This study was conducted in order to explore the citizen’s attitudes towards genetic testing within the Visegrad countries and to investigate the differences between these countries. When assessing the overall opinions, the results obtained in the Dutch survey conducted in 2010 can be used as reference since the questions were identical [25]. However, it is worth emphasising that the methodology of the survey was somewhat different and the eight-year difference in timing should also be considered.
While 10% of Dutch citizens reported having a genetic test for themselves, their partner or their child(ren) in 2010 [25], only 7.4% of Polish respondents replied the same answer in our survey. Because more than 10% of the citizens of the other three countries replied the same, it can be assumed that Poland lags behind in the usage of genetic testing, especially compared to the 21.1% Czech response.
Generally, the mean scores were more favourable for the Visegrad countries in 2018 than that of the Dutch respondents in 2010. While the mean score of answers to the ‘I am curious about my genetic testing’ question for the Dutch was 3.17 (SD = 1.25) [25], all the Visegrad countries had a mean above 3.34. Furthermore, the Dutch mean regarding the question ‘Genetic tests deprive people’s freedom to live as they want’ was 3.02 (SD = 1.20) [25], while the highest, and thus the worst mean was only 2.87 for the Slovak citizens. However, there were a few questions in which the 2010 Dutch response was more accepting than of the citizens of some of the Visegrad countries: regarding the ‘To prevent diseases I would like to know my risk of getting certain disease’ statement the mean score for the Polish was lower than that of the Dutch (mean = 3.46; SD =1.25); for the ‘Genetic tests should be available for those who want to use them’ question both Slovak and Polish means were lower (Dutch mean = 3.66; SD = 1.27), and for the ‘More money should be available for the development of genetic tests’ statement only the Hungarian mean score was higher than the Dutch (mean = 3.61; SD =1.07). Overall, it can be stated that the citizens of the Visegrad countries have a relatively more accepting view on genetic testing; however, there are some specific issues where it is more rejective compared to the 2010 Dutch survey. The possibility that these differences became even higher in 2018 cannot be excluded considering the eight-year gap.
In accordance with the literature, sex, age and education level significantly impacted the opinion on both the personal benefits and the usage of genetic testing [16,17,18]. However, while previous studies have shown that younger people have a more positive opinion towards genetic testing [39, 40], similar to the Dutch study [10], in our research the opposite results have been found. Although, it is worth highlighting that after the multivariate regression model was applied in the Dutch study the significance diminished, which goes in line with the very low beta values detected in our analysis.
The finding that those who had previous genetic test within the nuclear family (self, partner, children) have a more negative opinion on both the personal benefits and the usage of genetic testing could be explained with the hype around genetic testing [41]. After the Human Genome Project started there were high hopes that genomic technology will revolutionize healthcare as a whole. However, it is now clear that only in specific conditions does the genetic testing provide utility for the patients [2, 42]. Therefore, it is possible, that those who are familiar with genetic testing via personal experience realize the limitations of this approach, thus, have a more realistic opinion compared to the general population. Similarly, having a genetic test within the nuclear family (self, partner, children) could result in a better understanding how genetics impact the individual, which could lead to firmer belief in genetic determinism.
As expected from one of the Dutch studies [10], being religious resulted in a more negative opinion on both the personal benefits and the usage of genetic testing. This could be attributed to the notion that genetic testing raises moral and ethical questions which could be in conflict with some religious worldviews [24]. Finally, it is worth mentioning that we could not find any reasonable explanation in the literature why those being married believed more in genetic determinism. A possible answer could be that the level of education of the spouse might have influenced the attitude of the responder as well.
Previous surveys have already demonstrated that when comparing the citizens' attitude of various countries on the topic of genomic testing and genomic technology a noteworthy difference can be observed [12, 26]. However, in such cases it was unclear how the characteristics of the respondents might have influenced the results. By considering various confounding effects, it could be seen in our study that significant differences in opinions do exist between the citizens of the four countries. However, it is unclear what explanation could be given.
The study had many limitations worth highlighting. First, as indicated previously, due to the nature of ecological studies we could only identify and describe the differences, but not the reasons why do these differences exist. Second, citizens above the age of 65 were not involved in the analyses because the companies conducting the surveys did not include them in their database. Since higher age is associated with a more rejective attitude towards genetic testing [39, 40], the overall accepting opinion could be biased by this shortcoming. In the Dutch study which served as reference to the interpretation of our results in 2002 28%, while in 2010 36% was 65 years old and above. In addition, the level of education strongly increased in the Dutch population and reached a level which could only be observed in case of Hungarians among the populations of the V4 countries. However, this is most probably because the Hungarians with higher education were overrepresented in our study. Thus, it is also possible that the education level for the other three countries were also not representative.
Third, although the results of the confirmatory factor analysis regarding the four translations were close to the recommended thresholds, nearly none of these met the established criteria [35,36,37]. Because the original Dutch studies did not conduct such analysis [10, 25], it is unsure if this is a limitation of the instrument or if the four translations were inadequate. Fourth, the questionnaire used in our study does not differentiate the various types of genetic testing, nor takes the used circumstances into account. Thus, it is unclear what elements of genetic testing does the respondents agree or disagree with. Finally, the questions used in our analyses only focused on a small area that can be relevant on determining the citizens attitudes. Topics that are deemed by experts as important, such as the potential impact on discrimination and unequal access to such technology, were not addressed in this study [43, 44].
However, besides these limitations, there are several strengths that are also worth mentioning. First and foremost, the study had a large sample size from all four countries which was representative not only by age and sex but the number of residents living in the settlement and the regions were also considered. Thus, surveys in all the four countries could be deemed as comprehensive at a national level. Second, the questions adapted were proven to be reliable in the Dutch studies [6, 10, 25, 32], and with the strong internal consistency we can assume that this same reliability is present in our study as well. Finally, by including sex, age, education level, marital status, religiousness, and having a genetic test in the past as confounding factors, these as possible factors could be excluded from explaining the differences between the four countries.