WHO, 2010 report. Countdown to 2015, Maternal, Newborn and child survival [Internet]. WHO. 2010 [cited 2015 Mar 13]. Available from: http://www.who.int/pmnch/media/press_materials/fs/fs_mdg4_childmortality/en/. Accessed 12 Feb 2016.
Andersson N, Cockcroft A, Ansari NM, Omer K, Baloch M, Ho Foster A, et al. Evidence-based discussion increases childhood vaccination uptake: a randomised cluster controlled trial of knowledge translation in Pakistan. BMC Int Health Hum Rights. 2009;9 Suppl 1:S8.
Article
PubMed Central
PubMed
Google Scholar
Clark A, Sanderson C. Timing of children’s vaccinations in 45 low-income and middle-income countries: an analysis of survey data. Lancet. 2009;373(9674):1543–9.
Article
PubMed
Google Scholar
WHO. WHO | monitoring system. 2014 global summary Immunization Country Profile [Internet]. [cited 2014 Dec 11]. Available from: http://apps.who.int/immunization_monitoring/globalsummary/countries?countrycriteria%5Bcountry%5D%5B%5D=KEN. Accessed 12 Feb 2016.
WHO. vaccine-preventable diseases: monitoring system 2012 global summary - country profile: Kenya. 2012. http://apps.who.int/immunization_monitoring/globalsummary/countries?countrycriteria%5Bcountry%5D%5B%5D=KEN. Accessed 12 Feb 2016.
Berhane Y, Pickering J. Are reminder stickers effective in reducing immunization dropout rates in Addis Ababa, Ethiopia? J Trop Med Hyg. 1993;96(3):139–45.
CAS
PubMed
Google Scholar
LeBaron CW, Starnes DM, Rask KJ. The impact of reminder-recall interventions on low vaccination coverage in an inner-city population. Arch Pediatr Adolesc Med. 2004;158(3):255–61.
Article
PubMed
Google Scholar
Kamanga A, Moono P, Stresman G, Mharakurwa S, Shiff C. Rural health centres, communities and malaria case detection in Zambia using mobile telephones: a means to detect potential reservoirs of infection in unstable transmission conditions. Malar J. 2010;9(1):96.
Article
PubMed Central
PubMed
Google Scholar
Meankaew P, Kaewkungwal J, Khamsiriwatchara A, Khunthong P, Singhasivanon P, Satimai W. Application of mobile-technology for disease and treatment monitoring of malaria in the “Better Border Healthcare Programme.”. Malar J. 2010;9:237.
Article
PubMed Central
PubMed
Google Scholar
Pop-Eleches C, Thirumurthy H, Habyarimana JP, Zivin JG, Goldstein MP, de Walque D, et al. Mobile phone technologies improve adherence to antiretroviral treatment in a resource-limited setting: a randomized controlled trial of text message reminders. AIDS Lond Engl. 2011;25(6):825–34.
Article
Google Scholar
Tamrat T, Kachnowski S. Special delivery: an analysis of mHealth in maternal and newborn health programs and their outcomes around the world. Matern Child Health J. 2012;16(5):1092–101.
Article
PubMed
Google Scholar
Onono M, Carraher N, Cohen R, Bukusi E, Turan J. Use of personal digital assistants for data collection in a multi-site AIDS stigma study in rural south Nyanza Kenya. Afr Health Sci. 2011;11(3):464–73.
PubMed Central
CAS
PubMed
Google Scholar
Stockwell MS, Kharbanda EO, Martinez RA, Vargas CY, Vawdrey DK, Camargo S. Effect of a text messaging intervention on influenza vaccination in an urban, low-income pediatric and adolescent population: a randomized controlled trial. JAMA. 2012;307(16):1702–8.
Article
CAS
PubMed
Google Scholar
Kharbanda EO, Stockwell MS, Fox HW, Andres R, Lara M, Rickert VI. Text message reminders to promote human papillomavirus vaccination. Vaccine. 2011;29(14):2537–41.
Article
PubMed
Google Scholar
Lester RT, Ritvo P, Mills EJ, Kariri A, Karanja S, Chung MH, et al. Effects of a mobile phone short message service on antiretroviral treatment adherence in Kenya (WelTel Kenya1): a randomised trial. Lancet. 2010;376(9755):1838–45.
Article
PubMed
Google Scholar
Strandbygaard U, Thomsen SF, Backer V. A daily SMS reminder increases adherence to asthma treatment: a three-month follow-up study. Respir Med. 2010;104(2):166–71.
Article
PubMed
Google Scholar
De Tolly K, Skinner D, Nembaware V, Benjamin P. Investigation into the use of short message services to expand uptake of human immunodeficiency virus testing, and whether content and dosage have impact. Telemed J E-Health Off J Am Telemed Assoc. 2012;18(1):18–23.
Article
Google Scholar
Dokkum NF, Koekenbier RH, van den Broek IV, van Bergen JE, Brouwers EE, Fennema JS, et al. Keeping participants on board: increasing uptake by automated respondent reminders in an Internet-based Chlamydia Screening in the Netherlands. BMC Public Health. 2012;12:176.
Article
PubMed Central
PubMed
Google Scholar
Khokhar A. Short text messages (SMS) as a reminder system for making working women from Delhi Breast Aware. Asian Pac J Cancer Prev APJCP. 2009;10(2):319–22.
PubMed
Google Scholar
Lakkis NA, Atfeh AMA, El-Zein YR, Mahmassani DM, Hamadeh GN. The effect of two types of sms-texts on the uptake of screening mammogram: a randomized controlled trial. Prev Med. 2011;53(4–5):325–7.
Article
PubMed
Google Scholar
Guy R, Hocking J, Wand H, Stott S, Ali H, Kaldor J. How Effective Are Short Message Service Reminders at Increasing Clinic Attendance? A Meta-Analysis and Systematic Review. Health Serv Res. 2012;47(2):614–32.
Article
PubMed Central
PubMed
Google Scholar
Hasvold PE, Wootton R. Use of telephone and SMS reminders to improve attendance at hospital appointments: a systematic review. J Telemed Telecare. 2011;17(7):358–64.
Article
PubMed Central
PubMed
Google Scholar
Zurovac D, Sudoi RK, Akhwale WS, Ndiritu M, Hamer DH, Rowe AK, et al. The effect of mobile phone text-message reminders on Kenyan health workers’ adherence to malaria treatment guidelines: a cluster randomised trial. Lancet. 2011;378(9793):795–803.
Article
PubMed Central
PubMed
Google Scholar
Bangure D, Chirundu D, Gombe N, Marufu T, Mandozana G, Tshimanga M, et al. Effectiveness of short message services reminder on childhood immunization programme in Kadoma, Zimbabwe - a randomized controlled trial, 2013. BMC Public Health. 2015;15(1):137.
Article
PubMed Central
PubMed
Google Scholar
Wakadha H, Chandir S, Were EV, Rubin A, Obor D, Levine OS, et al. The feasibility of using mobile-phone based SMS reminders and conditional cash transfers to improve timely immunization in rural Kenya. Vaccine. 2013;31(6):987–93.
Article
PubMed Central
PubMed
Google Scholar
Calverton, Maryland: KNBS and ICF Macro. Kenya National Bureau of Statistics (KNBS) & ICF Macro. Kenya Demographic and Health Survey 2008–09. Calverton, Maryland: KNBS and ICF Macro; 2010.
Google Scholar
Casagrande C, Pike, Smith. Sample Size Estimation - Compare Two Proportions [Internet]. Biometrics 34: 483–486. 1978 [cited 2014 Oct 28]. Available from: http://www2.ccrb.cuhk.edu.hk/stat/proportion/Casagrande.htm. Accessed 12 Feb 2016.
Kariuki AC. Child Immunization Coverage In Kiandutu Slums, Thika District, Kenya. Abstr Postgrad Thesis [Internet]. 2012 May 25 [cited 2014 Oct 27];0(0). Available from: http://ir.jkuat.ac.ke/handle/123456789/1502. Accessed 12 Feb 2016.
Szilagyi PG, Bordley C, Vann JC, Chelminski A, Kraus RM, Margolis PA, et al. Effect of patient reminder/recall interventions on immunization rates: A review. JAMA. 2000;284(14):1820–7.
Article
CAS
PubMed
Google Scholar
Mutua MK, Kimani-Murage E, Ettarh RR. Childhood vaccination in informal urban settlements in Nairobi, Kenya: Who gets vaccinated? BMC Public Health. 2011;11(1):6.
Article
PubMed Central
PubMed
Google Scholar
Omutanyi RM, Mwanthi MA. Determinants of immunisation coverage in Butere-Mumias district. Kenya East Afr Med J. 2005;82(10):501–5.
CAS
PubMed
Google Scholar
Maina LC, Karanja S, Kombich J. Immunization coverage and its determinants among children aged 12–23 months in a peri-urban area of Kenya. Pan Afr Med J. 2013;14:3.
Article
PubMed Central
PubMed
Google Scholar
Ndiritu M, Cowgill KD, Ismail A, Chiphatsi S, Kamau T, Fegan G, et al. Immunization coverage and risk factors for failure to immunize within the Expanded Programme on Immunization in Kenya after introduction of new Haemophilus influenzae type b and hepatitis b virus antigens. BMC Public Health. 2006;6:132.
Article
PubMed Central
PubMed
Google Scholar