American Diabetes Association. Gestational diabetes mellitus. Diabetes Care. 2003;26(Suppl 1):S103–5. https://doi.org/10.2337/diacare.26.2007.s103.
Article
Google Scholar
Behboudi-Gandevani S, Amiri M, Bidhendi Yarandi R, Ramezani TF. The impact of diagnostic criteria for gestational diabetes on its prevalence: a systematic review and meta-analysis. Diabetol Metab Syndr. 2019;11:11. https://doi.org/10.1186/s13098-019-0406-1.
Article
PubMed
PubMed Central
Google Scholar
Deputy NP, Kim SY, Conrey EJ, Bullard KM. Prevalence and Changes in Preexisting Diabetes and Gestational Diabetes Among Women Who Had a Live Birth - United States, 2012–2016. MMWR Morb Mortal Wkly Rep. 2018;67:1201–7. https://doi.org/10.15585/mmwr.mm6743a2.
Article
PubMed
PubMed Central
Google Scholar
DeSisto CL, Kim SY, Sharma AJ. Prevalence estimates of gestational diabetes mellitus in the United States, Pregnancy Risk Assessment Monitoring System (PRAMS), 2007–2010. Prev Chronic Dis. 2014;11:E104. https://doi.org/10.5888/pcd11.130415.
Article
PubMed
PubMed Central
Google Scholar
American College of Obstetricians and Gynecologists. ACOG practice bulletin no 190: gestational diabetes mellitus. Obstet Gynecol. 2018;131:e49–64. https://doi.org/10.1097/AOG.0000000000002501.
Article
Google Scholar
Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, Coustan DR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358:1991–2002. https://doi.org/10.1056/NEJMoa0707943.
Article
PubMed
Google Scholar
Farrar D, Simmonds M, Bryant M, Sheldon TA, Tuffnell D, Golder S, et al. Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and meta-analysis. BMJ (Clinical research ed). 2016;354:4694. https://doi.org/10.1136/bmj.i4694.
Article
Google Scholar
Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care. 2002;25:1862–8. https://doi.org/10.2337/diacare.25.10.1862.
Article
PubMed
Google Scholar
Lowe WL, Scholtens DM, Lowe LP, Kuang A, Nodzenski M, Talbot O, et al. Association of gestational diabetes with maternal disorders of glucose metabolism and childhood adiposity. JAMA. 2018;320:1005–16. https://doi.org/10.1001/jama.2018.11628.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kramer CK, Campbell S, Retnakaran R. Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia. 2019;62:905–14. https://doi.org/10.1007/s00125-019-4840-2.
Article
PubMed
Google Scholar
Li J, Song C, Li C, Liu P, Sun Z, Yang X. Increased risk of cardiovascular disease in women with prior gestational diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2018;140:324–38. https://doi.org/10.1016/j.diabres.2018.03.054.
Article
PubMed
Google Scholar
Lowe WL, Scholtens DM, Kuang A, Linder B, Lawrence JM, Lebenthal Y, et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): Maternal Gestational Diabetes Mellitus and Childhood Glucose Metabolism. Diabetes Care. 2019;42:372–80. https://doi.org/10.2337/dc18-1646.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eberle C, Ament C. Diabetic and metabolic programming: mechanisms altering the intrauterine milieu. ISRN pediatrics. 2012;2012:975685. https://doi.org/10.5402/2012/975685.
Article
PubMed
PubMed Central
Google Scholar
Fernandez-Twinn DS, Ozanne SE. Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav. 2006;88:234–43. https://doi.org/10.1016/j.physbeh.2006.05.039.
Article
CAS
PubMed
Google Scholar
Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, Bleker OP. Glucose tolerance in adults after prenatal exposure to famine. The Lancet. 1998;351:173–7. https://doi.org/10.1016/s0140-6736(97)07244-9.
Article
CAS
Google Scholar
Newsome CA, Shiell AW, Fall CHD, Phillips DIW, Shier R, Law CM. Is birth weight related to later glucose and insulin metabolism?–A systematic review. Diabetic Med. 2003;20:339–48. https://doi.org/10.1046/j.1464-5491.2003.00871.x.
Article
CAS
PubMed
Google Scholar
Bogdarina I, Murphy HC, Burns SP, Clark AJL. Investigation of the role of epigenetic modification of the rat glucokinase gene in fetal programming. Life Sci. 2004;74:1407–15. https://doi.org/10.1016/j.lfs.2003.08.017.
Article
CAS
PubMed
Google Scholar
Bennett AJ, Sovio U, Ruokonen A, Martikainen H, Pouta A, Taponen S, et al. Variation at the Insulin Gene VNTR (Variable Number Tandem Repeat) Polymorphism and Early Growth: Studies in a Large Finnish Birth Cohort. Diabetes. 2004;53:2126–31. https://doi.org/10.2337/diabetes.53.8.2126.
Article
CAS
PubMed
Google Scholar
Casanueva E, Viteri FE. Iron and oxidative stress in pregnancy. J Nutr. 2003;133:1700S-1708S. https://doi.org/10.1093/jn/133.5.1700S.
Article
CAS
PubMed
Google Scholar
Yoshioka T, Ando M, Taniguchi K, Yamasaki F, Motoyama H. Lipoperoxidation and antioxidant substances in the human placenta during gestation. Nihon Sanka Fujinka Gakkai zasshi. 1990;42:1634–40.
CAS
PubMed
Google Scholar
Li R, Chase M, Jung S-K, Smith PJS, Loeken MR. Hypoxic stress in diabetic pregnancy contributes to impaired embryo gene expression and defective development by inducing oxidative stress. Am J Physiol Endocrinol Metab. 2005;289:E591-9. https://doi.org/10.1152/ajpendo.00441.2004.
Article
CAS
PubMed
Google Scholar
Simmons RA. Developmental origins of diabetes: the role of oxidative stress. Free Radical Biol Med. 2006;40:917–22. https://doi.org/10.1016/j.freeradbiomed.2005.12.018.
Article
CAS
Google Scholar
Eriksson UJ. The pathogenesis of congenital malformations in diabetic pregnancy. Diabetes Metab Rev. 1995;11:63–82. https://doi.org/10.1002/dmr.5610110106.
Article
CAS
PubMed
Google Scholar
Horal M, Zhang Z, Stanton R, Virkamäki A, Loeken MR. Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis. Birth Defects Res A Clin Mol Teratol. 2004;70:519–27. https://doi.org/10.1002/bdra.20056.
Article
CAS
PubMed
Google Scholar
Gluckman PD, Hanson MA. Maternal constraint of fetal growth and its consequences. Semin Fetal Neonatal Med. 2004;9:419–25. https://doi.org/10.1016/j.siny.2004.03.001.
Article
PubMed
Google Scholar
Lindsay RS, Lindsay RM, Waddell BJ, Seckl JR. Prenatal glucocorticoid exposure leads to offspring hyperglycaemia in the rat: studies with the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone. Diabetologia. 1996;39:1299–305. https://doi.org/10.1007/s001250050573.
Article
CAS
PubMed
Google Scholar
Pelletier C, Dai S, Roberts KC, Bienek A, Onysko J, Pelletier L, Report summary. Diabetes in Canada: facts and figures from a public health perspective. Chronic Dis Inj Can. 2012;33:53–4.
Article
CAS
Google Scholar
Bezek S, Ujházy E, Mach M, Navarová J, Dubovický M. Developmental origin of chronic diseases: toxicological implication. Interdiscip Toxicol. 2008;1:29–31. https://doi.org/10.2478/v10102-010-0029-8.
Article
PubMed
PubMed Central
Google Scholar
Choe S-A, Eliot MN, Savitz DA, Wellenius GA. Ambient air pollution during pregnancy and risk of gestational diabetes in New York City. Environ Res. 2019;175:414–20. https://doi.org/10.1016/j.envres.2019.04.030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Zhao Y. Ambient air pollution exposure during pregnancy and gestational diabetes mellitus in Shenyang, China: a prospective cohort study. Environ Sci Pollut Res Int. 2021;28:7806–14. https://doi.org/10.1007/s11356-020-11143-x.
Article
CAS
PubMed
Google Scholar
Molina-Vega M, Gutiérrez-Repiso C, Muñoz-Garach A, Lima-Rubio F, Morcillo S, Tinahones FJ, Picón-César MJ. Relationship between environmental temperature and the diagnosis and treatment of gestational diabetes mellitus: An observational retrospective study. The Science of the total environment. 2020. https://doi.org/10.1016/j.scitotenv.2020.140994.
Moses RG, Wong V, Lambert K, Morris GJ, Gil FS. Seasonal changes in the prevalence of gestational diabetes mellitus. Diabetes Care. 2016;39:1218–21. https://doi.org/10.2337/dc16-0451.
Article
PubMed
Google Scholar
Ehrlich S, Lambers D, Baccarelli A, Khoury J, Macaluso M, Ho S-M. Endocrine disruptors: a potential risk factor for gestational diabetes mellitus. Am J Perinatol. 2016;33:1313–8. https://doi.org/10.1055/s-0036-1586500.
Article
PubMed
Google Scholar
Kuo C-C, Moon K, Thayer KA, Navas-Acien A. Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr DiabRep. 2013;13:831–49. https://doi.org/10.1007/s11892-013-0432-6.
Article
CAS
Google Scholar
Shapiro GD, Dodds L, Arbuckle TE, Ashley-Martin J, Ettinger AS, Fisher M, et al. Exposure to organophosphorus and organochlorine pesticides, perfluoroalkyl substances, and polychlorinated biphenyls in pregnancy and the association with impaired glucose tolerance and gestational diabetes mellitus: the MIREC Study. Environ Res. 2016;147:71–81. https://doi.org/10.1016/j.envres.2016.01.040.
Article
CAS
PubMed
Google Scholar
Soomro MH, Baiz N, Huel G, Yazbeck C, Botton J, Heude B, et al. Exposure to heavy metals during pregnancy related to gestational diabetes mellitus in diabetes-free mothers. Sci Total Environ. 2019;656:870–6. https://doi.org/10.1016/j.scitotenv.2018.11.422.
Article
CAS
PubMed
Google Scholar
Wang X, Gao D, Zhang G, Zhang X, Li Q, Gao Q, et al. Exposure to multiple metals in early pregnancy and gestational diabetes mellitus: A prospective cohort study. Environ Int. 2020. https://doi.org/10.1016/j.envint.2019.105370.
Hou Y, Li S, Xia L, Yang Q, Zhang L, Zhang X, et al. Associations of urinary phenolic environmental estrogens exposure with blood glucose levels and gestational diabetes mellitus in Chinese pregnant women. Sci Total Environ. 2021. https://doi.org/10.1016/j.scitotenv.2020.142085.
Robledo C, Peck JD, Stoner JA, Carabin H, Cowan L, Koch HM, Goodman JR. Is bisphenol-A exposure during pregnancy associated with blood glucose levels or diagnosis of gestational diabetes? J Toxicol Environ Health A. 2013;76:865–73. https://doi.org/10.1080/15287394.2013.824395.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Chen Q, Luo Z-C, Zhao S, Wang W, Zhang H-J, et al. Urinary bisphenol a concentration and gestational diabetes mellitus in Chinese women. Epidemiology. 2017;28:S41–7. https://doi.org/10.1097/EDE.0000000000000730.
Article
PubMed
Google Scholar
Yang J, Wang H, Du H, Xu L, Liu S, Yi J, et al. Serum Bisphenol A, glucose homeostasis, and gestational diabetes mellitus in Chinese pregnant women: a prospective study. Environ Sci Pollut Res Int. 2021;28:12546–54. https://doi.org/10.1007/s11356-020-11263-4.
Article
CAS
PubMed
Google Scholar
Zhang W, Xia W, Liu W, Li X, Hu J, Zhang B, et al. Exposure to bisphenol A substitutes and gestational diabetes mellitus: A prospective cohort study in China. Front Endocrinol. 2019. https://doi.org/10.3389/fendo.2019.00262.
Bellavia A, Cantonwine DE, Meeker JD, Hauser R, Seely EW, McElrath TF, James-Todd T. Pregnancy urinary bisphenol-A concentrations and glucose levels across BMI categories. Environ Int. 2018;113:35–41. https://doi.org/10.1016/j.envint.2018.01.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiu Y-H, Mínguez-Alarcón L, Ford JB, Keller M, Seely EW, Messerlian C, et al. Trimester-specific urinary bisphenol a concentrations and blood glucose levels among pregnant women from a fertility clinic. J Clin Endocrinol Metab. 2017;102:1350–7. https://doi.org/10.1210/jc.2017-00022.
Article
PubMed
PubMed Central
Google Scholar
Chen M, Zhao S, Guo W-H, Zhu Y-P, Pan L, Xie Z-W, et al. Maternal exposure to Di-n-butyl phthalate (DBP) aggravate gestational diabetes mellitus via FoxM1 suppression by pSTAT1 signalling. Ecotoxicol Environ Saf. 2020;205:111154. https://doi.org/10.1016/j.ecoenv.2020.111154.
Article
CAS
PubMed
Google Scholar
Guo J, Wu M, Gao X, Chen J, Li S, Chen B, Dong R. Meconium Exposure to Phthalates, Sex and Thyroid Hormones, Birth Size and Pregnancy Outcomes in 251 Mother-Infant Pairs from Shanghai. Int J Environ Res Public Health. 2020. https://doi.org/10.3390/ijerph17217711.
Shaffer RM, Ferguson KK, Sheppard L, James-Todd T, Butts S, Chandrasekaran S, et al. Maternal urinary phthalate metabolites in relation to gestational diabetes and glucose intolerance during pregnancy. Environ Int. 2019;123:588–96. https://doi.org/10.1016/j.envint.2018.12.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fisher BG, Frederiksen H, Andersson A-M, Juul A, Thankamony A, Ong KK, et al. Serum phthalate and triclosan levels have opposing associations with risk factors for gestational diabetes mellitus. Front Endocrinol. 2018. https://doi.org/10.3389/fendo.2018.00099.
Shapiro GD, Dodds L, Arbuckle TE, Ashley-Martin J, Fraser W, Fisher M, et al. Exposure to phthalates, bisphenol A and metals in pregnancy and the association with impaired glucose tolerance and gestational diabetes mellitus: The MIREC study. Environ Int. 2015;83:63–71. https://doi.org/10.1016/j.envint.2015.05.016.
Article
CAS
PubMed
Google Scholar
Shapiro GD, Arbuckle TE, Ashley-Martin J, Fraser WD, Fisher M, Bouchard MF, et al. Associations between maternal triclosan concentrations in early pregnancy and gestational diabetes mellitus, impaired glucose tolerance, gestational weight gain and fetal markers of metabolic function. Environ Res. 2018;161:554–61. https://doi.org/10.1016/j.envres.2017.12.001.
Article
CAS
PubMed
Google Scholar
James-Todd TM, Chiu Y-H, Messerlian C, Minguez-Alarcon L, Ford JB, Keller M, et al. Environmental Health Trimester-specific phthalate concentrations and glucose levels among women from a fertility clinic. Environ Health. 2018. https://doi.org/10.1186/s12940-018-0399-5.
James-Todd TM, Meeker JD, Huang T, Hauser R, Ferguson KK, Rich-Edwards JW, et al. Pregnancy urinary phthalate metabolite concentrations and gestational diabetes risk factors. Environ Int. 2016;96:118–26. https://doi.org/10.1016/j.envint.2016.09.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robledo CA, Peck JD, Stoner J, Calafat AM, Carabin H, Cowan L, Goodman JR. Urinary phthalate metabolite concentrations and blood glucose levels during pregnancy. Int J Hyg Environ Health. 2015;218:324–30. https://doi.org/10.1016/j.ijheh.2015.01.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvarez-Silvares E, Fernández-Cruz T, Domínguez-Vigo P, Rubio-Cid P, Seoane-Pillado T, Martínez-Carballo E. Association between placenta concentrations polybrominated and polychlorinated biphenyls and gestational diabetes mellitus: a case-control study in northwestern Spain. Environ Sci Pollut Res Int. 2021;28:10292–301. https://doi.org/10.1007/s11356-021-12377-z.
Article
CAS
PubMed
Google Scholar
Eslami B, Naddafi K, Rastkari N, Rashidi BH, Djazayeri A, Malekafzali H. Association between serum concentrations of persistent organic pollutants and gestational diabetes mellitus in primiparous women. Environ Res. 2016;151:706–12. https://doi.org/10.1016/j.envres.2016.09.002.
Article
CAS
PubMed
Google Scholar
Jaacks LM, Barr DB, Sundaram R, Maisog JM, Zhang C, Buck Louis GM. Pre-pregnancy maternal exposure to polybrominated and polychlorinated biphenyls and gestational diabetes: a prospective cohort study. Environ Health. 2016;15:11. https://doi.org/10.1186/s12940-016-0092-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Zhou Y, Li J, Sun X, Liu H, Jiang Y, et al. Parabens exposure in early pregnancy and gestational diabetes mellitus. Environ Int. 2019;126:468–75. https://doi.org/10.1016/j.envint.2019.02.040.
Article
CAS
PubMed
Google Scholar
Liu X, Zhang L, Chen L, Li J, Wang Y, Wang J, et al. Structure-based investigation on the association between perfluoroalkyl acids exposure and both gestational diabetes mellitus and glucose homeostasis in pregnant women. Environ Int. 2019;127:85–93. https://doi.org/10.1016/j.envint.2019.03.035.
Article
CAS
PubMed
Google Scholar
Liu X, Zhang L, Li J, Meng G, Chi M, Li T, et al. A nested case-control study of the association between exposure to polybrominated diphenyl ethers and the risk of gestational diabetes mellitus. Environ Int. 2018;119:232–8. https://doi.org/10.1016/j.envint.2018.06.029.
Article
CAS
PubMed
Google Scholar
Rahman ML, Zhang C, Smarr MM, Lee S, Honda M, Kannan K, et al. Persistent organic pollutants and gestational diabetes: A multi-center prospective cohort study of healthy US women. Environ Int. 2019;124:249–58. https://doi.org/10.1016/j.envint.2019.01.027.
Article
CAS
PubMed
Google Scholar
Saunders L, Kadhel P, Costet N, Rouget F, Monfort C, Thome J-P, et al. Hypertensive disorders of pregnancy and gestational diabetes mellitus among French Caribbean women chronically exposed to chlordecone. Environ Int. 2014;68:171–6. https://doi.org/10.1016/j.envint.2014.03.024.
Article
CAS
PubMed
Google Scholar
Smarr MM, Grantz KL, Zhang C, Sundaram R, Maisog JM, Barr DB, Louis GMB. Persistent organic pollutants and pregnancy complications. Sci Total Environ. 2016;551:285–91. https://doi.org/10.1016/j.scitotenv.2016.02.030.
Article
CAS
PubMed
Google Scholar
Vafeiadi M, Roumeliotaki T, Chalkiadaki G, Rantakokko P, Kiviranta H, Fthenou E, et al. Persistent organic pollutants in early pregnancy and risk of gestational diabetes mellitus. Environ Int. 2017;98:89–95. https://doi.org/10.1016/j.envint.2016.10.005.
Article
CAS
PubMed
Google Scholar
Valvi D, Oulhote Y, Weihe P, Dalgård C, Bjerve KS, Steuerwald U, Grandjean P. Gestational diabetes and offspring birth size at elevated environmental pollutant exposures. Environ Int. 2017;107:205–15. https://doi.org/10.1016/j.envint.2017.07.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Zhang L, Teng Y, Zhang J, Yang L, Li J, et al. Association of serum levels of perfluoroalkyl substances with gestational diabetes mellitus and postpartum blood glucose. J Environ Sci. 2018;69:5–11. https://doi.org/10.1016/j.jes.2018.03.016.
Article
CAS
Google Scholar
Xu H, Zhou Q, Zhang J, Chen X, Zhao H, Lu H, et al. Exposure to elevated per- and polyfluoroalkyl substances in early pregnancy is related to increased risk of gestational diabetes mellitus: A nested case-control study in Shanghai, China. Environ Int. 2020. https://doi.org/10.1016/j.envint.2020.105952.
Zhang L, Liu X, Meng G, Chi M, Li J, Yin S, et al. Non-dioxin-like polychlorinated biphenyls in early pregnancy and risk of gestational diabetes mellitus. Environ Int. 2018;115:127–32. https://doi.org/10.1016/j.envint.2018.03.012.
Article
CAS
PubMed
Google Scholar
Bellavia A, Chiu Y-H, Brown FM, Minguez-Alarcon L, Ford JB, Keller M, et al. Urinary concentrations of parabens mixture and pregnancy glucose levels among women from a fertility clinic. Environ Res. 2019;168:389–96. https://doi.org/10.1016/j.envres.2018.10.009.
Article
CAS
PubMed
Google Scholar
Wang Z, Mínguez-Alarcón L, Williams PL, Bellavia A, Ford JB, Keller M, et al. Perinatal urinary benzophenone-3 concentrations and glucose levels among women from a fertility clinic. Environ Health. 2020;19(1):45. https://doi.org/10.1186/s12940-020-00598-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonaventura, Marta, Maria, Soledad Bourguignon N, Bizzozzero M, Rodriguez D, Ventura C, Cocca C, et al. Arsenite in drinking water produces glucose intolerance in pregnant rats and their female offspring. Food Chem Toxicol. 2017;100:207-16. https://doi.org/10.1016/j.fct.2016.12.025.
Ashley-Martin J, Dodds L, Arbuckle TE, Bouchard MF, Shapiro GD, Fisher M, et al. Association between maternal urinary speciated arsenic concentrations and gestational diabetes in a cohort of Canadian women. Environ Int. 2018;121:714–20. https://doi.org/10.1016/j.envint.2018.10.008.
Article
CAS
PubMed
Google Scholar
Farzan SF, Gossai A, Chen Y, Chasan-Taber L, Baker E, Karagas M. Maternal arsenic exposure and gestational diabetes and glucose intolerance in the New Hampshire birth cohort study. Environ Health. 2016;15:106. https://doi.org/10.1186/s12940-016-0194-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marie C, Léger S, Guttmann A, Rivière O, Marchiset N, Lémery D, et al. Exposure to arsenic in tap water and gestational diabetes: a French semi-ecological study. Environ Res. 2018;161:248–55. https://doi.org/10.1016/j.envres.2017.11.016.
Article
CAS
PubMed
Google Scholar
Wu Y, Zhang J, Peng S, Wang X, Luo L, Liu L, et al. Multiple elements related to metabolic markers in the context of gestational diabetes mellitus in meconium. Environ Int. 2018:1227-34. https://doi.org/10.1016/j.envint.2018.10.044.
Xia X, Liang C, Sheng J, Yan S, Huang K, Li Z, et al. Association between serum arsenic levels and gestational diabetes mellitus: A population-based birth cohort study. Environ Pollut (Barking, Essex : 1987). 2018;235:850–6. https://doi.org/10.1016/j.envpol.2018.01.016.
Peng S, Liu L, Zhang X, Heinrich J, Zhang J, Schramm K-W, et al. A nested case-control study indicating heavy metal residues in meconium associate with maternal gestational diabetes mellitus risk. Environ Health. 2015;14:19. https://doi.org/10.1186/s12940-015-0004-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Zhang P, Chen X, Wu W, Feng Y, Yang H, et al. Multiple metal concentrations and gestational diabetes mellitus in Taiyuan, China. Chemosphere. 2019. https://doi.org/10.1016/j.chemosphere.2019.124412.
Muñoz MP, Valdés M, Muñoz-Quezada MT, Lucero B, Rubilar P, Pino P, Iglesias V. Urinary Inorganic Arsenic Concentration and Gestational Diabetes Mellitus in Pregnant Women from Arica, Chile. Int J Environ Res Public Health. 2018;15(7):1418. https://doi.org/10.3390/ijerph15071418.
Article
CAS
PubMed Central
Google Scholar
Ettinger AS, Zota AR, Amarasiriwardena CJ, Hopkins MR, Schwartz J, Hu H, Wright RO. Maternal arsenic exposure and impaired glucose tolerance during pregnancy. Environ Health Perspect. 2009;117:1059–64. https://doi.org/10.1289/ehp0800533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Huang Y, Xing Y, Hu C, Zhang W, Tang Y, et al. Association of urinary cadmium, circulating fatty acids, and risk of gestational diabetes mellitus: a nested case-control study in China. Environ Int. 2020;137:105527. https://doi.org/10.1016/j.envint.2020.105527.
Article
CAS
PubMed
Google Scholar
Liu W, Zhang B, Huang Z, Pan X, Chen X, Hu C, et al. Cadmium body burden and gestational diabetes mellitus: a prospective study. Environ Health Perspect. 2018;126:27006. https://doi.org/10.1289/EHP2716.
Article
Google Scholar
Xing Y, Xia W, Zhang B, Zhou A, Huang Z, Zhang H, et al. Relation between cadmium exposure and gestational diabetes mellitus. Environ Int. 2018;113:300–5. https://doi.org/10.1016/j.envint.2018.01.001.
Article
CAS
PubMed
Google Scholar
Oguri T, Ebara T, Nakayama SF, Sugiura-Ogasawara M, Kamijima M. Association between maternal blood cadmium and lead concentrations and gestational diabetes mellitus in the Japan Environment and Children’s Study. Int Arch Occup Environ Health. 2019;92:209–17. https://doi.org/10.1007/s00420-018-1367-7.
Romano ME, Gallagher LG, Jackson BP, Baker E, Karagas MR. Maternal urinary cadmium, glucose intolerance and gestational diabetes in the New Hampshire Birth Cohort Study. Environ Res. 2019;179:108733. https://doi.org/10.1016/j.envres.2019.108733.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katsarou A, Claesson R, Ignell C, Shaat N, Berntorp K. Seasonal Pattern in the Diagnosis of Gestational Diabetes Mellitus in Southern Sweden. J Diabetes Res. 2016. https://doi.org/10.1155/2016/8905474.
Meek CL, Devoy B, Simmons D, Patient CJ, Aiken AR, Murphy HR, Aiken CE. Seasonal variations in incidence and maternal–fetal outcomes of gestational diabetes. Diabet Med. 2020;37:674–80. https://doi.org/10.1111/dme.14236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verburg PE, Tucker G, Scheil W, Erwich J, Dekker GA, Roberts CT. Seasonality of gestational diabetes mellitus: a South Australian population study. BMJ Open Diabetes Res Care. 2016;4(1):e000286. https://doi.org/10.1136/bmjdrc-2016-000286.
Article
PubMed
PubMed Central
Google Scholar
Wang P, Wu C-S, Li C-Y, Yang C-P, Lu M-C. Seasonality of gestational diabetes mellitus and maternal blood glucose levels: Evidence from Taiwan. Medicine. 2020;99:e22684. https://doi.org/10.1097/MD.0000000000022684.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen EX, Moses RG, Oats J, Lowe J, McIntyre HD. Seasonality, temperature and pregnancy oral glucose tolerance test results in Australia. BMC Pregnancy Childbirth. 2019;19:263. https://doi.org/10.1186/s12884-019-2413-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petry CJ, Fisher BG, Ong KK, Hughes IA, Acerini CL, Dunger DB. Temporal trends without seasonal effects on gestational diabetes incidence relate to reductions in indices of insulin secretion: the Cambridge Baby Growth Study. Acta Diabetol. 2019;56:1133–40. https://doi.org/10.1007/s00592-019-01354-1.
Article
PubMed
PubMed Central
Google Scholar
Wainstock T, Yoles I. Pregnant women may be sweeter in the summer: Seasonal changes in glucose challenge tests results. A population-based study. Diabetes Res Clin Pract. 2019;147:134–7. https://doi.org/10.1016/j.diabres.2018.11.020.
Article
CAS
PubMed
Google Scholar
Retnakaran R, Ye C, Kramer CK, Hanley AJ, Connelly PW, Sermer M, Zinman B. Impact of daily incremental change in environmental temperature on beta cell function and the risk of gestational diabetes in pregnant women. Diabetologia. 2018;61:2633–42. https://doi.org/10.1007/s00125-018-4710-3.
Article
PubMed
Google Scholar
Su W-L, Lu C-L, Martini S, Hsu Y-H, Li C-Y. A population-based study on the prevalence of gestational diabetes mellitus in association with temperature in Taiwan. Sci Total Environ. 2020;714:136747. https://doi.org/10.1016/j.scitotenv.2020.136747.
Article
CAS
PubMed
Google Scholar
Vasileiou V, Kyratzoglou E, Paschou SA, Kyprianou M, Anastasiou E. The impact of environmental temperature on the diagnosis of gestational diabetes mellitus. Eur J Endocrinol. 2018;178:209–14. https://doi.org/10.1530/EJE-17-0730.
Article
CAS
PubMed
Google Scholar
Zhang H, Wang Q, Benmarhnia T, Jalaludin B, Shen X, Yu Z, et al. Assessing the effects of non-optimal temperature on risk of gestational diabetes mellitus in a cohort of pregnant women in Guangzhou, China. Environ Int. 2021;152:106457. https://doi.org/10.1016/j.envint.2021.106457.
Article
PubMed
Google Scholar
Choe S-A, Kauderer S, Eliot MN, Glazer KB, Kingsley SL, Carlson L, et al. Air pollution, land use, and complications of pregnancy. Sci Total Environ. 2018;645:1057–64. https://doi.org/10.1016/j.scitotenv.2018.07.237.
Article
CAS
PubMed
Google Scholar
Hu H, Ha S, Henderson BH, Warner TD, Roth J, Kan H, Xu X. Association of atmospheric particulate matter and ozone with gestational diabetes mellitus. Environ Health Perspect. 2015;123:853–9. https://doi.org/10.1289/ehp.1408456.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Q, Wang D, Yue D, Xu C, Hu B, Cheng P, et al. Association of ambient particle pollution with gestational diabetes mellitus and fasting blood glucose levels in pregnant women from two Chinese birth cohorts. Sci Total Environ. 2021;762:143176. https://doi.org/10.1016/j.scitotenv.2020.143176.
Article
CAS
PubMed
Google Scholar
Kang J, Liao J, Xu S, Xia W, Li Y, Chen S, Lu B. Associations of exposure to fine particulate matter during pregnancy with maternal blood glucose levels and gestational diabetes mellitus: Potential effect modification by ABO blood group. Ecotoxicol Environ Saf. 2020;198:110673. https://doi.org/10.1016/j.ecoenv.2020.110673.
Article
CAS
PubMed
Google Scholar
Lin Q, Zhang S, Liang Y, Wang C, Wang C, Wu X, et al. Ambient air pollution exposure associated with glucose homeostasis during pregnancy and gestational diabetes mellitus. Environ Res. 2020;190:109990. https://doi.org/10.1016/j.envres.2020.109990.
Article
CAS
PubMed
Google Scholar
Melody SM, Ford JB, Wills K, Venn A, Johnston FH. Maternal exposure to fine particulate matter from a large coal mine fire is associated with gestational diabetes mellitus: a prospective cohort study. Environ Res. 2020;183:108956. https://doi.org/10.1016/j.envres.2019.108956.
Article
CAS
PubMed
Google Scholar
Rammah A, Whitworth KW, Symanski E. Particle air pollution and gestational diabetes mellitus in Houston, Texas. Environ Res. 2020;190:109988. https://doi.org/10.1016/j.envres.2020.109988.
Article
CAS
PubMed
Google Scholar
Shen H-N, Hua S-Y, Chiu C-T, Li C-Y. Maternal exposure to air pollutants and risk of gestational diabetes mellitus in Taiwan. Int J Environ Res Public Health. 2017;14(12):1604. https://doi.org/10.3390/ijerph14121604.
Article
CAS
PubMed Central
Google Scholar
Yao M, Liu Y, Jin D, Yin W, Ma S, Tao R, et al. Relationship betweentemporal distribution of air pollution exposure and glucose homeostasis during pregnancy. Environ Res. 2020;185:109456. https://doi.org/10.1016/j.envres.2020.109456.
Article
CAS
PubMed
Google Scholar
Ye B, Zhong C, Li Q, Xu S, Zhang Y, Zhang X, et al. The associations of ambient fine particulate matter exposure during pregnancy with blood glucose levels and gestational diabetes mellitus risk: a prospective cohort study in Wuhan, China. Am J Epidemiol. 2020;189:1306–15. https://doi.org/10.1093/aje/kwaa056.
Article
PubMed
Google Scholar
Yu G, Ao J, Cai J, Luo Z, Martin R, van Donkelaar A, et al. Fine particular matter and its constituents in air pollution and gestational diabetes mellitus. Environ Int. 2020;142:105880. https://doi.org/10.1016/j.envint.2020.105880.
Article
CAS
PubMed
Google Scholar
Zhang M, Wang X, Yang X, Dong T, Hu W, Guan Q, et al. Increased risk of gestational diabetes mellitus in women with higher prepregnancy ambient PM(2.5) exposure. Sci Total Environ. 2020;730:138982. https://doi.org/10.1016/j.scitotenv.2020.138982.
Article
CAS
PubMed
Google Scholar
Malmqvist E, Jakobsson K, Tinnerberg H, Rignell-Hydbom A, Rylander L. Gestational diabetes and preeclampsia in association with air pollution at levels below current air quality guidelines. Environ Health Perspect. 2013;121:488–93. https://doi.org/10.1289/ehp.1205736.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dastoorpoor M, Khanjani N, Moradgholi A, Sarizadeh R, Cheraghi M, Estebsari F. Prenatal exposure to ambient air pollution and adverse pregnancy outcomes in Ahvaz, Iran: a generalized additive model. Int Arch Occup Environ Health. 2021;94:309–24. https://doi.org/10.1007/s00420-020-01577-8.
Article
CAS
PubMed
Google Scholar
Pan S-C, Huang C-C, Lin S-J, Chen B-Y, Chang C-C, Leon Guo Y-L. Gestational diabetes mellitus was related to ambient air pollutant nitric oxide during early gestation. Environ Res. 2017;158:318–23. https://doi.org/10.1016/j.envres.2017.06.005.
Article
CAS
PubMed
Google Scholar
Pedersen M, Olsen SF, Halldorsson TI, Zhang C, Hjortebjerg D, Ketzel M, et al. Gestational diabetes mellitus and exposure to ambient air pollution and road traffic noise: a cohort study. Environ Int. 2017;108:253–60. https://doi.org/10.1016/j.envint.2017.09.003.
Article
CAS
PubMed
Google Scholar
Robledo CA, Mendola P, Yeung E, Männistö T, Sundaram R, Liu D, et al. Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus. Environ Res. 2015;137:316–22. https://doi.org/10.1016/j.envres.2014.12.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hehua Z, Yang X, Qing C, Shanyan G, Yuhong Z. Dietary patterns and associations between air pollution and gestational diabetes mellitus. Environ Int. 2021;147:106347. https://doi.org/10.1016/j.envint.2020.106347.
Article
CAS
PubMed
Google Scholar
Jo H, Eckel SP, Chen J-C, Cockburn M, Martinez MP, Chow T, et al. Associations of gestational diabetes mellitus with residential air pollution exposure in a large Southern California pregnancy cohort. Environ Int. 2019;130:104933. https://doi.org/10.1016/j.envint.2019.104933.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Dong H, Ren M, Liang Q, Shen X, Wang Q, et al. Ambient air pollution exposure and gestational diabetes mellitus in Guangzhou, China: a prospective cohort study. Sci Total Environ. 2020;699:134390. https://doi.org/10.1016/j.scitotenv.2019.134390.
Article
CAS
PubMed
Google Scholar
Fleisch AF, Kloog I, Luttmann-Gibson H, Gold DR, Oken E, Schwartz JD. Air pollution exposure and gestational diabetes mellitus among pregnant women in Massachusetts: a cohort study. Environ Health. 2016;15:40. https://doi.org/10.1186/s12940-016-0121-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Padula AM, Yang W, Lurmann FW, Balmes J, Hammond SK, Shaw GM. Prenatal exposure to air pollution, maternal diabetes and preterm birth. Environ Res. 2019;170:160–7. https://doi.org/10.1016/j.envres.2018.12.031.
Article
CAS
PubMed
Google Scholar
Fleisch AF, Gold DR, Rifas-Shiman SL, Koutrakis P, Schwartz JD, Kloog I, et al. Air pollution exposure and abnormal glucose tolerance during pregnancy: the project Viva cohort. Environ Health Perspect. 2014;122:378–83. https://doi.org/10.1289/ehp.1307065.
Article
PubMed
PubMed Central
Google Scholar
Li D, Wang J, Yu Z, Lin H, Chen K. Air pollutants concentration and variation of blood glucose level among pregnant women in China: A cross-sectional study. Atmospheric Environment. 2020. https://doi.org/10.1016/j.atmosenv.2019.117191.
Lu M-C, Wang P, Cheng T-J, Yang C-P, Yan Y-H. Association of temporal distribution of fine particulate matter with glucose homeostasis during pregnancy in women of Chiayi City. Taiwan Environmental research. 2017;152:81–7. https://doi.org/10.1016/j.envres.2016.09.023.
Article
CAS
PubMed
Google Scholar
Najafi ML, Zarei M, Gohari A, Haghighi L, Heydari H, Miri M. Preconception air pollution exposure and glucose tolerance in healthy pregnant women in a middle-income country. Environ Health. 2020. https://doi.org/10.1186/s12940-020-00682-y.
Blauw LL, Aziz NA, Tannemaat MR, Blauw CA, de Craen AJ, Pijl H, Rensen PCN. Diabetes incidence and glucose intolerance prevalence increase with higher outdoor temperature. BMJ Open Diabetes Res Care. 2017;5:e000317. https://doi.org/10.1136/bmjdrc-2016-000317.
Article
PubMed
PubMed Central
Google Scholar
Moltchanova EV, Schreier N, Lammi N, Karvonen M. Seasonal variation of diagnosis of Type 1 diabetes mellitus in children worldwide. Diabetic Med. 2009;26:673–8. https://doi.org/10.1111/j.1464-5491.2009.02743.x.
Article
CAS
PubMed
Google Scholar
Tyrovolas S, Chalkias C, Morena M, Kalogeropoulos K, Tsakountakis N, Zeimbekis A, et al. High relative environmental humidity is associated with diabetes among elders living in Mediterranean islands. J Diabetes Metab Disord. 2014;13:25. https://doi.org/10.1186/2251-6581-13-25.
Article
PubMed
PubMed Central
Google Scholar
Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25. https://doi.org/10.1056/NEJMoa0808949.
Article
CAS
PubMed
Google Scholar
Preston EV, Eberle C, Brown FM, James-Todd T. Climate factors and gestational diabetes mellitus risk - a systematic review. Environ Health. 2020;19:112. https://doi.org/10.1186/s12940-020-00668-w.
Article
PubMed
PubMed Central
Google Scholar
The American College of Obstetricians and Gynecologists Committee on Health Care for Underserved Women. ACOG Committee Opinion No. 575: Exposure to toxic environmental agents. ObstetGynecol. 2013;122:931–5. https://doi.org/10.1097/01.AOG.0000435416.21944.54.
Di Renzo GC, Conry JA, Blake J, DeFrancesco MS, DeNicola N, Martin JN, et al. International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals. Int J Gynaecol Obstet. 2015;131:219–25. https://doi.org/10.1016/j.ijgo.2015.09.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang A, Padula A, Sirota M, Woodruff TJ. Environmental influences on reproductive health: the importance of chemical exposures. Fertil Steril. 2016;106:905–29. https://doi.org/10.1016/j.fertnstert.2016.07.1076.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ Health Perspect. 2011;119:878–85. https://doi.org/10.1289/ehp.1002727.
Article
PubMed
PubMed Central
Google Scholar
Holdsworth-Carson SJ, Lim R, Mitton A, Whitehead C, Rice GE, Permezel M, Lappas M. Peroxisome proliferator-activated receptors are altered in pathologies of the human placenta: gestational diabetes mellitus, intrauterine growth restriction and preeclampsia. Placenta. 2010;31:222–9. https://doi.org/10.1016/j.placenta.2009.12.009.
Article
CAS
PubMed
Google Scholar
Varshavsky J, Smith A, Wang A, Hom E, Izano M, Huang H, et al. Heightened susceptibility: A review of how pregnancy and chemical exposures influence maternal health. Reprod Toxicol (Elmsford, NY). 2020;92:14–56. https://doi.org/10.1016/j.reprotox.2019.04.004.
Article
CAS
Google Scholar
Hong E-J, Choi K-C, Jeung E-B. Maternal-fetal transfer of endocrine disruptors in the induction of Calbindin-D9k mRNA and protein during pregnancy in rat model. Mol Cell Endocrinol. 2003;212:63–72. https://doi.org/10.1016/j.mce.2003.08.011.
Article
CAS
PubMed
Google Scholar
Souza M, Saraiva M, Honda M, Barbieri MA, Bettiol H, Barbosa F, Kannan K. Exposure to per- and polyfluorinated alkyl substances in pregnant Brazilian women and its association with fetal growth. Environ Res. 2020;187:109585. https://doi.org/10.1016/j.envres.2020.109585.
Article
CAS
PubMed
Google Scholar
Pan Y, Deng M, Li J, Du B, Lan S, Liang X, Zeng L. Occurrence and Maternal Transfer of Multiple Bisphenols, including an Emerging Derivative with Unexpectedly High Concentrations, in the Human Maternal-Fetal-Placental Unit. Environ Sci Technol. 2020;54:3476–86. https://doi.org/10.1021/acs.est.0c00206.
Article
CAS
PubMed
Google Scholar
Zhang W, Cai Y, Sheng G, Chen D, Fu J. Tissue distribution of decabrominated diphenyl ether (BDE-209) and its metabolites in sucking rat pups after prenatal and/or postnatal exposure. Toxicology. 2011;283:49–54. https://doi.org/10.1016/j.tox.2011.02.003.
Article
CAS
PubMed
Google Scholar
Haines DA, Saravanabhavan G, Werry K, Khoury C. An overview of human biomonitoring of environmental chemicals in the Canadian Health Measures Survey: 2007–2019. Int J Hyg Environ Health. 2017;220:13–28. https://doi.org/10.1016/j.ijheh.2016.08.002.
Article
CAS
PubMed
Google Scholar
Iavicoli I, Fontana L, Bergamaschi A. The effects of metals as endocrine disruptors. J Toxicol Environ Health B Crit Rev. 2009;12:206–23. https://doi.org/10.1080/10937400902902062.
Article
CAS
PubMed
Google Scholar
Abdel Hameed ER, Shehata MA, Waheed H, Abdel Samie OM, Ahmed HH, Sherif LS, Ahmed A. Heavy metals can either aid or oppose the protective function of the placental barrier. Open Access Maced J Med Sci. 2019;7:2814–7. https://doi.org/10.3889/oamjms.2019.709.
Article
Google Scholar
Sabra S, Malmqvist E, Saborit A, Gratacós E, Gomez Roig MD. Heavy metals exposure levels and their correlation with different clinical forms of fetal growth restriction. PLoS One. 2017;12(10):e0185645. https://doi.org/10.1371/journal.pone.0185645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hameed ERA, Shehata MA, Ahmed HH, Sherif LS, Elnady HG, Waheed H. Relation of Heavy Metals in Cord and Maternal Blood to Neonatal Anthropometric Indices. J Clin Diagnostic Res. 2019;13:SC01–5. https://doi.org/10.7860/JCDR/2019/39929.12653.
Article
Google Scholar
Kuntz WD, Pitkin RM, Bostrom AW, Hughes MS. Maternal and cord blood background mercury levels: a longitudinal surveillance. Am J Obstet Gynecol. 1982;143:440–3. https://doi.org/10.1016/0002-9378(82)90087-4.
Article
CAS
PubMed
Google Scholar