined Bangladeshi students: a cross-sectional pilot study. J Affect Disord. 2020;277:121–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. United Nations. Policy brief: COVID-19 and the need for action on mental health. 2020. Available from: Cited 2022 Jun 10.

  25. Schäfer SK, Becker N, King L, Horsch A, Michael T. The relationship between sense of coherence and post-traumatic stress: a meta-analysis. Eur J Psychotraumatol. 2019;10(1):1562839.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kar N, Kar B, Kar S. Stress and coping during COVID-19 pandemic: result of an online survey. Psychiatry Res. 2021;295:113598.

    Article  CAS  PubMed  Google Scholar 

  27. Ceri V, Cicek I. Psychological well-being, depression and stress during COVID-19 pandemic in Turkey: a comparative study of healthcare professionals and non-healthcare professionals. Psychol Health Med. 2021;26(1):85–97.

    Article  PubMed  Google Scholar 

  28. Bai W, Cai H, Sha S, et al. A joint international collaboration to address the inevitable mental health crisis in Ukraine. Nat Med 2022;28:1103–4.

  29. Cai H, Bai W, Zheng Y, Zhang L, Cheung T, Su Z, et al. International collaboration for addressing mental health crisis among child and adolescent refugees during the Russia-Ukraine war. Asian J Psychiatr. 2022;72:103109.

    Article  PubMed  Google Scholar 

  30. Kaufman KR, Bhui K, Katona C. Mental health responses in countries hosting refugees from Ukraine. BJPsych Open. 2022;8(3):e87.

  31. World Health Organization, Regional Office for Europe. Ukraine crisis. Public health situation analysis: refugee-hosting countries. Copenhagen: World Health Organization. Regional Office for Europe; 2022. Available from: Cited 2022 Jun 10.

  32. Chaitin J, Steinberg S, Avlagon E, Steinberg S. Psycho-social aspects of living with the war. In: Routine Emergency. Cham: Palgrave Macmillan; 2022. p. 51–76. Available from:

  33. Sagy S, Mana A, et al. Salutogenesis beyond health: intergroup relations and conflict studies. In: Mittelmark MB, Bauer GF, Vaandrager L, Pelikan JM, Sagy S, Eriksson M, et al., editors. The Handbook of Salutogenesis. 2nd ed. Cham: Springer International Publishing; Imprint Springer; 2022. p. 225–31 Springer eBook Collection.

  34. Lawrance E, Jennings N, Kioupi V, Thompson R, Diffey J, Vercammen A. Young persons’ psychological responses, mental health and sense of agency for the dual challenges of climate change and a global pandemic. In: Mental Health and Sense of Agency for the Dual Challenges of Climate Change and a Global Pandemic. 2021.

    Google Scholar 

  35. Kulcar V, Siller H, Juen B. Discovering emotional patterns for climate change and for the COVID-19 pandemic in university students. J Clim Change Health. 2022;6:100125.

    Article  Google Scholar 

  36. Evensen D, Whitmarsh L, Bartie P, Devine-Wright P, Dickie J, Varley A, et al. Effect of “finite pool of worry” and COVID-19 on UK climate change perceptions. Proc Natl Acad Sci. 2021;118(3):e2018936118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gong Y, Sun Y. Higher perceived risk of COVID-19 pandemic, higher concern for climate change: evidence from a longitudinal study in China. 2020.

    Google Scholar 

  38. Schilling J, Buda S, Tolksdorf K. Zweite Aktualisierung der „Retrospektiven Phaseneinteilung der COVID-19-Pandemie in Deutschland “. 2022.

    Google Scholar 

  39. Helms E, Wetzel E, Weierstall R. Entwicklung und Validierung des Subklinischen Stresssymptom-Questionnaire SSQ-25. Nervenarzt. 2017;88(9):1050–7.

    Article  CAS  PubMed  Google Scholar 

  40. Konstantopoulou G, Iliou T, Karaivazoglou K, Iconomou G, Assimakopoulos K, Alexopoulos P. Detection of subclinical stress symptoms with the new SSQ-25 questionnaire. EJPHS 2020;3(1):100–10.

  41. Asparouhov T, Muthén B. Exploratory structural equation modeling. Struct Equ Modeling. 2009;16(3):397–438.

    Article  Google Scholar 

  42. Marsh HW, Morin AJS, Parker PD, Kaur G. Exploratory structural equation modeling: an integration of the best features of exploratory and confirmatory factor analysis. Annu Rev Clin Psychol. 2014;10:85–110.

    Article  PubMed  Google Scholar 

  43. Hu L-t, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model. 1999;6(1):1–55.

    Article  Google Scholar 

  44. Hoyle RH. Structural equation modeling: Concepts, issues, and applications. [Nachdr.]. Thousand Oaks: SAGE; 2000.

    Google Scholar 

  45. Byrne BM. Structural equation modeling with Mplus: basic concepts, applications, and programming. New York, London: Routledge Taylor & Francis Group; 2012. Available from: Multivariate applications series.

  46. Muthén B, Muthén L. Mplus. In: van der Linden WJ, editor. Handbook of Item Response Theory. 1st ed. Boca Raton: CRC Press; 2017. Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences.

    Google Scholar 

  47. Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149–60.

    Article  PubMed  Google Scholar 

  48. Magnavita N, Soave PM, Antonelli M. Prolonged Stress causes depression in frontline workers facing the COVID-19 pandemic-a repeated cross-sectional study in a COVID-19 Hub-Hospital in Central Italy. Int J Environ Res Public Health. 2021;18(14):7316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Magnavita N, Soave PM, Antonelli M. Treating anti-vax patients, a new occupational stressor—data from the 4th wave of the Prospective Study of Intensivists and COVID-19 (PSIC). Int J Environ Res Public Health. 2022;19:5889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dickey-Chasins R, Romm KF, Vyas AN, et al. Social distancing and related factors during the COVID-19 pandemic in relation to COVID-19 symptoms and diagnosis and mental health. J Public Health (Berl.) 2022;30:2339–49.

  51. Ciciurkaite G, Marquez-Velarde G, Brown RL. Stressors associated with the COVID-19 pandemic, disability, and mental health: Considerations from the Intermountain West. Stress Health. 2022;38(2):304–17.

  52. O’Donnell J, Cárdenas D, Orazani N, Evans A, Reynolds KJ. The longitudinal effect of COVID-19 infections and lockdown on mental health and the protective effect of neighbourhood social relations. Soc Sci Med. 2022;297:114821.

  53. Aleman A, Sommer I. The silent danger of social distancing. Psychol Med. 2022;52(4):789–90.

    Article  PubMed  Google Scholar 

  54. Kardangusheva AM, Dzakhmysheva DA, Kardanova MA, Chanaeva AY, Makoeva MA, Khagabanova IS. Prevalence of anxiety and depression disorders among medical students one year after the start of the COVID-19 pandemic. Cardiometry. 2022;21:111–8.

    Article  Google Scholar 

  55. Merrill SC, Nowak SA, Shrum TR, Hanley JP, Clark EM, Fredrickson L, et al. Understanding the impact of COVID-19 risk perceptions on mitigation behaviors: a mixed methods approach using survey instruments and serious games. medRxiv. 2022.

  56. Schnell T, Suhr F, Weierstall-Pust R. Post-traumatic stress disorder in volunteer firefighters: influence of specific risk and protective factors. Eur J Psychotraumatol. 2020;11(1):1764722.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhou X, Yao B. Social support and acute stress symptoms (ASSs) during the COVID-19 outbreak: deciphering the roles of psychological needs and sense of control. Eur J Psychotraumatol. 2020;11(1):1779494.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhu N, Jiaqing O, Lu HJ, Chang L. Debate: Facing uncertainty with(out) a sense of control - cultural influence on adolescents’ response to the COVID-19 pandemic. Child Adolesc Ment Health. 2020;25(3):173–4.

  59. Braun M, Naor L, Hasson-Ohayon I, Goldzweig G. Oncologists’ locus of control, compassion fatigue, compassion satisfaction, and the mediating role of helplessness. Curr Oncol. 2022;29(3):1634–44.

  60. Mawson JA, Miller PK, Booth L. Stress, a reflective self and an internal locus of control: on the everyday clinical placement experiences of older undergraduate radiographers in the UK. Radiography (Lond). 2022;28(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  61. Türk-Kurtça T, Kocatürk M. The role of childhood traumas, emotional self-efficacy and internal-external locus of control in predicting psychological resilience. IJELS. 2020;8(3):105.

    Article  Google Scholar 

  62. Ramazani V. War fatigue? Selective compassion and questionable ethics in mainstream reporting on Afghanistan and Iraq. Middle East Critique. 2013;22(1):5–24.

    Article  Google Scholar 

  63. McHolm F. Rx for compassion fatigue. J Christ Nurs. 2006;23(4):12–9 quiz 20-1.

    Article  PubMed  Google Scholar 

  64. Allday RA, Newell JM, Sukovskyy Y. Burnout, compassion fatigue and professional resilience in caregivers of children with disabilities in Ukraine. Eur J Soc Work. 2020;23(1):4–17.

    Article  Google Scholar 

  65. Bednarek S. This is an emergency: proposals for a collective response to the climate crisis. Br Gestalt J. 2019;28(2):6–15.

    Google Scholar 

  66. Bostrom A, Böhm G, Hayes AL, O’Connor RE. Credible threat: perceptions of pandemic coronavirus, climate change and the morality and management of global risks. Front Psychol. 2020;11:578562.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lim GY, Tam WW, Lu Y, Ho CS, Zhang MW, Ho RC. Prevalence of depression in the community from 30 countries between 1994 and 2014. Sci Rep. 2018;8(1):2861.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yan S, Xu R, Stratton TD, Kavcic V, Luo D, Hou F, et al. Sex differences and psychological stress: responses to the COVID-19 pandemic in China. BMC Public Health. 2021;21(1):79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park CL, Russell BS, Fendrich M, Finkelstein-Fox L, Hutchison M, Becker J. Americans’ COVID-19 stress, coping, and adherence to CDC guidelines. J Gen Intern Med. 2020;35(8):2296–303.

Download references


The Oberberg foundation commissioned and encouraged this research. The authors thank the Oberberg foundation for their support of the present research initiative. The valuable support of Dr. Anne Israel is gratefully acknowledged


This research is part of a larger research initiative funded by the Oberberg foundation.

Author information

Authors and Affiliations



RWP, PH, TS, MF, MH, AP & MJM jointly developed the study design, reviewed the literature and wrote the article. RWP and MJM performed the statistical analyses. The study is part of a representative survey whose design was conducted by RWP, PH, MF, MH, AP TS & MJM. The implementation of the study was coordinated by RWP. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Roland Weierstall-Pust.

Ethics declarations

Ethics approval and consent to participate

The Ethics Committee of the Medical School Hamburg provided ethical clearance, confirming that all methods were performed in accordance with the Declaration of Helsinki. All participants gave written informed consent to participate in the study and received financial compensation.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weierstall-Pust, R., Schnell, T., Heßmann, P. et al. Stressors related to the Covid-19 pandemic, climate change, and the Ukraine crisis, and their impact on stress symptoms in Germany: analysis of cross-sectional survey data. BMC Public Health 22, 2233 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: