The objective of this prospective educational intervention study was to determine whether osteoporosis knowledge, osteoporosis self-efficacy, fall self-efficacy, and dietary calcium and vitamin D intake would improve after osteoporosis education and exercise programs.
The principle findings of this study served to demonstrate that when the osteoporosis knowledge score improved from 9.1 to 11.2, the osteoporosis self-efficacy score improved from 7.4 to 11.5, and the fall self-efficacy improved from 893 to 1041.8. In addition, patterns, habits and customs of dietary intake in the individual participants were adjusted to improve mean amounts of dietary calcium and vitamin D intake.
Interventional studies have consistently proven that osteoporosis knowledge, osteoporosis self-efficacy and fall self-efficacy levels all improved after the intervention [25, 26]. Evenson AL et al. [27] have observed the knowledge and awareness of material ramifications of a diagnosis of osteoporosis, health beliefs, self-efficacy, dietary calcium, and vitamin D intakes as measures of preventive behaviors with 153 young adults by using pre- and post- questionnaires including osteoporosis knowledge test, health belief scale, self-efficacy scale, and three-day food records. They reported that knowledge and self-efficacy of osteoporosis were improved after educational intervention. Olsen CF et al. [28] have performed a randomized clinical trial after exercise program and education on the fear of falling among 89 women with osteoporosis and documented history of vertebral fracture diagnosis. They found a significantly better result for the intervention group compared with the conservative group both at three months (p = 0.004) and twelve months (p < 0.001) follow-up. The size of the effect, at three months, was nominal (0.4). However, the effect was moderate (0.7) at twelve months. In this study, we also confirmed effectiveness of education and exercise intervention in community dwelling participants.
Although educational intervention for osteoporosis are frequently focused on BMD and anti-osteoporosis treatments [27, 29, 30], intervention studies regarding changes in life style such as dietary pattern are seldom reported.
Education programs including nutritional education may be effective in increasing dietary calcium and vitamin D intake of community-dwelling populations. Zhao, et al. [31] conducted a prospective randomized control study after nutritional education and dietary intervention for osteoporosis with 90 middle-age and elderly osteoporosis patients. After educational intervention, they found that daily intake of protein, vitamin, calcium, and dietary fiber of the intervention group were significantly higher than those of the control group. Lv and Brown [30] conducted a prospective educational intervention study for increasing intake of calcium rich foods.
After three months of follow-up, they found that the experimental group significantly increased calcium and vitamin D intake at post-test and such increase was maintained at the time of the follow-up. In this prospective study, we found that education can change food intake patterns, habits and customs, to favor and include food items with high content of calcium and vitamin D. After education intervention, dietary calcium intake increased from 446.8 mg. to 537.4 mg., and vitamin D intake increased from 8.3 μg. to 11.7 μg., consistent with previous findings revealed by previous studies. However, improvement of calcium and vitamin D intake after the intervention study was not sufficient to meet recommendations of calcium and vitamin D intake. These findings are generalized issues in the Korean population. According to the Korean National Health and Nutrition Examination Survey database, mean calcium intake and serum 25 (OH)D level were 485 mg./day and 48.1 nmol./L, respectively in Korean people [32].
Therefore, to improve calcium and vitamin D intake in community dwelling participants, nationwide countermeasures including calcium and vitamin D supplements may be both advisable and necessary.
This study has some limitations. First, the education level and old age of participants made it difficult for some to understand the effects of osteoporosis knowledge or follow the physical training.
Second, although all participants were provided exercise programs by a physical trainer in one-hour sessions three times weekly, it may not be sufficient to achieve the goal of intervention. Although we could not monitor during the whole period of exercise program, we confirmed the effects of the program without satiable recognition of participants’ compliance.
Third, there is no control group in this study and it may be difficult to deduce concrete conclusions about efficacy and impact. Despite these limitations, we hope our results serve as a basis for estimating the positive, long-term effects after intervention, such as increased awareness as to the importance of exercise and education, in other studies.
Fourth, this study could not measure prevalence of osteoporosis and fractures due to limitations of the study design. However, we can confirm improvement of osteoporosis knowledge and self-efficacy and these improvements may have resulted in preventable osteoporosis and related fractures. In addition, the three month study periods in this study could not able to confirm clinically significant effects such as reducing incidence of fall and/or fracture incidence. Gillespie et al. [33] performed systemic review to assess effect of interventional study such as education including knowledge of osteoporosis, exercise, and nutrient support and improvement awareness, exercise, and using 159 trials with 79,193 participants. They found that exercise programs aimed at reducing falls appear to, in turn, reduce the incidence of osteoporosis-related fractures. Fracture liaison service (which consists of education, screening test for osteoporosis, and pharmacological treatment) is proven to prevent second osteoporotic fractures [34, 35]. In fracture liaison service, patient’s education includes improving awareness, exercise, and calcium and vitamin D rich food intake is essential programs [34, 36]. Therefore, we think that improved awareness regarding importance of exercise, comprehension of osteoporosis as a pathology, and calcium- and vitamin D-rich food intake in community dwelling participants could induce positive changes in lifestyle, in turn serving to produce decreasing incidents of falls and/or other osteoporotic-related fractures.
However, to confirm a clinically significant effect, longer follow-up study is necessary to further demonstrate a cause-and-effect relationship between improvement of awareness and positive and therapeutic changes in life style, and reducing incidents of falling and consequential osteoporotic-related fractures in community dwellings which house an elderly population. Further research will be necessary to identify the relationship between change of self-efficacy and a diminution in fracture rates.
Finally, although calcium and vitamin D intake increased after intervention, the documented increases were insufficient vis-a-vis the recommended intake. In conclusion, follow-up study is felt to be both advisable and necessary to confirm the long-term clinical significance of effects after intervention.