World Health Organisation. Physical activity factsheet: WHO; 2016. Accessed 20 Mar 2017. Available from: http://www.who.int/mediacentre/factsheets/fs385/en/.
Ku PW, Fox KR, McKenna J, Peng TL. Prevalence of leisure-time physical activity in Taiwanese adults: results of four national surveys, 2000-2004. Prev Med. 2006;43(6):454–7.
Article
PubMed
Google Scholar
Khaing Nang EE, Khoo EY, Salim A, Tai ES, Lee J, Van Dam RM. Patterns of physical activity in different domains and implications for intervention in a multi-ethnic Asian population: a cross-sectional study. BMC Public Health. 2010;10:644.
Article
PubMed
PubMed Central
Google Scholar
Sjöström M, Oja P, Hagströmer M, Smith B, Bauman A. Health-enhancing physical activity across European Union countries: the Eurobarometer study. J Public Health. 2006;14:291–300.
Article
Google Scholar
NHS choices. The 10,000 steps challenge UK: NHS choices; 2014. Accessed 20 Mar 2017. Available from: http://www.nhs.uk/Livewell/loseweight/Pages/10000stepschallenge.aspx.
Health Promotion Board. Steps for good Singapore: health promotion board; 2015. Accessed 20 Mar 2017. Available from: https://www.healthhub.sg/programmes/37/nsc.
Tudor-Locke C, Bassett DJ. How many steps/day are enough? Preliminary pedometer indices for public health. Sports medicine (Auckland, NZ). 2004;34(1):1–8.
Article
Google Scholar
Murtagh EM, Nichols L, Mohammed MA, Holder R, Nevill AM, Murphy MH. The effect of walking on risk factors for cardiovascular disease: an updated systematic review and meta-analysis of randomised control trials. Prev Med. 2015;72:34–43.
Article
PubMed
Google Scholar
Kelly P, Kahlmeier S, Gotschi T, Orsini N, Richards J, Roberts N, Scarborough P, Foster C. Systematic review and meta-analysis of reduction in all-cause mortality from walking and cycling and shape of dose response relationship. Int. J. Behav. Nutr. Phys. Act. 2014;11:132.
Article
PubMed
PubMed Central
Google Scholar
Manson JE, Hu FB, Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Speizer FE, Hennekens CH. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med. 1999;341(9):650–8.
Article
CAS
PubMed
Google Scholar
Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet (London, England). 2012;380(9838):219–29.
Article
Google Scholar
Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int. J. Behav. Nutr. Phys. Act. 2008;5:56.
Article
PubMed
PubMed Central
Google Scholar
Ramachandran A, Snehalatha C, Shetty AS, Nanditha A. Trends in prevalence of diabetes in Asian countries. World J Diabetes. 2012;3(6):110–7.
Article
PubMed
PubMed Central
Google Scholar
Tudor-Locke C, Rowe DA. Using cadence to study free-living ambulatory behaviour. Sports medicine (Auckland, NZ). 2012;42(5):381–98.
Article
Google Scholar
Abel M, Hannon J, Mullineaux D, Beighle A. Determination of step rate thresholds corresponding to physical activity intensity classifications in adults. J Phys Act Health. 2011;8(1):45–51.
Article
PubMed
Google Scholar
Tudor-Locke C, Brashear MM, Katzmarzyk PT, Johnson WD. Peak stepping cadence in free-living adults: 2005-2006 NHANES. J Phys Act Health. 2012;9(8):1125–9.
Article
PubMed
Google Scholar
Barreira T, Harrington D, Schuna JJ, Tudor-locke C, Katzmarzyk P. Pattern changes in step count accumulation and peak cadence due to a physical activity intervention. J Sci Med Sport. 2015;19:227–31.
Article
PubMed
Google Scholar
Tudor-Locke C, Camhi SM, Leonardi C, Johnson WD, Katzmarzyk PT, Earnest CP, Church TS. Patterns of adult stepping cadence in the 2005-2006 NHANES. Prev Med. 2011;53(3):178–81.
Article
PubMed
Google Scholar
RStudio Team. RStudio. Boston: RStudio Inc.; 2015.
Google Scholar
Choi L, Liu Z, Matthews C, Buchowski M. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports & Exerc. 2011;43(2):357–64.
Article
Google Scholar
Bohannon RW. Number of pedometer-assessed steps taken per day by adults: a descriptive meta-analysis. Phys Ther. 2007;87(12):1642–50.
Article
PubMed
Google Scholar
Schuna JM, Johnson WD, Tudor-Locke C. Adult self-reported and objectively monitored physical activity and sedentary behavior: NHANES 2005–2006. Int. J. Behav. Nutr. Phys. Act. 2013;10:126.
Article
PubMed
PubMed Central
Google Scholar
Ayabe M, Aoki J, Kumahara H, Tanaka H. Assessment of minute-by-minute stepping rate of physical activity under free-living conditions in female adults. Gait & posture. 2011;34(2):292–4.
Article
Google Scholar
Celis-Morales CA, Ghouri N, Bailey ME, Sattar N, Gill JM. Should physical activity recommendations be ethnicity-specific? Evidence from a cross-sectional study of south Asian and European men. PLoS One. 2013;8(12):e82568.
Article
PubMed
PubMed Central
Google Scholar
Wen CP, Wai JP, Tsai MK, Yang YC, Cheng TY, Lee MC, Chan HT, Tsao CK, Tsai SP, Wu X. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet (London, England). 2011;378(9798):1244–53.
Article
Google Scholar
Woodcock J, Franco OH, Orsini N, Roberts I. Non-vigorous physical activity and all-cause mortality: systematic review and meta-analysis of cohort studies. Int J Epidemiol. 2011;40(1):121–38.
Article
PubMed
Google Scholar
Weed M. Evidence for physical activity guidelines as a public health intervention: efficacy, effectiveness, and harm – a critical policy sciences approach. Health Psych Behav Med. 2016;4:56–69.
Article
Google Scholar
Win AM, Yen LW, Tan KH, Lim RB, Chia KS, Mueller-Riemenschneider F. Patterns of physical activity and sedentary behavior in a representative sample of a multi-ethnic south-east Asian population: a cross-sectional study. BMC Public Health. 2015;15:318.
Article
PubMed
PubMed Central
Google Scholar
Yates T, Henson J, Edwardson C, Bodicoat DH, Davies MJ, Khunti K. Differences in levels of physical activity between white and south Asian populations within a healthcare setting: impact of measurement type in a cross-sectional study. BMJ Open. 2015;5(7):e006181.
Article
PubMed
PubMed Central
Google Scholar
Pampel FC, Krueger PM, Denney JT. Socioeconomic disparities in health behaviors. Annu Rev Sociol. 2010;36:349–70.
Article
PubMed
PubMed Central
Google Scholar
Chen M, Wu Y, Narimatsu H, Li X, Wang C, Luo J, Zhao G, Chen Z, Xu W. Socioeconomic status and physical activity in Chinese adults: a report from a community-based survey in Jiaxing, China. PLoS One. 2015;10(7):e0132918.
Article
PubMed
PubMed Central
Google Scholar