Lee I, Shiroma E, Lobelo F, Puska P, Blair S, Katzmarzyk P. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.
Article
Google Scholar
Rosenberger ME, Buman MP, Haskell WL, McConnell MV, Carstensen LL. 24 hours of sleep, sedentary behavior, and physical activity with nine wearable devices. Med Sci Sports Exerc. 2016;48(3):457.
Article
Google Scholar
Matthews CE, Keadle SK, Troiano RP, Kahle L, Koster A, Brychta R, et al. Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults–3. Am J Clin Nutr. 2016;104(5):1424–32.
Article
CAS
Google Scholar
Stamatakis E, Ekelund U, Wareham NJ. Temporal trends in physical activity in England: the health survey for England 1991 to 2004. Prev Med. 2007;45.
Article
Google Scholar
Oliver M, Doherty AR, Kelly P, Badland HM, Mavoa S, Shepherd J, et al. Utility of passive photography to objectively audit built environment features of active transport journeys: an observational study. Int J Health Geogr. 2013;12:20.
Article
Google Scholar
Archer E, Pavela G, Lavie C. The inadmissibility of what we eat in America and NHANES dietary data in nutrition and obesity research and the scientific formulation of national dietary guidelines. Mayo Clin Proc. 2015;90(7):911–26.
Article
Google Scholar
Archer E, Hand G, Blair S. Validity of US nutritional surveillance: National Health and nutrition examination survey caloric energy intake data, 1971–2010. PLoS One. 2013;8(10):e76632.
Article
CAS
Google Scholar
Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sport Exerc. 2008;40.
Doherty AR, Kelly P, Kerr J, Marshall S, Oliver M, Badland H, et al. Using wearable cameras to categorise type and context of accelerometer-identified episodes of physical activity. Int J Behav Nutr Phys Act. 2013 Feb;10(1):22.
Article
Google Scholar
Gemming L, Doherty A, Kelly P, Utter J, Ni Mhurchu C. Feasibility of a SenseCam-assisted 24-h recall to reduce under-reporting of energy intake. Eur J Clin Nutr. 2013;67(10):1095–9.
Article
CAS
Google Scholar
Kerr J, Marshall SJ, Godbole S, Chen J, Legge A, Doherty AR, et al. Using the SenseCam to improve classifications of sedentary behavior in free-living settings. Am J Prev Med. 2013;44(3):290–6.
Article
Google Scholar
Brønd JC, Andersen LB, Arvidsson D. Generating ActiGraph counts from raw acceleration recorded by an alternative monitor. Med Sci Sports Exerc. 2017;49(11):2351–60.
Article
Google Scholar
Doherty A, Jackson D, Hammerla N, Olivier P, Granat M, White T, et al. Large scale population assessment of physical activity using wrist worn accelerometers: the UK biobank study. PLoS One. 2017;12(2).
Article
Google Scholar
Matthews CE, Keadle SK, Sampson J, Lyden K, Bowles HR, Moore SC, et al. Validation of a previous-day recall measure of active and sedentary behaviors. Med Sci Sports Exerc. 2013;45(8):1629.
Article
Google Scholar
Welk GJ, Kim Y, Stanfill B, Osthus DA, Calabro AM, Nusser SM, et al. Validity of 24-h physical activity recall: physical activity measurement survey. Med Sci Sports Exerc. 2014;46(10).
Article
Google Scholar
Weissman JP, Wolf J, Mumford K, Contant C, Hwang W, Taylor L, et al. Comparing GPS, log, survey, and accelerometry to measure physical activity. Am J Health Behav. 2106;40(1):123–31.
Google Scholar
Bassett David R, Troiano Richard P, Mcclain James J, Wolff Dana L. Accelerometer-based physical activity: Total volume per day and standardized measures. Med Sci Sport Exerc. 2015;47(4):833–8.
Article
CAS
Google Scholar
Dunton GF, Berrigan D, Ballard-Barbash R, Graubard BI, Atienza AA. Environmental influences on exercise intensity and duration in a US time use study. Med Sci Sports Exerc. 2009;41(9):1698–705.
Article
Google Scholar
Ham SA, Kruger J, Tudor-Locke C. Participation by US adults in sports, exercise, and recreational physical activities. J Phys Act Health. 2009;6(1):6–14.
Article
Google Scholar
van der Ploeg HP, Merom D, Chau JY, Bittman M, Trost SG, Bauman AE. Advances in population surveillance for physical activity and sedentary behavior: reliability and validity of time use surveys. Am J Epidemiol. 2010;172(10):1199–206.
Article
Google Scholar
Scheers T, Philippaerts R, Lefevre J. Assessment of physical activity and inactivity in multiple domains of daily life: a comparison between a computerized questionnaire and the SenseWear Armband complemented with an electronic diary. Int J Behav Nutr Phys Act. 2012/06/14. 2012;9:71.
Article
Google Scholar
Deyaert J, Harms T, Weenas D, Gershuny J, Glorieux I. Attaching metabolic expenditures to standard occupational classification systems: perspectives from time-use research. BMC Public Health. 2017;17(1).
Bureau of Labor Statistics. American Time Use Survey (ATUS).
Multinational Time Use Study (MTUS). Available from: https://www.timeuse.org/mtus
Harms T, Gershuny J. Time budgets and time use; 2009. (RatSWD Working Paper 65). Available from. https://doi.org/10.2139/ssrn.1447888.
Book
Google Scholar
Robinson JP, Harms TA. Time use research: recent developments. In: International encyclopedia of the Social & Behavioral Sciences: Elsevier; 2015. p. 383–97.
Bauman A, Ainsworth BE, Bull F, Craig CL, Hagströmer M, Sallis JF, et al. Progress and pitfalls in the use of the international physical activity questionnaire (IPAQ) for adult physical activity surveillance. J Phys Act Heal 2009 Sep [cited 2017];6(s1):S5–S8.
Article
Google Scholar
Lee PH, Macfarlane DJ, Lam TH, Stewart SM. Validity of the international physical activity questionnaire short form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act. 2011;8(1):115.
Article
Google Scholar
Kelly P, Thomas E, Doherty A, Harms T, Burke Ó, Gershuny J, et al. Developing a method to test the validity of 24 hour time use diaries using wearable cameras: a feasibility pilot. PLoS One. 2015;10(12).
Article
Google Scholar
Chau JY, Van Der Ploeg HP, Dunn S, Kurko J, Bauman AE. Validity of the occupational sitting and physical activity questionnaire. Med Sci Sports Exerc. 2012;44(1):118–25.
Article
Google Scholar
Eurostat. Harmonised European time use surveys: 2008 Guidelines. Harmonised European Time Use Surveys: 2008 Guidelines. Luxembourg: Eurostat; 2009. 205 p.
Juster FT, Ono H, Stafford FP. An assessment of alternative measures of time use. Sociol Methodol. 2003;33(1):19–54.
Article
Google Scholar
Tudor-Locke C, Bittman M, Merom D, Bauman A. Patterns of walking for transport and exercise: a novel application of time use data. Int J Behav Nutr Phys Act. 2005;2:5.
Article
Google Scholar
Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, et al. Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am J Epidemiol. 2008;167(7):875–81.
Article
Google Scholar
Pate R, Ross R, Dowda M, Trost S, Sirard J. Validation of a three-day physical activity recall instrument in female youth. Pediatr Exerc Sci. 2003;15(3):257–65.
Article
Google Scholar
Gershuny J. Too many zeros: a method for estimating long-term time-use from short diaries. Ann Econ Stat D’ÉCONOMIE Stat. 2012:247–70.
Kim Y, Welk GJ. The accuracy of the 24-hour activity recall method for assessing sedentary behavior: the physical activity measurement survey (PAMS) project. J Sport Sci. 2017;35(3):255–61.
Article
Google Scholar
Matthews C, Keadle S, Moore S, Schoeller D, Carroll R, Troiano R, et al. Measurement of active and sedentary behavior in context of large epidemiologic studies. Med Sci Sport Exerc. 2018;50(2):266–76.
Article
Google Scholar
Tudor-Locke C, Washington TL, Ainsworth BE, Troiano RP. Linking the American time use survey (ATUS) and the compendium of physical activities: methods and rationale. J Phys Act Health. 2009;6(3):347–53.
Article
Google Scholar
Gabriel KKP, Morrow JR, Woolsey A-LT. Framework for physical activity as a complex and multidimensional behavior. J Phys Act Health. 2012;9(s1):S11–8.
Article
Google Scholar
Sternfeld B, Goldman-Rosas L. A systematic approach to selecting an appropriate measure of self-reported physical activity or sedentary behavior. J Phys Act Health. 2012;9(s1):S19–28.
Article
Google Scholar
Ainsworth B, Cahalin L, Buman M, Ross R. The current state of physical activity assessment tools. Prog Cardiovasc Dis. 2015;57(4):387–95.
Article
Google Scholar
Dong L, Block G, Mandel S. Activities contributing to Total energy expenditure in the United States: results from the NHAPS study. Int J Behav Nutr Phys Act. 2004;12(1):4.
Article
Google Scholar
Ng SW, Popkin BM. Time use and physical activity: a shift away from movement across the globe. Obes Rev. 2012;13(8):659–80.
Article
CAS
Google Scholar
Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.
Article
Google Scholar
Butte NF, Watson KB, Ridley K, Zakeri IF, Mcmurray RG, Pfeiffer KA, et al. A youth compendium of physical activities: activity codes and metabolic intensities. Med Sci Sports Exerc. 2018;50(2):246.
Article
Google Scholar
Archer E, Shook R, Thomas D, Church T, Katzmarzyk P, Hébert J, et al. 45-year trends in women’s use of time and household management energy expenditure. PLoS One. 2013;8(2):e56620.
Article
CAS
Google Scholar
Archer E, Lavie C, McDonald S, Thomas D, Hébert J, Taverno RS, et al. Maternal inactivity: 45-year trends in mothers’ use of time. Mayo Clin Proc. 2013;88(12):1368–77.
Article
Google Scholar
Espinel P, Chau J, van der Ploeg H, Merom D. Older adults’ time in sedentary, light and moderate intensity activities and correlates: application of Australian time use survey. J Sci Med Sport. 2015;18(2):161–6.
Article
Google Scholar
Tudor-Locke C, Ainsworth BE, Washington TL, Troiano R. Assigning metabolic equivalent values to the 2002 census occupational classification system. J Phys Act Health. 2011;8(4):581–6.
Article
Google Scholar
Ainsworth BE, Haskell WL, Leon AS, Jacobs DR, Montoye HJ, Sallis JF, et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc. 1993;25(1):71–80.
Article
CAS
Google Scholar
Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sport Exerc. 2000;32.
NIH. Metabolic Equivalent of Task Values for Activities in American Time Use Survey and 2002 Census Occupational Classification System [Internet]. Available from: https://epi.grants.cancer.gov/atus-met/met.php
Ainsworth BE. Compendium of physical activities: a second update of codes and MET values. Med Sci Sport Exerc. 2011;2011:43.
Tudor-Locke C, Johnson WD, Katzmarzyk PT. Frequently reported activities by intensity for U.S. adults: the American time use survey (vol 39, pg e13, 2010). Am J Prev Med. 2011;41(2):238.
Article
Google Scholar
Tudor-Locke C, Van Der Ploeg HP, Bowles HR, Bittman M, Fisher K, Merom D, et al. Walking behaviours from the 1965–2003 American heritage time use study (AHTUS). Int J Behav Nutr Phys Act. 2007;4(1):45.
Article
Google Scholar
Tudor-Locke C, Washington TL, Ainsworth BE, Troiano RPLB-T-L. Linking theAmerican time use survey (ATUS) and the compendium of physical activities: methods and rationale. J Phys Act Health. 2009;6.
Article
Google Scholar
Bassett D, P Troiano R, J McClain J, Wolff-Hughes D. Accelerometer-Based Physical Activity: Total Volume per Day and Standardized Measures. Med Sci Sports Exerc. 2014;47.
Article
Google Scholar
(HHS) TUSD of H and HS. 2008 Physical Activity Guidelines for Americans. Available from: https://health.gov/paguidelines/
Archer E, Hand G, Hébert J, Lau E, Wang X, Shook R, et al. Validation of a novel protocol for calculating estimated energy requirements and average daily physical activity ratio for the U.S. population: 2005-2006. Mayo Clin Proc. 2013;88(12):1398–407.
Article
Google Scholar
World Health Organ Tech Rep Ser 894:i-xii. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. 2000.
Dowd K, Szeklicki R, Minetto M, Murphy M, Polito A, Ghigo E, et al. A systematic literature review of reviews on techniques for physical activity measurement in adults: a DEDIPAC study. Int J Behav Nutr Phys Act. 2018;15(1):15.
Article
Google Scholar
Matthews CE, Berrigan D, Fischer B, Gomersall S, Hillreiner A, Kim Y, et al. Previous-day (24-hour) physical activity recalls: a time-use approach for estimating physical activity and sedentary behavior in epidemiologic studies. BMC Public Health. 2018.
J A S, Tudor-Locke C, R a M, G A K, Fitzhugh EC, Harris TB. Classification of occupational activity categories using accelerometry: NHANES 2003-2004. Int J Behav Nutr Phys Act. 2015;12(1):89 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26122724.
Article
Google Scholar
Adams J. Prevalence and socio-demographic correlates of “active transport” in the UK: analysis of the UK time use survey 2005. Prev Med (Baltim). 2010;50(4):199–203.
Article
Google Scholar
Bauman A. The international prevalence study on physical activity: results from 20 countries. Int J Behav Nutr Phys Act. 2009;6.
Article
Google Scholar
Wolff-Hughes D, McClain J, Dodd K, Berrigan D, Troiano R. Number of accelerometer monitoring days needed for stable group-level estimates of activity. Physiol Meas. 2016;37(9):1447.
Article
Google Scholar
Harms T, Gershuny J, Doherty A, Thomas E, Milton K, Foster C. A validation study of the Eurostat harmonised European time use study (HETUS) diary using wearable technology. BMC Public Health. 2018.
Kipnis V, Midthune D, Buckman D, Dodd K, Guenther P, Krebs-Smith S, et al. Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes. Biometrics. 2009;65(4):1003–10.
Article
Google Scholar
Church TS, Thomas DM, Tudor-Locke C, Katzmarzyk PT, Earnest CP, Rodarte RQ, et al. Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS One. 2011;6(5):e19657.
Article
CAS
Google Scholar