In the first year after the implementation of the universal GBS screening program in Taiwan, the GBS prevalence in pregnant women who delivered naturally was 19.58%, which was not significantly different from the 20% prevalence rate before implementation [5]. In Taiwan, the GBS prevalence in pregnant women was approximately 20%, slightly higher than the global average of 17.9%. The GBS prevalence in Taiwan was similar to the 19.7% and 19.0% prevalence rates in the US and Europe, respectively, which were lower than the 22.4% prevalence rate in Africa, and higher than the 11.1%, 13.3%, and 16.7% prevalence rates in South Asia, Western Pacific, and Eastern Mediterranean, respectively [21]. In addition to factors such as age, obesity, number of childbirth, genetics, and socioeconomic status, maternal GBS prevalence was also affected by ethnicity [22,23,24]. The purpose of the universal screening program was to detect pregnant GBS-carrying women early and to provide prompt preventive treatment. However, it did not directly help decrease the GBS prevalence in pregnant women.
In addition, the morbidity rate for early-onset infections caused by GBS decreased from the original 0.1% to 0.02%, with a decrease of as high as 80%, indicating that after the implementation of the universal screening policy in Taiwan, the rate for neonatal early-onset infection showed a significant downward trend due to the early detection of pregnant women carrying GBS and the intervention of preventive treatment. In addition to the implementation of the universal maternal GBS screening program in the United States where a decrease of as much as 78% in the rate of neonatal early-onset infection caused by GBS was observed [10], Taiwan’s experience further verified the contribution of the universal screening policy to the decreased risk for neonatal early-onset GBS-related diseases.
With regard to factors affecting the morbidity for neonatal early-onset GBS-related diseases, only three remaining factors, including positive GBS screening result (OR = 2.84), CCI (OR = 2.45), and preterm birth (OR = 4.81) significantly affected the morbidity for neonatal early-onset GBS-related diseases after the implementation of the universal GBS screening program in Taiwan. With regard to PROM, the adjusted OR was 3.42 (p > 0.05), which was lower than the original value of 3.98 (p < 0.05), suggesting that the impact of PROM on the morbidity for neonatal early-onset GBS-related diseases became insignificant after controlling for other factors.
Preterm birth increases the chances of neonatal early-onset GBS-related diseases, and this correlation has been suggested in many works of literature [9,10,11,12, 19, 24, 25]. Thus, how to decrease preterm birth will be an important issue. The continuous tracking of the condition of pregnant GBS-infected women and antibiotic treatment can reduce the chances of preterm birth [26]. For women who have preterm birth before 37 weeks, including those who do not have prenatal GBS culture, whose culture results are unavailable, or whose culture results are undetermined, intrapartum antibiotic prophylaxis is still needed. As recommended by pharmacokinetic and microbiological evidence, for women who are admitted to the hospital due to precipitate labor and for those who delivered in > 4 h, a complete course of antibiotic treatment cannot be given; however, a minimum of two-hour antibiotic treatment can still provide protection for newborns [21].
Because Taiwan implements National Health Insurance, people’s accessibility to medical care has increased geographically and economically. Therefore, disease morbidity of newborns does not change due to different degrees of urbanization in the area of residence or socioeconomic status (maternal education level, monthly salary). In addition, for women with high-risk pregnancy (advanced maternal age, overweight infant), the Taiwan National Health Insurance will pay for the cost of cesarean section as long as the doctor evaluates and determines that medical necessity requirements are met. This study already excluded women who had a cesarean section, and thus, the effects of maternal age and infant birth weight on the morbidity for neonatal early-onset GBS-related diseases were not statistically significant (p > 0.05). In addition, under the Taiwan National Health Insurance, hospitals must pass the hospital accreditation for approval as a National Health Insurance-appointed medical institution. This general criterion also promotes the medical care of each medical institution to reach a certain quality, and therefore the neonatal morbidity rate did not vary due to types of medical institutions.
With regard to the fact that prophylactic antibiotic treatment in pregnant women still cannot completely eliminate the occurrence of neonatal early-onset GBS-related disease, further analysis of this study found that in pregnant GBS-positive women who underwent antibiotic treatment (n = 23,826), there was still a 0.04% chance for their newborns to acquire early-onset GBS-related diseases. Similarly, the literature also pointed out that even for women who were not in the high-risk group for GBS during pregnancy, had a negative GBS screening result, or were administered antibiotics, their newborns can still be infected with GBS-related diseases [27,28,29].
In addition, the method of antibiotic administration, the time of use, and the appearance of resistant strains also affect its effectiveness in preventing neonatal GBS-related diseases. Intravenous injection is the only recommended route of administration [10] because it allows the drug to maintain at a high concentration in the amniotic fluid. Pregnant women who were tested positive for GBS were administered intrapartum antibiotic prophylaxis (IAP). A continuous 48-h prophylactic antibiotic treatment produces the greatest protective effects in newborns. However, drug resistance is also a factor limiting its effectiveness due to the widespread use of antibiotics. Up to 15% of the GBS strains are resistant to clindamycin, and 7% –25% of the strains are resistant to erythromycin [30]. The issue of drug resistance also results in unsatisfactory implementation effectiveness of the preventive antibiotic treatment.
Correct screening tools are also an influencing factor that cannot be ignored. A study evaluating the GBS guideline proposed by the US Centers for Disease Control and Prevention suggested that among full-term newborns who were infected with GBS, 61.4% were born to mothers with a negative GBS screening result [31, 32]. Further analysis of this study also found that the newborns of women who had a negative GBS screening result still had a 0.01% infection rate (n = 123,912). Thus, reducing the false-negative rate of the screening tool and adjusting the screening procedure to increase correctness will be key factors for effective prevention of GBS-related diseases. With regard to the current level of medical care, the methods for neonatal risk assessment and disease prevention can still be improved. Therefore, the development of more sophisticated diagnostic techniques to distinguish high-risk newborns will help clinicians form appropriate treatment guidelines and preventive measures, thereby reducing the chances of neonatal early-onset GBS-related diseases [33, 34].
Based on Taiwan’s experience, the implementation of the universal GBS screening program can reduce the morbidity for neonatal early-onset GBS disease. In addition, under the National Health Insurance System, the effects of socioeconomic factors (degree of urbanization of the residential area, maternal education level, and monthly salary) and high-risk pregnancy (advanced maternal age, overweigh infant) on the neonatal early-onset GBS diseases are weakened because of increased public accessibility to medical resources and the general improvement of medical care quality. However, maternal and neonatal pathological conditions (CCI score, preterm birth) remain to be the key factors affecting neonatal early-onset GBS diseases. If a sound health management plan can be provided to pregnant women to decrease the preterm birth rate, PROM, and CCI score and a universal screening program can be implemented, then the morbidity rate for neonatal early-onset GBS-related diseases can be reduced.
With regard to the limitation of this study, the universal GBS screening policy was implemented in Taiwan since April 15, 2012, and during the course of this study, the data from the National Health Insurance database were only available through the end of 2013. Thus, only the data from April 15, 2012 to December 31, 2013 were analyzed. In addition, the data in this study were from secondary databases, and partial data of the newborns and mothers were lacking because databases could not be combined. This type of situation was excluded from calculation during analysis.