Wang Z, Hao G, Wang X, Chen Z, Zhang L, Guo M, Tian Y, Shao L, Zhu M. Current prevalence rates of overweight, obesity, central obesity, and related cardiovascular risk factors that clustered among middle-aged population of China. Zhonghua Liu Xing Bing Xue Za Zhi. 2014;35(4):354–8.
PubMed
Google Scholar
Andegiorgish AK, Wang J, Zhang X, Liu X, Zhu H. Prevalence of overweight, obesity, and associated risk factors among school children and adolescents in Tianjin, China. Eur J Pediatr. 2012;171(4):697–703.
Article
PubMed
Google Scholar
Dankel SJ, Loenneke JP, Loprinzi PD. The impact of overweight/obesity duration on the association between physical activity and cardiovascular disease risk: an application of the “fat but fit” paradigm. Int J Cardiol. 2015;201:88–9.
Article
PubMed
Google Scholar
Roberts VHJ, Frias AE, Grove KL. Impact of Maternal Obesity on Fetal Programming of Cardiovascular Disease. Physiology. 2015;30(3):224–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SY, Chang HJ, Sung J, Kim KJ, Shin S, Cho IJ, Shim CY, Hong GR, Chung N. The Impact of Obesity on Subclinical Coronary Atherosclerosis According to the Risk of Cardiovascular Disease. Obesity. 2014;22(7):1762–8.
Article
PubMed
Google Scholar
Yu DH, Huang JF, Hu DS, Chen JC, Cao J, Li JX, Gu DF. Association Between Prehypertension and Clustering of Cardiovascular Disease Risk Factors Among Chinese Adults. J Cardiovasc Pharm. 2009;53(5):388–400.
Article
CAS
Google Scholar
Murakami Y, Okamura T, Nakamura K, Miura K, Ueshima H: The clustering of cardiovascular disease risk factors and their impacts on annual medical expenditure in Japan: community-based cost analysis using Gamma regression models. BMJ Open. 2013;3(3). doi:10.1136/bmjopen-2012-002234
Bennasar-Veny M, Lopez-Gonzalez AA, Tauler P, Cespedes ML, Vicente-Herrero T, Yanez A, Tomas-Salva M, Aguilo A. Body Adiposity Index and Cardiovascular Health Risk Factors in Caucasians: A Comparison with the Body Mass Index and Others. Plos One. 2013;8(5):e63999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park SH, Choi SJ, Lee KS, Park HY. Waist Circumference and Waist-to-Height Ratio as Predictors of Cardiovascular Disease Risk in Korean Adults. Circ J. 2009;73(9):1643–50.
Article
CAS
PubMed
Google Scholar
Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr Res Rev. 2010;23(2):247–69.
Article
PubMed
Google Scholar
Lam BCC, Koh GCH, Chen C, Wong MTK, Fallows SJ. Comparison of Body Mass Index (BMI), Body Adiposity Index (BAI), Waist Circumference (WC), Waist-To-Hip Ratio (WHR) and Waist-To-Height Ratio (WHtR) as Predictors of Cardiovascular Disease Risk Factors in an Adult Population in Singapore. Plos One. 2015;10(4):e0122985.
Article
PubMed
PubMed Central
Google Scholar
Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, Xiang AH, Watanabe RM. A Better Index of Body Adiposity. Obesity. 2011;19(5):1083–9.
Article
PubMed
PubMed Central
Google Scholar
Zeng Q, He Y, Dong SY, Zhao XL, Chen ZH, Song ZY, Chang G, Yang F, Wang YJ. Optimal cut-off values of BMI, waist circumference and waist: height ratio for defining obesity in Chinese adults. Brit J Nutr. 2014;112(10):1735–44.
Article
CAS
PubMed
Google Scholar
Mbanya VN, Kengne AP, Mbanya JC, Akhtar H. Body mass index, waist circumference, hip circumference, waist-hip-ratio and waist-height-ratio: Which is the better discriminator of prevalent screen-detected diabetes in a Cameroonian population? Diabetes Res Clin Pr. 2015;108(1):23–30.
Article
CAS
Google Scholar
Gao B, Xu QT, Li YB. Dynamic Change and Analysis of Driving Factors of Carbon Emissions from Traffic and Transportation Energy Consumption in Jilin Province. Appl Mech Mater. 2014;472:851–5.
Article
CAS
Google Scholar
Yip GWK, Li AM, So HK, Choi KC, Leung LCK, Fong NC, Lee KW, Li SPS, Wong SN, Sung RYT. Oscillometric 24-h ambulatory blood pressure reference values in Hong Kong Chinese children and adolescents. J Hypertens. 2014;32(3):606–19.
Article
CAS
PubMed
Google Scholar
Gu DF, Gupta A, Muntner P, Hu SS, Duan XF, Chen JC, Reynolds RF, Whelton PK, He J. Prevalence of cardiovascular disease risk factor clustering among the adult population of china - Results from the International Collaborative Study of Cardiovascular Disease in Asia (InterAsia). Circulation. 2005;112(5):658–65.
Article
PubMed
Google Scholar
Gao BX, Zhang LX, Wang HY. D CNSCK: Clustering of Major Cardiovascular Risk Factors and the Association with Unhealthy Lifestyles in the Chinese Adult Population. Plos One. 2013;8(6):e66780.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu YH, Yu Q, Wang SB, Shi JP, Xu ZQ, Zhang QQ, Fu YL, Qi Y, Liu JW, Fu R, et al. Zinc Finger Protein 259 (ZNF259) Polymorphisms are Associated with the Risk of Metabolic Syndrome in a Han Chinese Population. Clin Lab. 2015;61(5–6):615–21.
CAS
PubMed
Google Scholar
Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith Jr SC. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5.
Article
CAS
PubMed
Google Scholar
Dong XL, Liu Y, Yang J, Sun Y, Chen L. Efficiency of anthropometric indicators of obesity for identifying cardiovascular risk factors in a Chinese population. Postgrad Med J. 2011;87(1026):251–6.
Article
PubMed
Google Scholar
Chen FY, Xue YQ, Tan MT, Chen PY. Efficient statistical tests to compare Youden index: accounting for contingency correlation. Stat Med. 2015;34(9):1560–76.
Article
PubMed
Google Scholar
Cai L, Liu AP, Zhang YM, Wang PY. Waist-to-Height Ratio and Cardiovascular Risk Factors among Chinese Adults in Beijing. Plos One. 2013;8(7):e69298.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012;13(3):275–86.
Article
CAS
PubMed
Google Scholar
Hsieh SD, Muto T. The superiority of waist-to-height ratio as an anthropometric index to evaluate clustering of coronary risk factors among non-obese men and women. Prev Med. 2005;40(2):216–20.
Article
PubMed
Google Scholar
Li CY, Ford ES, Zhao GX, Kahn HS, Mokdad AH. Waist-to-thigh ratio and diabetes among US adults: The Third National Health and Nutrition Examination Survey. Diabetes Res Clin Pr. 2010;89(1):79–87.
Article
Google Scholar
Hsieh SD, Yoshinaga H, Muto T. Waist-to-height ratio, a simple and practical index for assessing central fat distribution and metabolic risk in Japanese men and women. Int J Obesity. 2003;27(5):610–6.
Article
CAS
Google Scholar
Ashwell M, Gibson S. Waist to Height Ratio Is a Simple and Effective Obesity Screening Tool for Cardiovascular Risk Factors: Analysis of Data from the British National Diet and Nutrition Survey of Adults Aged 19–64 Years. Obes Facts. 2009;2(2):97–103.
Article
PubMed
Google Scholar
Tseng CH, Chong CK, Chan TT, Bai CH, You SL, Chiou HY, Su TC, Chen CJ. Optimal anthropometric factor cutoffs for hyperglycemia, hypertension and dyslipidemia for the Taiwanese population. Atherosclerosis. 2010;210(2):585–9.
Article
CAS
PubMed
Google Scholar
Ho SY, Lam TH, Janus ED, Fact HKCR. Waist to stature ratio is more strongly associated with cardiovascular risk factors than other simple anthropometric indices. Ann Epidemiol. 2003;13(10):683–91.
Article
PubMed
Google Scholar
Haun DR, Pitanga FJG, Lessa I. Waist-Height Ratio Compared to Other Indicators of Obesity as Predictosr of High Coronary Risk. Rev Assoc Med Bras. 2009;55(6):705–11.
Article
PubMed
Google Scholar
Hadaegh F, Zabetian A, Harati H, Azizi F. Waist/height ratio as a better predictor of type 2 diabetes compared to body mass index in tehranian adult men - A 3.6-year prospective study. Exp Clin Endocr Diab. 2006;114(6):310–5.
Article
CAS
Google Scholar
Lee CMY, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol. 2008;61(7):646–53.
Article
PubMed
Google Scholar
Zhou BF. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci. 2002;15(1):83–96.
PubMed
Google Scholar
Pua YH, Ong PH. Anthropometric indices as screening tools for cardiovascular risk factors in Singaporean women. Asia Pac J Clin Nutr. 2005;14(1):74–9.
PubMed
Google Scholar
Ito H, Nakasuga K, Ohshima A, Maruyama T, Kaji Y, Harada M, Fukunaga M, Jingu S, Sakamoto M. Detection of cardiovascular risk factors by indices of obesity obtained from anthropometry and dual-energy X-ray absorptiometry in Japanese individuals. Int J Obesity. 2003;27(2):232–7.
Article
CAS
Google Scholar