Serious PHE concerns were raised in China during the 2003 SARS crisis when it became apparent that hospitals possessed poor emergency preparedness [7]. Even the up-coming 2008 Olympics Game in Beijing and the 5.12 Earthquake Disaster in China have dramatically evoked the awareness of PHE preparedness capacity for hospital. Based on the experience of the SARS pandemic, all hospitals should possess fundamental PHE programs, including preparedness of drugs, equipment, staff, emergency education and staff training [3, 8, 9], coordination with relevant community bodies [10], medical treatment [11], early detection and warning [12], laboratory diagnosis [13–15] and psychological intervention [8]. Since the SARS crisis, the central Chinese government has become more active in the construction of public health system, especially in regards to the medical emergency response system [16]. One major effort involved a 11.4 billion RMB investment in local governments to initiate the construction of regional PHE medical treatment systems [17]. In order to offer some insight into the development of hospital PHE preparedness capacity, this study examined the current status of hospital preparedness in Beijing, Shandong, Guangxi, and Hainan.
Emergency preparedness refers to the processes involved in ensuring an institution: (1) has complied with the preventive measures; (2) is in a state of readiness to contain the effects of a forecasted disastrous event in order to minimize loss of life, injury, and damage to property; (3) can provide rescue, relief, rehabilitation, and other services in the aftermath of the disaster; and (4) holds the capability and resources to continue to sustain its essential functions during a PHE [18]. An emergency preparedness systems primarily composed of emergency plans and organizational structures and lays the foundation for dealing with PHE [19]. Emergency plans establish the protocol for operation under a PHE [16]. For a hospital to mobilize all PHE resources in a short period of time, contingency plans must be issued in advance [9]. In addition, periodic review and updating of emergency plans enhance an institution's emergency response capacity [3]. Our study showed that most hospitals had emergency plans and that these plans focused on infectious diseases control with less attention to preparedness for biological, nuclear radiation and other terrorism attacks. Most of the hospitals had PHE command departments and emergency response teams, however, only 55.3% of hospitals with emergency plans reported they had evaluated and revised their PHE systems. Overall, tertiary hospitals performed better in PHE preparation than secondary hospitals. Meanwhile, no statistical significance was found between hospitals that had admitted SARS patients and those that had not, suggesting that after the SARS crisis, all hospitals raised awareness of emergency plans and implementation.
No hospital or medical system can manage a public health emergency without community networks and public involvement. Therefore, hospitals need to communicate and cooperate with other local health agencies, functioning as a networked public health provider. Problems like lack of communication and coordination between hospital departments and inter-agency networks hinder the availability of resources in a community and limit timely forecasting, public communication and effective regulation of a PHE [10]. Our survey revealed that if a PHE occurred, most of hospitals reported that they could take responsibility for PHE rescue service, transport the medical staff in a timely manner, and provide priority health services to vulnerable populations. Yet, less than one third of respondents attended regulation and revision workshops for emergency plans for infectious epidemic control held by local agencies. This lack of cross-institutional interaction indicated that the ability of hospitals to coordinate with community agencies in preparation for, or in the event of a PHE was generally poor. The survey showed that among all the types of respondents community health center were best able to respond to PHE and the respondents with multiple functions performed better suggesting that communication and coordination between hospitals and community agencies should be strengthened.
Characteristics of a PHE include suddenness and unpredictability [9]. For most hospitals, medicine storage may be in great demand when faced with a sudden increase in patients. Therefore, hospitals must have programs to ensure appropriate levels of emergency supplies including drugs, medical equipment, electricity, water and oxygen, disinfectant, etc. Our survey suggested that most of the hospitals could establish an emergency-drug-supply system for most of the infectious diseases we addressed in the questionnaire except anthrax, brucellosis, botulism toxin poisoning and tetramine poisoning. For most of surveyed hospitals possessed emergency resource reserves, but less than half of them had corresponding drug distribution programs. In addition, hospital capacity was affected by economic level and classification of the hospital, suggesting that the importance of local economic development strengthens hospital ability to provide PHE.
Early detection and identification of a PHE are amongst the most important objectives for prompt and effective public health response to a PHE [12] as well as an essential precondition for selecting appropriate prevention and treatment measures. This study showed that most of the hospitals could regularly train medical staff on how to report and identify suspicious PHE and that the institutions possessed surveillance systems to monitor various aspects of abnormity. Approximately half of the respondents could share surveillance information with the local health authorities. There were statistically significant differences among various classification of the respondents, which demonstrated that after the SARS crisis, hospitals at all levels attached high importance to PHE monitoring and early warning system, however, the capacity was affected by the comprehensive strength of hospital.
PHE happens suddenly and its incidence rate is relatively low, which leaves most medical staff inexperienced and unprepared [11]. Therefore, it is important that hospitals develop emergency plans for PHE treatment programs. In this survey, more than half of respondents showed that their physicians were aware of current PHE protocols. Most hospitals had transfer and treating procedures for infectious diseases, including SARS, influenza, and infectious diarrhea, but less held these procedures for biochemical incidents, leakage of nuclear, and terrorist attacks. Because they are easily used as biological terrorist attacks materials [20], therefore, the prevention and control of these emergencies become very important. Our statistical analyses showed that tertiary-grade, teaching and TCM-WM hospitals performed better on medical treatment procedures preparedness, which might reflect the fact that different types of hospitals have different functions and mission in the community, however, for this capacity, the statistical significance among different regions showed the important role that economic factor plays.
Hospital laboratories not only have the task of clinical diagnosis, but take some responsibility in the surveillance of public health [13, 14]. Therefore, laboratory information plays an important role in detection of the PHE [13, 15]. Detecting PHE related pathogen/etiology can not only confirm clinical diagnosis, but also identify newly emerging infectious diseases [15, 21]. The presence of SARS in China in 2003, and the slow response to its emergence, revealed that China's public health laboratory systems were weak [13]. This survey indicated that many of the hospitals did not report adequate laboratory diagnostic capacities. Although hospital laboratory regulations seemed relatively good, only one-third of hospital laboratories had programs for dealing with suspicious samples collecting, disposal and delivery. Only half of the surveyed hospitals could detect food-borne pathogens, including cholera vibrio, infectious diarrhea, staphylococcus and salmonella. Few hospitals had the capacity to detect the airborne pathogens, including brucella, influenza virus, anthrax bacteria, the H5N1 avian flu virus, plague bacillus, meningitis B virus, SARS virus and other pathogens. Hospitals with admitting SARS patients performed better showed the importance of the experience of SARS disposal.
Prior to the 2003 SARS crisis, China had not experiences a large-scale PHE outbreak for some time. As PHE is a high-risk event with little probability [22], medical staff often possess limited awareness of appropriate response and this contributed to the under-detection of SARS nosocomial infections in 2003 [23]. When PHE occurs, hospital medical staff are usually the first responders and information providers, therefore, education and training are key measures to enhance PHE response [24]. Our survey suggested that after SARS crisis, most hospitals re-evaluated the importance of medical staff training for PHE. The majority of respondents offered training programs to their related medical staff. However, the effectiveness of these training programs needs to be periodically evaluated.
PHE can cause psychological as well as physical problems for the public and medical staff attending to victims [9, 25]. In a public health crisis or emergency, effective risk communication can help people cope, make decisions, and return their lives to normal. Crisis communication, as an important part of a PHE response [8], is key to ensuring complete, transparent and prompt information exchange, and to help hospitals make timely responses and reduce the serious consequences [26]. The results of this survey revealed that medical staff in 12.1% of the hospitals underwent training for evaluation of PHE-related stress and only one-third of respondents had specific programs and spokespersons for communicating critical messages and information to the media, public, governments and stakeholders. These results indicated that most of the surveyed hospitals do not understand the importance of psychological care in a PHE emergency, do not have the resources to deal with it, or presume that it is not their place to do so. Indeed, this capacity evaluation revealed that when a PHE occurred, most hospitals' response plans focused on physiological medical treatment, but health education, psychological counseling, and crisis communication plans were rare. However, for this capacity, the statistical significance among different regions and levels showed the important role that economic factor and comprehensive level play.
Limitations
The study has several limitations. First of all, the surveyed hospitals were restricted to four city and provinces, even some types of hospitals were rare (the number of the surveyed community health center and emergency center was just one, respectively), therefore, the results may not fully represent the PHE capacity of all hospitals in China. Secondly, because of self-report method there may be a respondent reporting bias. The inclusion of official documents from respective Health Bureaus, for example, may have encouraged respondents to complete survey but have also been interpreted as an official assessment of capacity leading some hospital representatives to overestimate PHE capacity. Thirdly, only quantitative data were collected to measure certain capacities of PHE preparedness. Most questions required a "yes" "no" or "unknown" answer which restricts the collated data to these three categories. Finally, this data set is not complete as some hospitals did not respond and others had to be excluded on the basis of incomplete answers or for ineligibility for hospital classification. To a certain extent, this loss of respondents caused a loss of information.