In this study, a typology of contemporary work exposure among older employees in Germany was established, based on recent representative data. The procedure was comparable to the approach performed by Eurofound [14]. The appropriateness of both, the chosen indices and the final profiles, was assessed by means of theoretically and empirically established work-related outcomes. In summary, the findings suggest the existence of five distinct profiles of work exposure among the German baby boomer workforce. This helps scientific and policy stakeholders to better conceive the currently employed baby boomer generation in Germany in its holistic work situation.
Profile summary
The first profile identified is that of Poor Quality (PQ) work. Almost 20% of all workers belong to this profile which is characterised by least favourable exposures for eight of nine work indices. It is dominated by mean low qualification levels and mainly manual jobs and professions. The group exhibits the most adverse scores for all work-related outcomes, be it health, the work-privacy-conflict or work ability.
The Relaxed Manual (RM) profile covers 30% of all workers. Like the PQ profile it is characterised by, on average, low qualification levels, mainly manual jobs and professions and several poor work indicators. The differences, however, are the more favourable manifestations of the social work exposure indicators and the lowest work intensity of all profiles. These positive exposures are reflected by better mental health and very low work-privacy-conflict scores. Physical health, however, is rather low.
With respect to the manifestation of the work exposure indices, the Strained non-Manual (SnM) constitute the inverse counterpart of the RM with predominantly non-manual work, adverse scorings for social work indicators, work intensity, and also prospects. Sixteen percent of all workers belong to this group, mainly from business administration and organisation, the health and social sector and also scientists. The SnM profile shows adverse mean scores for mental health and work-privacy-conflict, while physical health and work ability are on average level.
The largest profile (33%) is the Smooth Running (SR) with an all-favourable work exposure profile opposite to that of PQ, except for above average work intensity. The predominant professions are similar to those of SnM, yet, in contrast to SnM, mental health is highest among SR, work ability rather high and the work-privacy-conflict rather low.
The smallest profile (3%) is that of the High Flying (HF), the profile with the most favourable work exposure manifestations except for rather high work intensity. The very high score for earnings is a distinct feature of this profile. Specifically, business organisation and administration, but also scientists are more frequently found in this group. While scores are highest for physical health and work ability, the profile reaches medium group levels for mental health and work-privacy-conflict only.
Relation to further profiles
There is substantial accordance between the profiles identified here and the profile patterns of the three studies using comparable approaches (cf. Table 1). Not surprisingly, the PQ profile finds equivalents in all studies, the “few rewards” profile in Canada [15], the Flemish “high stress” [13] and the European “poor quality” profiles [14]. The RM profile identified in this study is to a certain degree equivalent to the Canadian “relationships and balance” profile [15], the “passive manual” in Belgium [13] and the “active manual” identified by Eurofound [14]. The SnM profile has an overlap with the “under pressure” profile by Eurofound [14]. The favourable SR profile would match the combination of the profiles “total rewards” and the “economic and support” in the analysis of Canadian workers [15] and the Flemish “low stress” profile [13]. However, it does not match a profile in the Eurofound analysis, although a group of identical names exists. The Eurofound SR profile shows favourable social and physical working conditions and – in contrast to the SR profile in this study – low discretion and very low earnings, coupled with very low work intensity [14]. Finally, the HF shows a similar profile to the “high flying” identified by Eurofound [14] with favourable ratings on all indicators, very high earnings and some exposure to work intensity. However, while this profile constitutes an exceptional work exposure constellation in this study of workers in Germany (3%), it covers 21% of all participants in the Eurofound survey. Thus, the SR and the HF in the German LPA assessment do not match occupational group profiles identified by Eurofound to the same degree as the other profiles do.
European vs. national profiles
The overall high correspondence of the profile pattern in this study with that from Eurofound may not be surprising as the two studies are quite similar in the conceptual understanding of work and work exposure. They also share similarities in the assessment, i.e. the work indicators selected, their underlying items and, finally, the predominant application of continuous scales in the analysis. The differences between the findings of the two studies may have a simple explanation: The Eurofound analysis is based on a Europe-wide sample with many work quality indices exhibiting a European North-West / South-East gradient in the expected direction [14], which is reflected by the profile distribution. The Eurofound profiles high flying, for example, is highly prevalent in North-West Europe (e.g. 39% of all workers in Denmark) and rare in the South-East (e.g. 5% in Greece); similarly the under pressure profile. In contrast, the Eurofound profile smooth running is characteristic for some central and south European countries with comparably low income (e.g. Bulgaria 47%). Their poor quality profile is characteristic for South-East Europe (e.g. 54% in Romania) but not for North-West Europe (e.g. 5% in Finland). Certainly, this uneven distribution of work quality across Europe will influence potential profiles obtained as it may generate characteristic profiles for work in certain economic regions, thereby enabling a European perspective, for example for European social policy. When it comes to the national point of view, however, profiles based on national representative samples are more appropriate to reasonably reflect the target group of interest.
Relation of profiles to the work-related outcomes
By linking profile assignment to external outcomes, the distinctness of the profiles was confirmed due to observable differences across all of them. For all four work-related outcomes, significant differences were found between the profiles. PQ group membership was associated with adversity with respect to all work-related outcomes considered in this study, indicating a genuine risk group for continued work and employment. At the other extreme, there is no occupational profile with exclusively favourable outcome manifestations. According to their ratings, the HF are markedly physically fit accomplishers, but medium level scorings for mental health and work-privacy-conflict indicate that this group does not constitute an overall favourable group. This is in line with the findings presented by Eurofound for the equivalent HF profile [14]. The large SR profile indicates a group with high resources: good mental health and second best in all other outcomes. Again, this profile finds its equivalent in the Eurofound profile with same name, but with poor work-life balance [14]. The profile with lowest work-privacy-conflict identified in this study is the RM which also exhibits good mental health. This is a group with a favourable social work environment and markedly lowest work intensity. However, the mean score for physical health is low, which may be assumed to substantially reflect working-life-long physical work exposure. It is notable that the two groups with low mean scores for the social work environment indicators show most adverse scores for mental health, work-privacy-conflict and also work ability. Unfortunately, Eurofound does not differentiate between mental and physical health. This, in turn, was done by Vanroelen et al. [13], displaying the profile main effects for emotional problems and musculoskeletal complaints. Yet, the profiles follow widely the same ranking for both outcomes with the low stress profile exhibiting the most and the high stress the least favourable effects.
When observing time effects, a mean deterioration of physical health over seven years was found. With respect to mental health, an unexpected dip in the 2014 assessment was observed for most profiles which may partly be attributed to the fact that the wave 2 assessment was predominantly performed in late winter. Work ability deteriorated strongly, especially for the groups with initially high work ability. With respect to work-privacy-conflict all groups converged over time. The profile*time interactions were significant for all outcomes except physical health, but always with low effect size. Thus, in this study no indications for profile membership were found which at one point in time clearly predict change of work-related outcomes in the future. However, it cannot be ruled out that this will be the case in future assessments when the workers’ age increases and thereby also risks for health and work ability. Limitation of space and aims of this publication do not allow for a deeper discussion of the profile*time interactions with respect to the work-related outcomes.
What has not been considered in the analyses yet is the frequency and the preventive potential of the occupational change in the sample. Some workers may find themselves in job lock or stuck at work situations [39] not being able to modify their adverse work situation. Others, however, might benefit from occupational change, which comprises change of profession, employer or tasks. Bujacz et al. [8] have found systematic change over a six-year period mainly from more demanding to lesser demanding clusters characterised by psychosocial work exposure. Membership in supportive clusters was found to be fairly stable.
Translation into policy needs
The originality and strength of the person-centred, typological approach in occupational epidemiology primarily lies in its preoccupation with the social distribution of work exposures and its structuring [13]. This study identified common ways in which older employees in Germany characterise their perception of work. These common perceptions are reflected by the five profiles identified in this study, which now may be considered typical for the older socially insured workers in this country. This profile pattern has some contextual overlap with that of other studies [13, 14]. Yet, it also shows individual features which may in part be explained by the fact that - in contrast to further studies - a rather homogenous sample has been investigated, namely socially insured older workers in one country. The findings also show that profile membership is reflected by substantial and plausible differences on four work-related outcomes. Thus, it may be assumed that “it matters” whether an individual is more likely to fit into the one or the other profile.
Numerous surveys in Germany have been used to identify poor working conditions and their associations with health and wellbeing [40, 41]. In contrast to that, and for the first time in Germany, the findings from this study allow to postulate that working groups exposed to distinctly poor-quality or high-quality work-situations exist, and that these can be quantified and characterised. Accordingly, one third of all older workers in Germany work under predominantly poor working conditions, the PQ and SnM, clearly associated with poor work-related outcomes. At the other extreme, another third of workers finds itself in profiles indicating rather favourable overall working situations (SR and HF), mostly positively related to health, work ability and work-privacy-conflict. Finally, there is one group which covers the remaining 30% of older workers, the RM: Here, both adverse and favourable exposures are found and work-related outcomes indicate both substantial resources and risks.
The knowledge of the five profiles identified may help to understand the older working population to whom the transition from work to retirement becomes increasingly apparent. This transition is not only complex, but also a process encompassing the notion of leaving or staying in employment [4]. In times of extending working lives, the interest of policy is usually focused on leaving, i.e. the timing of retirement. Yet, the findings in this study imply that for some groups of older workers the staying may constitute substantial personal challenges. This specifically applies to those 20% of all older workers who belong to the PQ profile, and possibly the SnM, an additional 14%. On the other hand, being aware of the complexity of retirement, one should not assume that membership to a favourable profile such as SR, HF, or RM automatically indicates late retirement, as in Germany an early exit culture still prevails [42].
Strengths and limitations
According to the findings in this study, about one third of all workers assessed in this study belongs to one of the two clusters with predominantly less favourable work exposures, the PQ and the SnM. In line with this is the observation that the PQ scores worst on all work-related outcomes assessed from wave 1 throughout wave 3, in most instances followed by the SnM. For a number of reasons this does not necessarily mean that all workers in these profiles were dissatisfied with their work or did not find it meaningful. Firstly, it needs to be considered that when presenting the manifestation of the indices across profiles as in Fig. 1 z-transformed scores are shown. Z-scores are relative scores, indicative of the ranking within the total sample and not of a defined score or cut-off known to represent adverse exposure. However, the accumulation of low z-scores for work quality indices in a profile (such as in PQ) is still indicative of clearly less favourable exposure than that in other profiles. Secondly, while the work-health associations identified for the profiles are mostly in the expected direction and causality seems plausible, we did not investigate this in our study, even if the study is of longitudinal nature. In fact, a reciprocal relationship and even feedback loops are also likely to contribute to the findings: the worker’s health may positively or negatively affect their work, which in return may affect the individual worker i.e. with respect to attitudes, behaviours and health, with the potential for further feedback loops [43]. Finally, some workers may not perceive “poor” work as “poor”, possibly because their work represents what they have been experiencing throughout their working life and which has shaped their expectations. When interpreting the results, one has to keep in mind that the work indices assessed are measured at a cross-section in time, yet, they are assumed to reflect chronic work exposure of relatively enduring character. The stability of the work exposures and thereby profile allocation needs to be assessed in further studies.
Methodically, the stochastic regression imputation chosen to replace missing values mainly on the earnings indicator may have several advantages over more convenient methods like mean imputation. Nonetheless, it is still limited to being a single imputation method and the standard errors of the imputed values tend to be underestimated because an uncertainty component is not included in the prediction of the missing values [27]. Unfortunately, the use of a single data set was necessary for analyses with two statistic programs which prevented application of more advanced imputation methods like multiple imputation. In sum, the chosen imputation method served as a pragmatic trade-off between maximum possible reduction of potential bias due to missing values and technical aspects of the analysis process.
The LPA conducted here is advantageous over deterministic clustering techniques, because posterior profile assignment is probability-based and not based on e.g. distance measures [44]. Here, the degree of dissimilarity of each individual with the identified classes is quantified because the highest probability of belonging to a certain cluster seldom equals 1.0. This represents a more appropriate localisation of the individual work exposure relative to all other workers in the sample under study. Nonetheless, one has to keep in mind that this advantage is obscured by the posterior profile assignment for practicability reasons.
As for the outcome measures chosen to validate the identified profiles, parametric tests were applied to detect differences over the course of three assessments. In ANOVA violations of the underlying assumptions can compromise analyses which is why the outcome distributions were inspected beforehand. Slight deviations from normality were evident but of acceptable extent. Moreover, the respective group sizes were large enough to yield results that can be considered reliable, as the ANOVA is robust when assumptions are violated but minimum group sizes are ensured [45].