Skip to main content

Table 2 Crude and adjusted hazard ratios (95 % confidence intervals) for overall mortality by the level of relative deprivation in Swedish men and women

From: Relative deprivation and mortality – a longitudinal study in a Swedish population of 4,7 million, 1990–2006

  Reference group defined by
  Living region Age group Occupation Living region, age group and occupation
Male
Crude
Continuous 1109 (1107–1111) p < .0001 1.104 (1.102-1.10 6) p < .0001 1069 (1.066-1072) p < .0001 1.090 (1.087-1.093) p < .0001
Top vs bottom quartile 2503 (2.474-2.532) p < .0001 2.491 (2.467-2.52 7) p < .0001 1414 (1 .392-1 437) p < .0001 1.587 (1 .563-1.612) p < .0001
Model 2   
Continuous 1.101 (1.097-1.105) p < 0001 1.103 (1.099-1.10 7) p < .0001 1.105 (1.101-1 109) p < .0001 1.107 (1.103-11 11) p < .0001
Top vs bottom quartile 1.746 (1.711-1.782) p < .0001 1.821 (1.784-1.85 9) p < .0001 1.693 (1.663-1 724) p < .0001 1.749 (1.719-1779) p < .0001
Model 3   
Continuous 1.079 (1.074-1.085) p < .0001 1.060 (1.074-1.08 5) p < .0001 1.090 (1.084-1 095) p < .0001 1.096 (1.091-1101) p < .0001
Top vs bottom quartile 1.668 (1.627-1.710) p < .0001 1.749 (1.703-1.79 5) p < .0001 1.694 (1.662-1 727) p < .0001 1.751 (1.719-1.784) p < .0001
Female   
Crude   
Continuous 1118 (1.116-1.120) p < .0001 1.098 (1.096-1.100) p < .0001 0.986 (0.982-0.990) p < .0001 1.002 (0.998-1.006) p = .35
Top vs bottom quartile 2.082 (2.041 -2.123) p < .0001 2.051 (2.012-2.092) p < .0001 0.989 0.966-1 012) p = .34 0.958 (0.937-0.980) p = .0002
Model 2   
Continuous 1.031 (1.027-1.036) p < .0001 1.027 (1.022-1.03 2) p < .0001 1.024 (1.019-1.028) p < .0001 1.029 (1.025-1.034) p < .0001
Top vs bottom quartile 1.182 (1.151-1213) p < .0001 1.127 (1.097-1.157) p < .0001 1.133 (1.105-1 162) p < .0001 1.159 (1.130-1.188) p < .0001
Model 3   
Continuous 1.027 (1.019-1.034) p < .0001 1.009 (0.999-1.019) p = .06 1.003 (0.994-1.013) p = .51 1.025 (1.017-1.032) p < .0001
Top vs bottom quartile 1.155 (1.110-1202) p < .0001 0.992 (0.944-1.042) p = .74 1.044 (1.000-1 090) p = .05 1.101 (1.060-1.144) p < .0001