WHO. World Malaria Report. Geneva World Health Organization. 2016:2016.
Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin DU, Battle K, Moyes CL, Henry A, Eckhoff PA, Wenger EA, Briët O, Penny MA, Smith TA, Bennett A, Yukich J, Eisele TP, Griffin JT, Fergus CA, Lynch M, Lindgren F, Cohen JM, Murray CLJ, Smith DL, Hay SI, Cibulskis R, Gething PW. The effect of malaria control on plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207–11. https://doi.org/10.1038/nature15535.
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO. World Malaria Report. Geneva. World Health Organization. 2017:2017.
Hemingway J. The role of vector control in stopping the transmission of malaria: threats and opportunities. Phil Trans R Soc B. 2014;369:20130431.
Article
Google Scholar
Ranson H, N'Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.
Article
CAS
Google Scholar
Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, Snell PC, Conway D, Lindsay SW. Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in the Gambia: a randomised controlled trial. Lancet. 2009;374:998–1009.
Article
Google Scholar
WHO. Global plan for insecticide resistance management in malaria vectors. 2012, Available: whqlibdoc.who.int/publications/2012/9789241564472_eng.pdf.
Huho B., O. Briet, A. Seyoum, C. Sikaala, N. Bayoh, J. Gimnig, F. Okumu, D. Diallo, S. Abdulla, T. Smith and G. Killeen. “Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa.” Int J Epidemiol. 201;3, 42(1): 235–247.
Kirby MJ, Green C, Milligan PM, Sismanidis C, Jasseh M, Conway D, Lindsay SW. Risk factors for house-entry by malaria vectors in a rural town and satellite villages in the Gambia. Malar J. 2008a;7:2.
Article
Google Scholar
Lindsay SW, Jawara M, Paine K, Pinder M, Walraven GE, Emerson PM. Changes in house design reduce exposure to malaria mosquitoes. Tropical Med Int Health. 2003;8:512–7.
Article
CAS
Google Scholar
Kirby MJ, West P, Green C, Jasseh M, Lindsay SW. Risk factors for house-entry by culicine mosquitoes in a rural town and satellite villages in the Gambia. Parasite Vectors. 2008b;1:41.
Article
Google Scholar
Bradley J, Rehman AM, Schwabe C, Vargas D, Monti F, Ela C, Riloha M, Kleinschmidt I. Reduced prevalence of malaria infection in children living in houses with window screening or closed eaves on Biko Island, Equatorial Guinea. PLoS One. 2013;8(11).
Atieli H, Menya D, Githeko A, Scott T. House design modifications reduce indoor resting malaria vector densities in rice irrigation scheme area in western Kenya. Malar J. 2009;8:108.
Article
Google Scholar
Ogoma SB, Kannady K, Sikulu M, Chaki PP, Govella NJ, Mukabana WR, Killeen GF. Window screening, ceilings and closed eaves as sustainable ways to control malaria in Dar Es Salaam, Tanzania. Malar J. 2009;8:221.
Article
Google Scholar
Ogoma SB, Lweitoijera DW, Ngonyani H, Furer B, Russell TL, Mukabana WR, Killeen G, Moore SJ. Screening mosquito house entry points as a potential method for integrated control of Endophagic Filariasis, arbovirus and malaria vectors. PLoS Negl Trop Dis. 2010;4(8).
Massebo F, Lindtjørn B. The effect of screening doors and windows on indoor density of Anopheles arabiensis in south-West Ethiopia: a randomized trial. Malar J. 2013;12:319.
Article
Google Scholar
Snetselaar J, Njiru BN, Gachie B, Owigo P, Andriessen R, Glunt K, Osinga J, Mutunga J, Farenhorst M, Knols BG. Eave tubes for malaria control in Africa: prototyping and evaluation against Anopheles gambiae s.S. And Anopheles arabiensis under semi-field conditions in western Kenya. Malar J. 2017;16:276.
Article
Google Scholar
Carter, A. D."Are housing improvements an effective supplemental vector control strategy to reduce malaria transmission? A Systematic Review." Thesis, Georgia State University. 2014.
Lwetoijera DW, Kiware SS, Mageni ZD, Dongus S, Harris C, Devine GJ, Majambere S. A need for better housing to further reduce indoor malaria transmission in areas with high bed net coverage. Parasites and Vectors. 2013;6:57.
Article
Google Scholar
Kirby MJ, Bah P, Jones COH, Kelly AH, Jasseh M, Lindsay SW. Social acceptability and durability of two different house screening interventions against exposure to malaria vectors, plasmodium falciparum infection, and Anemia in children in the Gambia, West Africa. Am J Trop Med Hyg. 2010;83(5):965–72.
Article
Google Scholar
Imbahale SS, Abonyo OK, Aduogo OP, Githure JI, Mukabana WR. Conflict between the need for income and the necessity of controlling endemic malaria. J Ecosystem Ecography. 2013;3:129.
Google Scholar
Mutero C, Mbogo C, Mwangangi J, Imbahale S, Kibe L, Orindi B, Girma M, Njui,A, Lwande W, Affognon H, Gichuki C, Mukabana W. An assessment of participatory integrated vector Management for Malaria Control in Kenya. Environ Health Perspect 2015,Volume 123: 11.
Republic of Kenya/Ministry of Health (2016) Kenya Malaria Indicator Survey 2015. National Malaria Control Programme, Ministry of Health Nairobi, Kenya.
Howard AF, Omlin FX. Abandoning small-scale fish farming in western Kenya leads to higher malaria vector abundance. Acta Trop. 2008;105:67–73.
Article
Google Scholar
Imbahale SS, Paaijmans KP, Mukabana WR, Lammeren R, Githeko AK, Takken W. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J. 2011;10:81.
Article
Google Scholar
Vernède R, van Meer MM, Alpers MP. Smoke as a form of personal protection against mosquitos, a field study in Papua New Guinea. Southeast Asian J Trop Med Public Health. 1994;25(4):771–5.
PubMed
Google Scholar
Paru R, Hii J, Lewis D, Alpers MP. Relative repellency of wood smoke and topical applications of plant products against mosquitoes. Papa and New Guinea Med J. 1995;38(3):215–21.
CAS
Google Scholar
Shanks GD, Hay SI, Omumbo JA, Snow RW. Malaria in Kenya's western highlands. Emerg Infect Dis. 2005;11(9):1425–32.
Article
Google Scholar
Arness MK, Bradshaw RD, Biomndo K, Shanks GD. Epidemiology of highland malaria in western Kenya. East Afr Med J. 2003 May;80(5):253–9.
CAS
PubMed
Google Scholar
Lindsay SW, Emerson PM, Charlwood JD. Reducing malaria transmission by mosquito-proofing homes. Trends Parasitol. 2002;18:510–4.
Article
Google Scholar
Snow WF. Studies on the house-entering habits of mosquitoes in the Gambia, West Africa. Experiments with prefabricated huts with varied wall apertures. Med Vet Entomol. 1987;1:9–21.
Article
CAS
Google Scholar
Pates H, Curtis C. Mosquito behavior and vector control. Annu Rev Entomol. 2005;50:53–70.
Article
CAS
Google Scholar
Wanzirah H, Tusting LS, Arinaitwe E, Katureebe A, Maxwell K, Rek J, et al. Mind the gap. House structure and the risk of malaria in Uganda children. PLoS One. 2015;10:e0117396.
Article
Google Scholar
Liu JX, Bousema T, Zelman B, Gesase S, Hashim R, Maxwell C, Chandramohan D, Gosling R. Is housing quality associated with malaria incidence among young children and mosquito vector numbers? Evidence from Korogwe, Tanzania. PLoS One. 2013;9(2).
Anderson L., D. Simpson, and M. Stephens. Durable housing improvements to fight malaria transmission: can we learn new strategies from past experience?” Healthy Housing Initiative- White Paper No.1. Habitat for Humanity International. Global programs department, Atlanta 2013.
Tsuang A, Lines J, Hanson K. Which family members use the best nets? An analysis of the condition of mosquito nets and their distribution within households in Tanzania. Malar J. 2010;9:211.
Article
Google Scholar
Tusting LS, Willey B, Lucas H, Thompson J, Kafy HT, Smith R, Lindsay SW. Socioeconomic development as an intervention against malaria: a systematic review and meta analysis. Lancet. 2013;382:963–72.
Article
Google Scholar
Biran A, Smith L, Lines J, Ensink J, Cameron M. Smoke and malaria: are interventions to reduce exposure to indoor air pollution likely to increase exposure to mosquitoes? Trans R Soc Trop Med Hyg. 2007;101:1065–71.
Article
Google Scholar
Griffing SM, Tauil PL, Udhayakumar V, Silva-Flannery L. A historical perspective on malaria control in Brazil. Mem Inst Oswaldo Cruz, Rio de Janeiro. 2015;110(6):701–18.
Article
CAS
Google Scholar
RBM. The strategic framework for malaria social and behaviour change communication 2018-2030. In: Roll Back malaria partnership; 2018.
Google Scholar
Ng’ang’a, P.N., Shililu, J., Jayasinghe, G., Kimani, V., Kabutha, C., Kabuage, L., Kabiru, E., Githure, J., Mutero, C. Malaria vector control practices in an irrigated rice agroecosystem in Central Kenya and implications for malaria control. Malar J (2008). 7: 146.
WHO. Manual on environmental management for mosquito control, with special emphasis on malaria vectors. WHO offset publication No. 66. Geneva: World Health Organisation, 1982.
Singh J, Tham AS. Case history on malaria vector control through the application of environmental management in Malaysia. Geneva: World Health Organisation; 1988.
Google Scholar
Njie M, Dilger E, Lindsay SW, Kirby MJ. Importance of eaves to house entry by anopheline, but not culicine, mosquitoes. J Med Entomol. 2009;46:505–10.
Article
Google Scholar