The aim of the current study was to investigate the criterion validity and test-retest reliability of the SED-GIH question using activPAL3 micro as the criterion measure. The main findings were a moderate correlation (r = 0.31, CI = 0.20–0.41) and a poor agreement (weighted Kappa 0.12, CI = 0.05–0.18) between SED-GIH and activPAL derived sitting time (activPAL-SIT). Significant differences in activPAL-SIT existed between individuals in the different categorical answer options of SED-GIH. The reliability of SED-GIH was excellent (ICC = 0.86, CI = 0.79–0.90) with a substantial agreement (weighted Kappa 0.77, CI = 0.68–0.86).
The TASST framework was developed to gain an overview of tools used for assessing sedentary behaviour, and categorized them into four domains: type of assessment, recall period, temporal unit and assessment period. According to TASST, SED-GIH is defined as a single item direct measure of sitting, for an unanchored recall period with a temporal unit of a day, and an non-defined assessment period (taxon 1.1.1/2.4/3.1/4.5) [14]. The moderate correlation between sitting time measured objectively with activPAL and sitting time measured subjectively using the SED-GIH question is in line with other questionnaires. IPAQ (International Physical Activity Questionnaire, (TASST taxon 1.1.1/2.2/3.1/4.3) contains three specific sitting items, which have been validated using activPAL. For sitting time during weekdays, including transportation, correlation was low (r = 0.16, ICC = 0.15) and non-significant (p = 0.2) between the two methods. Here, IPAQ underestimated sitting time by 2.2 h per day [19]. PAST (Past-day Adults Sedentary Time, TASST taxon 1.2.2.1/2.1/3.1/4.5) and PAST-U (modified version of PAST, TASST taxon 1.2.2.1/2.1/3.1/4.5) asks participants to report their time spent sitting or lying during the previous day. When using activPAL (version 3) as criterion measure, the validity for PAST was assessed to be r = 0.57 [20], and PAST-U ICC = 0.64 [21]. When Busschaert and co-workers tested the validity of three different questionnaires measuring context-specific sedentary behaviour (TASST taxon 1.2.2.1/2.2/3.1/4.3, 1.2.2.1/NA/NA/NA, 1.2.2.1/2.4/3.1/4.3) they found weak to acceptable validity for adults (r = 0.06–0.52) and older adults (r = 0.38–0.50) [22]. This implies that the SED-GIH has stronger associations with objective sitting than other single item questionnaires, such as IPAQ, when compared to direct measurement. However, these associations are not as strong as the time-specified PAST and PAST-U, which collect information on sitting during the previous day only.
Participants who estimated their sitting as ≤3 h using SED-GIH, all underestimated their sitting time as compared to activPAL-SIT (see Table 3). Furthermore, participants who estimated their sitting as ≥13 h almost all overestimated their sitting time. These results are in line with comparisons between PAST and activPAL (version 3) derived sitting times. PAST underestimated sitting times at low levels of sitting, and overestimated sitting time at high levels of sitting [20]. However, a Bland Altman between IPAQ and activPAL indicated that IPAQ underestimated sitting time by up to 2.2 h per day (during a total week including transportation) [19], and both PAST-U and the three different questionnaires measuring context-specific sedentary behaviour overestimated sedentary time, with activPAL as the criterion measure [21, 22]. Dall and colleagues concluded that most sitting questionnaires underestimate sitting time by 2–4 h per day. Single item questionnaires are more likely to underestimate sitting time, while questionnaires assessing sitting during a sum of sedentary behaviours using a composite of several items tend to overestimate sitting time. Questionnaires assessing sitting during a sum of sedentary behaviours over an unanchored or longer period of time tend to report larger underestimations [14]. According to this study, the reasons for sitting time underestimations by the SED-GIH question can be explained by it being based on a single-item question during an unanchored period of time.
The original seven SED-GIH answer categories were collapsed into five, since there were very few participants choosing “Virtually all day” or “Never”. The intention of including all seven answering options was that “Virtually all day” and “Never” might be easier to relate to instead of < 1 h and > 15 h. They also provide the answer options with some anchorage. When the five categories were analysed, the mean values (displayed in Table 1) of sitting time measured with activPAL did not differ much between the categorical answer options of SED-GIH (varying from 8.7 to 10.3 h per day, mean 9.7 h per day). Thus, the objectively measured average sitting time per day had a narrow distribution, even though the participants subjectively estimated their sitting time with SED-GIH in a wider range. However, the accuracy of SED-GIH changed when only two categories were used (more or less than 10 h of sitting per day). The majority of the participants who rated themselves as sitting for 10 h or more, actually sat for more than 10 h (56.3%). The low sensitivity and specificity of SED-GIH indicates that it would not be useful for identifying hazardous sitters (≥ 10 h per day). Objective measurements may be more useful in detecting sedentary behaviour, possibly in combination with PAST or similar questionnaires. More research is thus needed to develop questionnaires assessing sedentary behaviour and provide better outcomes together with objective methods.
Test-retest reliability of SED-GIH was excellent (ICC = 0.86, CI = 0.79–0.90), which is better than other reliability tested questionnaires. PAST had fair to good reliability (ICC = 0.50), and three different questionnaires measuring context-specific sedentary behaviour had good reliability for adults (ICC = 0.73–0.77) and older adults (ICC = 0.68–0.80) [20, 22]. However, SED-GIH is a single item questionnaire, whereas PAST and the three different questionnaires measuring context-specific sedentary consist of several questions, which can affect test-retest reliability. With a tool consisting of a single item question, it might be easier to answer the same question twice compared to tools consisting of several questions. Thus, SED-GIH has good repeatability and generates reliable answers among older adults. However, it is not known whether SED-GIH can detect changes of sedentary behaviour over time, such as before and after a behavioural change intervention period. This field needs further research.
Limitations to the current study have been observed in the methods and the processing of the data. Participants may have become more conscious about their habits regarding sitting time when they answered the web questionnaire prior to the objective measures, which may have affected their sitting habits during the week of measurement with activPAL. Additionally, the measurement period between answering SED-GIH and wearing the activPAL varied (mean 16 days ±14 days), which may have affected the agreement. One impact on internal validity is the accuracy of the participants’ dedication to fill in the diary log correctly, which can affect the whole dataset. In the validity study, participants were employees with an office-based job, which is not representative of a general population. SED-GIH should be validated in other contexts and with different populations. In the reliability part of the current study, all participants were elderly. This may have an effect on the results since some elderly persons can have reduced memory function compared to younger adults.
Implications
SED-GIH may be useful as a tool when identifying sitting time as a determinant for health risks on a population level, but would not in itself be sufficiently informative for screening for unhealthy sitting habits in primary care. More studies performed on a broader population are needed.