Strong WB, Malina RM, Blimkie CJ, Daniels SR, Dishman RK, Gutin B, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146:732–7.
Article
PubMed
Google Scholar
Landry BW, Driscoll SW. Physical activity in children and adolescents. PM R. 2012;4:826–32.
Article
PubMed
Google Scholar
Cooper AR, Goodman A, Page AS, Sherar LB, Esliger DW, van Sluijs E, et al. Objectively measured physical activity and sedentary time in youth: the International children’s accelerometry database (ICAD). Int J Behav Nutr Phys Act. 2015;12:113.
Article
PubMed
PubMed Central
Google Scholar
Spittaels H, Van Cauwenberghe E, Verbestel V, De Meester F, Van Dyck D, Verloigne M, et al. Objectively measured sedentary time and physical activity time across the lifespan: a cross-sectional study in four age groups. Int J Behav Nutr Act. 2012;9:149.
Article
Google Scholar
Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35:725–40.
Article
PubMed
Google Scholar
WHO. Global Recommendations on Physical Activity for Health. Geneva: World Health Organization; 2010.
Ekelund U, Tomkinson GR, Armstrong N. What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br J Sports Med. 2011;45:859–65.
Article
PubMed
Google Scholar
Konstabel K, Veidebaum T, Verbestel V, Moreno LA, Bammann K, Tornaitis M. Objectively measured physical activity in European children: the IDEFICS study. Int J Obes. 2014;38:S135–43.
Article
Google Scholar
Kettner S, Kobel S, Fischbach N, Drenowatz C, Dreyhaupy J, Wirt T. Objectively determined physical activity levels of primary school children in south-west Germany. BMC Public Health. 2013;13:895.
Article
PubMed
PubMed Central
Google Scholar
Laguna M, Ruiz JR, Gallardo C, Garcia-Pastor T, Lara MT, Aznar S. Obesity and physical activity patterns in children and adolescents. J Paediatr Child Health. 2013;49:942–9.
Article
PubMed
Google Scholar
Sigmund E, Sigmundová D, Šnoblová R, Madarásová GA. Acti’Trainer-determined segmented moderate-to-vigorous physical activity patterns among normal-weight and overweight-to-obese Czech schoolchildren. Eur J Pediatr. 2014;173:321–9.
Article
PubMed
PubMed Central
Google Scholar
Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian children and youth: Accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011;22:1.
Google Scholar
Steele RM, van Sluijs EMF, Cassidy A, Griffin SJ, Ekelund U. Targeting sedentary time or moderate- and vigorous-intensity activity: independent relations with adiposity in a population-based sample of 10-y-old British children. Am J Clin Nutr. 2009;90:1185–92.
Article
CAS
PubMed
Google Scholar
Troiano RP, Berrigan D, Dodd KW, Mȃsse LC, Tilert T, McDowell M. Physical Activity in the United States Measured by Accelerometer. Med Sci Sports Exerc. 2008;40:181–8.
Article
PubMed
Google Scholar
Verloigne M, Van Lippevelde W, Maes L, Yildirim M, Chinapaw M, Manios Y, et al. Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 European countries using accelerometers: an observational study within the ENERGY-project. Int J Behav Nutr Phys Act. 2012;9:34.
Article
PubMed
PubMed Central
Google Scholar
Ortega BF, Konstabel K, Pasquali E, Ruiz JR, Hurtig-Wennlöf A, Mäestu J et al. Objectively measured physical activity and sedentary time during childhood, adolescence and young adulthood: a cohort study. PloS ONE. 2013. doi: 10.1371/journal.pone.0060871.
Cain KL, Sallis JF, Conway TL, Van Dyck T, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10:437–50.
PubMed
Google Scholar
Nilsson A, Andersen LB, Ommundsen Y, Froberg K, Sardinha LB, Piehl-Aulin K, et al. Correlates of objectively assessed physical activity and sedentary time in children: a cross-sectional study (The European Youth Heart Study). BMC Public Health. 2009;9:322.
Article
PubMed
PubMed Central
Google Scholar
Basterfield L, Reilly JK, Pearce MS, Parkinson KN, Adamson AJ, Reilly JJ, et al. Longitudinal associations between sports participation, body composition and physical activity from childhood to adolescence. J Sci Med Sport. 2015;18:178–82.
Article
PubMed
PubMed Central
Google Scholar
Deforche B, De Bourdeaudhuij I, D’hondt E, Cardon G. Objectively measured physical activity, physical activity related personality and body mass index in 6- to 10-yr-old children: a cross-sectional study. Int J Behav Nutr Phys Act. 2009;6:25.
Article
PubMed
PubMed Central
Google Scholar
Dorsey KB, Herrin J, Krumholtz HM. Patterns of moderate and vigorous physical activity in obese and overweight compared with non-overweight children. Int J Pediatr Obes. 2011. doi: 10.3109/17477166.2010.490586.
Goran MI. Measurement issues related to studies of childhood obesity: assessment of body composition, body fat distribution, physical activity and food intake. Pediatrics. 1998;101:505–18.
Article
CAS
PubMed
Google Scholar
Jiménez-Pavón D, Fernández-Vázquez A, Alexy U, Pedrero R, Cuenca-García M, Polito A. Association of objectively measured physical activity with body components in European adolescents. BMC Public Health. 2013;13:667.
Article
PubMed
PubMed Central
Google Scholar
Loprinzi PD, Smit E, Cardinal BJ, Crespo C, Brodowicz G, Andersen R. Valid and invalid accelerometry data among children and adolescents: comparison across demographic, behavioural, and biological variables. Am J Health Promot. 2014;28:155–8.
Article
PubMed
Google Scholar
Cole TJ, Bellizi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marfell-Jones M, Olds T, Carter JEL. International standards for anthropometric assessments. ISAK; 2006.
Nagy E, Vicente-Rodriguez G, Manios Y, Beghin L, Iliescu C, Censi L, et al. Harmonization process and reliability assessment of anthropometric measurements in a multicenter study in adolescents. Int J Obes (Lond). 2008;32:S58–65.
Utsal L, Tillmann V, Zilmer M, Mäestu J, Purge P, Jürimäe J, et al. Elevated serum IL-6, IL-8, MCP-1, CRP, and IFN-ɣ levels in 10- to 11-year-old boys with increased BMI. Horm Res Paediatr. 2012;78:31–9.
Article
CAS
PubMed
Google Scholar
Slaughter M, Lohman TG, Boileau RA, Horsvill CA, Stillman RJ, Van Loan MD, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60:709–23.
CAS
PubMed
Google Scholar
Keefer DJ, Caputo JL, Tseh W. Waist-to-height ratio and body mass index as indicators of cardiovascular risk in youth. J Sch Health. 2013;83:805–9.
Article
PubMed
Google Scholar
Chaput JP, Leduc G, Boyer C, Bélanger P, LeBlanc AG, Borghese MM et al. Objectively measured physical activity, sedentary time and sleep duration: independent and combined associations with adiposity in canadian children. Nutrition & Diabetes. 2014. doi: 10.1038/nutd.2014.14.
Lätt E, Mäestu J, Ortega FB, Rääsk T, Jürimäe T, Jürimäe J. Vigorous physical activity rather than sedentary behaviour predicts overweight and obesity in pubertal boys: a 2-year follow-up study. Scand J Public Health. 2015;43:276–82.
Article
PubMed
Google Scholar
Vaitkeviciute D, Lätt E, Mäestu J, Jürimäe T, Saar M, Purge P, et al. Physical activity and bone mineral accrual in boys with different body mass parameters during puberty: a longitudinal study. PLoS One. 2014;9(10):e107759.
Article
PubMed
PubMed Central
Google Scholar
Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity of children. J Sports Sci. 2008;26:1557–65.
Article
PubMed
Google Scholar
Ivuskans A, Mäestu J, Jürimäe T, Lätt E, Purge P, Saar M, et al. Sedentary time has a negative influence on bone mineral parameters in peripubertal boys: a 1-year prospective study. J Bone Miner Metab. 2015;33:85–92.
Article
PubMed
Google Scholar
Hjorth MF, Chaput J-P, Ritz C, Dalskov S-M, Andersen R, Astrup A, et al. Fatness predicts decreased physical activity and increased sedentary time, but not vice versa: support from a longitudinal study in 8- to 11-year-old children. Int J Obes. 2014;38:959–65.
Article
CAS
Google Scholar
Guinhouya BC, Samouda H, de Beaufort C. Level of physical activity among children and adolescents in Europe: a review of physical activity assessed objectively by accelerometry. Public Health. 2013;127:301–11.
Article
CAS
PubMed
Google Scholar
Basterfield L, Pearce MS, Adamson AJ, Frary JK, Parkinson KN, Wright CM. Physical activity, sedentary behaviour, and adiposity in English children. Am J Prev Med. 2012;42:445–51.
Article
PubMed
Google Scholar
Ridgers ND, Timperio A, Cerin E, Salmon J. Compensation of physical activity and sedentary time in primary school children. Med Sci Sports Exerc. 2014;46:1564–9.
Article
PubMed
PubMed Central
Google Scholar
Pereira S, Gomes TN, Borges A, Santos D, Souza M, dos Santos FK, et al. Variability and stability in daily moderate-to-vigorous physical activity among 10 year old children. Int J Environ Res Public Health. 2015;12:9248–63.
Article
PubMed
PubMed Central
Google Scholar
LeBlanc AG, Katzmarzyk PT, Barreira TV, Broyles ST, Chaput J-P, Church TS, et al. Correlates of total sedentary time and screen time in 9–11 year-old children around the world: the international study of childhood obesity, lifestyle and the environment. PLoS One. 2015;10:e129622. doi:10.1371/journal.pone.0129622.
Google Scholar
Moliner-Urdiales D, Ortega FB, Vicente-Rodriguez G, Rey-Lopez JP, Gracia-Marco L, Widhalm K, et al. Association of physical activity with muscular strength and fat-free mass in adolescents: the HELENA study. Eur J Appl Physiol. 2010;109:1119–27.
Article
PubMed
Google Scholar
Aznar S, Naylor PJ, Silva P, Pérez M, Angulo T, Laguna M, et al. Patterns of physical activity in Spanish children: a descriptive pilot study. Child Care Health Dev. 2011;37:322–8.
Article
CAS
PubMed
Google Scholar
Thompson AM, Campagna PD, Durant M, Murphy RJ, Rehman LA, Wadsworth LA. Are overweight students in grade 3,7, and 11 less physically active than their healthy weight counterparts? Int J Pediatr Obes. 2009;4:28–35.
Article
PubMed
Google Scholar
Kwon S, Janz KF, Burns TL, Levy SM. Association between light-intensity physical activity and adiposity in childhood. Pediatr Exerc Sci. 2011;23:218–29.
PubMed
PubMed Central
Google Scholar
Johannsen DL, Knuth ND, Huizenga R, Rood JC, Ravussin E, Hall KD. Metabolic slowing with massive weight loss despite preservation of fat-free mass. J Clin Endocrinol Metab. 2012;97:2489–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lohman TG. Assessment of body composition in children. Pediatr Exerc Sci. 1989;1:19–30.
Google Scholar