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Abstract 

Background:  As the fifth-largest global mortality risk factor, air pollution has caused nearly one-tenth of the 
world’s deaths, with a death toll of 5 million. 21% of China’s disease burden was related to environmental pollution, 
which is 8% higher than the US. Air pollution will increase the demand and utilisation of Chinese residents’ health 
services, thereby placing a greater economic burden on the government. This study reveals the spatial impact of 
socioeconomic, health, policy and population factors combined with environmental factors on government health 
expenditure.

Methods:  Spearman’s correlation coefficient and GeoDetector were used to identify the determinants of govern-
ment health expenditure. The GeoDetector consist of four detectors: factor detection, interaction detection, risk 
detection, and ecological detection. One hundred sixty-nine prefecture-level cities in China are studied. The data 
sources are the 2017 data from China’s Economic and Social Big Data Research Platform and WorldPOP gridded popu-
lation datasets.

Results:  It is found that industrial sulfur dioxide attributed to government health expenditure, whose q value 
(explanatory power of X to Y) is 0.5283. The interaction between air pollution factors and other factors will increase 
the impact on government health expenditure, the interaction value (explanatory power of × 1∩× 2 to Y) of GDP and 
industrial sulfur dioxide the largest, whose values is 0.9593. There are 96 simple high-risk areas in these 169 areas, but 
there are still high-risk areas affected by multiple factors.

Conclusion:  First, multiple factors influence the spatial heterogeneity of government health expenditure. Second, 
health and socio-economic factors are still the dominant factors leading to increased government health expendi-
ture. Third, air pollution does have an important impact on government health expenditure. As a catalytic factor, 
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Background
As the fifth-largest global mortality risk factor, air pollu-
tion has caused nearly one-tenth of the world’s deaths, 
with a death toll of 5 million [1]. Some scholars have 
shown that every 10,000 tons of industrial sulfur dioxide 
emissions in cities will lead to an increase in lung can-
cer and respiratory disease deaths by 0.035 and 0.030 
per 10,000 people, respectively [2]. The total number of 
premature deaths due to PM2.5-exposure across China 
in 2013 reached 1.37 million [3] and predicted that the 
number of deaths could reach 2.3 million by 2030 [4]. 
The World Health Organization has preliminarily esti-
mated that 21% of China’s disease burden was related to 
environmental pollution, which is 8% higher than that 
of the United States. Moreover, for every 1% increase in 
PM2.5, household health care expenditure will increase 
by 2.942% [5]. This would exacerbate an already-prob-
lematic situation, given that the total medical expenses of 
clinic visits for respiratory diseases in China had already 
reached an estimated 17.2–57 billion Yuan in 2014 [6]. 
As such, it is not difficult to see that air pollution will 
increase the demand and utilisation of Chinese residents’ 
health services, thereby placing a greater economic bur-
den on the government.

Existing studies have proved that environmental, 
socioeconomic, health and other factors are affecting 
government health expenditure to varying degrees. 
First, industrial sulfur dioxide has been considered a 
representative air pollutant by the Asian Development 
Bank in terms of environmental factors. The impact 
of sulfur dioxide (SO2) on human beings has been 
fully proved – long-term inhalation of SO2 can cause 
chronic bronchitis, chronic rhinitis, and other diseases 
[7]. Moreover, adverse weather factors have increased 
the risk of disease – for example, the population is at 
a higher risk of disease in the year of drought, leading 
to increased health expenditure by between 9 and 17% 
of total consumption [8]. Extreme high temperatures 
will increase the number of inpatients and deaths, fur-
ther affecting the government’s health expenditure [9]. 
Second, socioeconomic factors will also have an impact 
upon health expenditure – for example, certain studies 
have shown that with every 1% increase in per capita 
gross domestic product (GDP), health expenditure will 
increase by 0.332% [10]. Furthermore, a 1% increase in 
the level of urbanisation will lead to a 0.378% increase 
in government health expenditure within the affected 

region [11]. In addition, from 2008 to 2017, the age-
ing problem was increasingly serious; at this stage, the 
share of government health expenditure increased from 
5.7 to 7.5% [12, 13]. Third, health factors have a natural 
driving effect on government health expenditure. With 
every 1% increase in the number of beds, the health 
expenditure will increase by 0.264% [11]. In sum, social, 
health, policy, and environmental factors all impact 
government health expenditure to varying degrees.

However, most of the existing literature is limited 
to the impact of a single dimension on government 
health expenditure [14, 15]. Few studies have exam-
ined the influence of air pollution on the government 
health expenditure – particularly from a multi-dimen-
sional perspective via the superimposition of air pol-
lution with social, health, environmental, and policy 
factors. Moreover, research regarding the spatial dif-
ferentiation between air pollution and government 
health expenditure is still relatively nascent. And only 
few articles focused on the spatial difference of health 
expenditure; in China as caused by air pollution, albeit 
at the provincial level [11].

Based on the above hypothesis, this study verified 
spatial heterogeneity of various factors and their cou-
pling on government health expenditure from the 
perspective of multi-dimensional factors. As such, we 
have tried to address the gap in the body of research 
regarding these topics. Thus, our study contributed to 
the existing literature in two aspects. First, we intro-
duced a new method – the GeoDetector – to analyse 
the spatial heterogeneity of government health expend-
iture, and its driving factors, in Chinese prefecture-
level cities. The method’s advantage is that it allows 
for identifying spatial similarities between dependent 
variables and independent variables and even allows 
for detecting an interaction between driving factors. 
The method’s q-value statistics is used to describe the 
extent to which independent variables can account for 
dependent variables and, thus, carries an exact physi-
cal meaning with no linear hypothesis. Second, envi-
ronmental factors were introduced into the model in 
our study. Little attention has been paid to the impact 
of socioeconomic, health, environmental and policy 
factors on governments’ health expenditure in China 
at prefecture-city level. Considering a number of pos-
sible known factors, our study quantified the impact on 
health expenditure of prefecture-level cities in China.

combining with other factors, it will strengthen their impact on government health expenditure. Finally, an integrated 
approach should be adopted to synergisticly governance the high-risk areas with multi-risk factors.

Keywords:  Air pollution, Government health expenditure, GeoDetector
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Methods
Data source and variable screening
Based on previous studies, we constructed a model of the 
impact of air pollution on government health expendi-
ture, using the latter as the dependent variable. Govern-
ment health expenditure concerns governments’ funds 
at all levels for health services, medical security subsi-
dies, health security administration and other health-
related undertakings. Therefore, using government 
health expenditure as a dependent variable can lead to 
a more comprehensive evaluation of the government’s 
investment in health. This study focused on the impact 
of air pollution on government health expenditure, and 
whether the impact of socioeconomic, health and policy 
factors on government health expenditure has changed 
under the superposition of air pollution factors.

According to the “China Statistical Yearbook – 2018”, 
there are 294 prefecture-level cities, and 4 municipalities, 
directly under the purview of the central government. 
Due to a lack of data availability for many of these cit-
ies, the data for 200 prefecture-level cities and 4 munici-
palities were collected finally. The indexed data were 
mainly collected via China’s Economic and Social Big 
Data Research Platform, including GDP, urbanisation 
level (UL), proportion of secondary industry (PSI), the 
number of hospital beds (NHB), the number of hospitals 
(NH), the number of (assistant) doctors (ND), integrating 

medical insurance reform (IURMI), the proportion of 
government health expenditure in GDP (PGH), annual 
average temperature (AT), annual rainfall (AR), indus-
trial sulfur dioxide emissions (ISDE) and population den-
sity (PD) (Table 1). It should be noted that PD was taken 
from WorldPOP gridded population datasets and further 
corrected according to yearbook demographic data. This 
population remote-sensing dataset has been widely used 
to estimate the spatial distribution of the population, as 
can be found in much of the literature [16].

Spearman’s correlation coefficient
Spearman’s correlation coefficient is used to measure the 
dependency of two variables by quantifying the relation-
ship between government health expenditure and related 
influencing factors, thereby determining whether the 
relationship is positive or negative. The method uses a 
monotone equation to evaluate the correlation between 
two statistical variables. In this study, we used a bivariate 
association analysis of bilateral tests. The formula for the 
correlation coefficient, ρ, is as follows:

In this instance, the value ρ represents the associa-
tion between government health expenditure and each 

(1)ρ =
i (xi − x) yi − y

i (xi − x)2 i yi − y
2

Table 1  Descriptions of the indicators for influencing factors

Respects Variable Code Unit Data sources

Dependent variable Government health expenditure GHE 104 Yuan the Statistical Yearbook of the prefecture-level 
cities in 2017

Socioeconomic factors Gross Domestic Product GDP 108 Yuan the Statistical Yearbook of the prefecture-level 
cities in 2017

Urbanisation level UL Percent the Statistical Yearbook of the prefecture-level 
cities in 2017

Proportion of Secondary Industry PSI Percent China Urban Statistical Yearbook – 2018

Health factors Number of Hospital Beds NHB Beds China Urban Statistical Yearbook – 2018

Number of hospitals NH Hospitals the Statistical Yearbook of the prefecture-level 
cities in 2017

Number of doctors ND Person China Urban Statistical Yearbook – 2018

Policy factors Integration of urban and rural residents’ medical 
insurance

IURMI / Human resources and social security websites 
of cities

Proportion of government health care expendi-
ture in GDP

PGH Percent the Statistical Yearbook of the prefecture-level 
cities in 2017

Environmental factors Annual average temperature AT Centigrade the Statistical Yearbook of the prefecture-level 
cities in 2017

Annual rainfall AR Millimeter the Statistical Yearbook of the prefecture-level 
cities in 2017

Industrial sulfur dioxide Emissions ISDE 104 Tons China Urban Statistical Yearbook – 2018

Population factor Population density PD 104 person 
per square 
kilometer

WorldPOP gridded population datasets
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influencing factor – with a range of [− 1, 1]. A positive 
value indicates a positive correlation between two vari-
ables, whereas a negative value indicates a negative cor-
relation. Furthermore, larger values indicate stronger 
correlations. The dependent variable, Y, represents 
government health expenditure, while the independ-
ent variable, X, represents the influencing factor of 
the GeoDetector. We used this method to evaluate the 
dependence of government health expenditure on influ-
encing factors. The tool used to calculate the Spearman 
correlation coefficient was IBM’s SPSS statistics package 
(version 19).

The GeoDetector method (GDM)
In this study, the impact of 11 driving factors on Chi-
nese government health expenditure was measured via 
the GeoDetector. GeoDetector is a spatial statistical 
method for detecting spatial heterogeneity, quantifying 
driving factors and their interactions. Its basic princi-
ple concerns the division of the study area into several 
sub-regions. If the intra-layer variance is less than the 
inter-layer variance, there will be spatial heterogeneity. 
Compared with the traditional linear models, GeoDe-
tector can detect both qualitative and quantitative data 
without considering the assumptions of either linear-
ity or collinearity. However, the detection of continu-
ous data needs to be translated into discrete qualitative 
data – the difficulty lies in the discretisation of con-
tinuous data via the appropriate methods, which deter-
mines the discretisation method and interval range of 
continuous data at different levels. Then, factor detec-
tion and interaction detection were used to calculate 
the q value and interaction q value respectively after 
continuous discretisation data. By comparing the q 
value and interactive q value of different levels of dis-
cretisation methods, the optimal discretisation method 
is finally determined [17].

In this study, Jenks Natural Breaks Classification 
method was used to classify the continuous data into 
discrete categories. According to the interval value, the 
10 numerical influencing factors were classified along 
7 natural breakpoints, while the regions were arranged 
in ascending order. The “1” sub-region is the mini-
mum interval value, whereas the “7” sub-region is the 
maximum interval value. In addition, Sun adopted the 
standard of 10 * 10 km [18]. Further since GeoDetec-
tor software can accommodate 32,767 at most [19], 
we finally adopted 20 * 20 km areas. ArcGIS 10.2 was 
used to delimit the administrative regions of China in 
20 km*20 km areas. Subsequently, information regard-
ing the independent and dependent variables of each 
grid point’s location was removed to make the variable 

information of the grid point. These variables were input 
into GeoDetector.

GeoDetector consists of four detectors: factor detec-
tion, interaction detection, risk detection, and ecologi-
cal detection [19].

(1)	Factor detection is used to detect the degree of expla-
nation of driving factors for spatial differentiation of 
government health expenditure. The use of q allows 
for the value to be measured, whose expression is:

Where: h = 1…; L = the Strata of government health 
expenditure, or impact factor X; Nh and N are layer h 
and the number of units in the whole region, respec-
tively; and σ2 are the variance of government health 
expenditure of layer h and the district, respectively. 
SSW and SST are, respectively, the sum of intra-layer 
variances and the total variance of the whole region. The 
range of q is [0, 1], which means that the influencing 
factor has q% explanatory power concerning govern-
ment health expenditure. The larger the q value is, the 
stronger the impact of the influencing factor on govern-
ment health expenditure will be. The value of q further 
represents the influencing factor x, which explains gov-
ernment health expenditure, y, of 100 × q %.

(2)	Interaction detection evaluates whether the inter-
active effect of different factors × 1 and × 2 will 
increase or decrease the explanatory power of 
government health expenditure. By comparing 
the relationships among q(× 1∩× 2), q(× 1), and 
q(× 2), the interaction value means whether the 
interactive effect of different factors X1 and X2 
will increase or decrease the explanatory power of 
government health expenditure. The interaction 
results can be divided into five categories: nonlin-
ear weaken, single-factor nonlinear weaken, two-
factor enhancement, independence, and nonlinear 
enhancement (See Table  2). The interaction rela-
tionship is as follows:

(3)	For risk detection, according to the classification of 
each influencing factor, the study area is divided 
into multiple sub-regions to identify significant dif-

(2)q = 1−

∑L
h=1Nhσ

2
h

Nσ 2
= 1−

SSW

SST

(3)SSW =

∑L

h=1
Nhσ

2
h , SST = Nσ 2
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ferences in average government health expenditure 
among the sub-regions. The formula is defined as:

Where Y h represents the average value of Y in the sub-
region (h); is the number of samples in the sub-region 
(h), and Var is variance.

(4)	Ecological detection determines whether the two 
influencing factors have significant differences in the 
spatial distribution of government health expendi-
ture and is expressed as:

Where, NX1 and NX2 represent the sample numbers of 
two factors (× 1 and × 2), respectively. SSWX1 and SSWX2 
are the sum of squares of the sub-regions as generated 
by the factors X1 and X2, respectively. L1 and L2 repre-
sent the number of subregions of X1 and X2, respectively. 
The null hypothesis is defined as h0 : SSWX1 = SSWX2. The 
rejected h0 at the significance level α indicates that it is 
statistically significant.

Natural breaks classification method
The GeoDetector requires that continuous data be trans-
formed into discrete data. Jenks Natural Breaks Classifi-
cation was used as the classification method to optimise 
the layout of continuous data into “natural” categories. 
The basic idea of natural breaks (Jenks) is to minimise 
each class’s average deviation from the class’ means, and 
maximise each class’ deviation from the means of the 

(4)tyh=1yh2 =
Y h=1 − Y h=2

[

Var(Y h=1)
ηh=1

+
Var(Y h=2)

ηh=2

]1/2

(5)F =
NX1(NX2 − 1)SSWX1

NX2(NX1 − 1)SSWX2

(6)SSWX =

∑L1

h=1
Nhσ

2
h , SSTX2 =

∑L2

h=1
Nhσ

2
h

other group. In other words, the method seeks to reduce 
the intra-class variance while maximising inter-class vari-
ance [20]. To determine the optimal classification, the 
Jenks Natural Breaks Classification method was used to 
determine the classification threshold. Because medical 
insurance data have been divided into two categories – 
“not implementing integrated medical insurance (1)” and 
“implementing integrated medical insurance (2)” – we 
used ArcGIS 10.2 software to classify the remaining 10 
influencing factors used in this paper into 7 categories 
via the Jenks Natural Breaks Classification method. The 
regions were arranged in ascending order according to 
the interval value; the “1″ sub-area is the minimum inter-
val value, while the “7″ sub-area is the maximum interval 
value – as shown in the Fig. 1.

Results
Spearman analysis
Spearman’s correlation coefficient was used to explore 
the correlation between 12 influencing factors and gov-
ernment health expenditure – including socioeconomic, 
health, policy, environmental and population factors, and 
to detect if the deter relationship between was positive or 
negative. The results showed that 6 of the 12 influencing 
factors were significantly and positively correlated with 
government health expenditure at p < 0.01, with influ-
encing factors registering a p < 0.05. The key factors of 
each dimension are the number of doctors (0.784), GDP 
for socioeconomic factors (0.719), IURMI for policy fac-
tors (0.344), PD for population factors (0.318) and ISDE 
for environmental factors (0.243). The industrial sulfur 
dioxide emission (ISDE) of the environmental factors has 
a significant positive correlation (ρ = 0.243) with govern-
ment health expenditure (See Table 3).

Factor detection analysis
The explanatory power (the q statistics) and the P value 
(as obtained via factor detection) are shown in Table 4. 
The P values of 11 influencing factors were all less than 
0.01, indicating that the 11 influencing factors were sta-
tistically significant. The results showed that the socio-
economic, health, policy, and environmental factors 
of different regions impacted on government health 
expenditure. Among these, the top 5 key factors affect-
ing the explanation of government health expenditure 
were GDP (0.8999), NHB (0.8370), ND (0.8362), NH 
(0.7502) and ISDE (0.5283). First, we further found 
that the explanatory power of GDP, NHB, and ND 
accounted for more than 80%, while NH exceeded 70%, 
indicating that the level of economic development 
and health resources available are key factors affecting 
government health expenditure. Cities with relatively 
developed economies and sufficient health resources 

Table 2  Types of interaction between two factors on dependent 
variables

Description Interaction

q(× 1∩× 2) < Min(q(x), q(× 2)) Nonlinear weakening

Min(q(× 1), q(× 2)) < q(× 1∩× 2) < M
ax(q(× 1), q(× 2))

Single factor nonlinear weakening

q(x1∩x2) > Max(q(× 1), q(× 2)) Two factor enhancement

q(×1∩×2) = q(× 1) + q(× 2) Independence

q(x1∩x2) > q(× 1) + q(× 2) Nonlinear enhancement
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Fig. 1  Spatial distributions of government health expenditure and influencing factors
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contributed more government health expenditure. 
Second, the explanatory power of ISDE was more 
than 50%, indicating that it had a significant impact 
on government health expenditure, raising a warning 
which should not be ignored. The explanatory power of 
UL, PSI, AT, and AR was more than 10%, which indi-
cates that AT and AR are key factors affecting govern-
ment health expenditure. However, IURMI and PGH 
accounted for more than 5%, which, in turn, shows that 
IURMI and PGH will also significantly impact gov-
ernment health expenditure. It is noteworthy that the 
impact is also minimal, indicating that the health poli-
cies of prefecture-level cities in China are fair and rea-
sonable. There is little difference across spatial units 
(See Table 4).

Interaction detection
The P values of 12 influencing factors were all less than 
0.01, indicating statistical significance. Therefore, we 
used the interaction detection to study the explana-
tory power of the factors above on government health 
expenditure. The results showed that there are 66 pairs 
of interaction combinations among the 12 influencing 
factors – that is to say, the explanatory power of interac-
tion between any two factors is stronger than that of any 
single factor. As such, some of these factors are nonlin-
ear enhanced after interaction (expressed as #), which is 
the joint effect of the two factors is stronger than the sum 
of their independent explanatory power. For example, q 
(UL∩ISDE) 0.7543 > q (UL) 0.2119 + q (ISDE) 0.5283. 
However, more interaction combinations between some 
factors have a double-factor relationship (expressed as 
*), which indicates that the joint effect of the two factors 
is stronger than the maximum explanation of the two  
factors when independent of one another. For example, 

Table 3  The influencing factors and Spearman’s rho results of 
government health expenditure

** When the confidence level (double test) is 0.01, the correlation is significant

* When the confidence level (double test) is 0.05, the correlation is significant

Respects Variable ρ

Socioeconomic GDP 0.719**

UL 0.125

PSI −0.136

Health NHB 0.775**

NH 0.632**

ND 0.784**

Policy IURMI 0.344**

PGH 0.046

Environment AT 0.171**

AR 0.111

ISDE 0.243*

Population PD 0.318**

Table 4  The q statistics of driving factors on government health 
expenditure

Respects Variable q

Socioeconomic GDP 0.8999

UL 0.2119

PSI 0.1034

Health NHB 0.8370

NH 0.7502

ND 0.8362

Policy IURMI 0.0277

PGH 0.0494

Environmental AT 0.1537

AR 0.1350

ISDE 0.5283

Population PD 0.2769

Table 5  Interaction detection

a For double factor enhancement, q (X1 ∩ X2) > max (q (× 1), q (× 2))
b For nonlinear enhancement, q (X1 ∩ X2) > q (X1) + q (X2)

GDP UL PSI NHB ND NH IURMI PGH AT AR ISDE PD

GDP 0.8999

UL 0.9212a 0.2119

PSI 0.9464a 0.5826b 0.1034

NHB 0.9628a 0.9629a 0.8616a 0.8370

ND 0.9609a 0.9656a 0.8634a 0.8473a 0.8362

NH 0.946a 0.9033a 0.8584b 0.8639a 0.8668a 0.7502

IURMI 0.9144a 0.2940b 0.1407b 0.8581a 0.8533a 0.8479b 0.0277

PGH 0.9839b 0.6376b 0.4440b 0.9606b 0.9678b 0.8792b 0.1330b 0.0494

AT 0.9282a 0.6373b 0.5627b 0.9154a 0.9138a 0.8996a 0.2245b 0.4657b 0.1537

AR 0.9662a 0.6200b 0.4228b 0.9585a 0.9583a 0.8968b 0.1978b 0.5646b 0.3753b 0.1350

ISDE 0.9593a 0.7543b 0.6296a 0.9022a 0.9075a 0.862a 0.5387a 0.6697b 0.6745a 0.6646b 0.5282

PD 0.9184b 0.5916b 0.5508b 0.8747a 0.8713a 0.8552a 0.4606b 0.7951b 0.6318b 0.6112b 0.8815b 0.2769
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q (ISDE∩GDP) 0.9593 > q (GDP) 0.8999 > q (ISDE) 0.5283 
(See Table 5).

We focused on the interaction between industrial 
sulfur dioxide and other factors. It was found that the 
interaction value of GDP and ISDE is the largest, at q 
(GDP∩ISDE) = 0.9593.

After the interaction between GDP (socioeconomic) 
and NHB and ND (health), and ISDE (environmental), 
their explanatory powers exceeded 90%, which showed 
a double factor enhanced relationship. We also found 
that, after interaction with ISDE, the q statistics of some 
influencing factors increased by more than 50% when 
compared with its own q statistics –including UL and 

PSI (socioeconomic), IURMI, and PGH (policy), and 
AT and AR (environmental) and PD (population). ISDE 
has a significant impact on the improvement of explana-
tory powers when interacted with other factors. In addi-
tion, it is noteworthy that population factors have greatly 
enhanced the driving force of all three health factors 
(double factor enhancement), as shown in Fig. 2.

Risk detection
Through the analysis of risk detection, the average val-
ues of government health expenditure across all the sub-
regions in terms of these 12 influencing factors were 
obtained, and the differences among the sub-regions 

Fig. 2  Original value q and interaction value with industrial sulfur dioxide emission

Fig. 3  The sub-regional government health situation across each factor
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of the influencing factors were pointed out. According 
to the Jenks Natural Breaks Classification method, the 
12 influencing factors were divided into 7 sub-regions 
(in ascending order); the average value of government 
health expenditure, which corresponds to each sub-
region, was calculated. For example, the average value 
of government health expenditure across the seven 
sub-regions in industrial sulfur dioxide was 354,972.2, 
418,945, 384,154.3, 489,720.8, 439,745.7, 553,130.4, and 
3,140,670. The results of the other factors were obtained 
using the same method.

As shown in the statistical chart, the average govern-
ment health expenditure for each sub-region are on 
the rise across GDP (socioeconomic), and NHB, NH, 
ND, IURMI, and ISDE (environmental), as each factor 
increases. By comparing the government health expendi-
ture for each factor within a sub-region, the sub-region 
with the highest government health expenditure was 
regarded as the highest-risk area. It was found that most 
of the high-risk areas of influencing factors are located in 
the seventh sub-region (See Fig. 3).

We sorted the high-risk areas according to their socio-
economic, health, policy and environmental characteristics, 

and summed up the 12 types of high-risk areas – namely, 
socioeconomic high-risk areas (10), environmental high-risk 
areas (12), policy high-risk areas (74), socioeconomic-health 
high-risk areas (1), socioeconomic-environmental high-
risk areas (2), socioeconomic-policy high-risk areas (22), 
socioeconomic-population high-risk areas (1), policy-envi-
ronment high-risk areas (31), socioeconomic-health-policy 
high-risk areas (1), socioeconomic-policy-environment 
high-risk areas (13), socioeconomic-health-policy-environ-
ment high-risk areas (1) and socioeconomic-health-policy-
environment-population high-risk areas (1).

For example, Xiamen belongs to the socioeconomic-
population-high-risk areas category due to the interac-
tion between UL, PSI and PD. Beijing belongs to the 
socioeconomic-health high-risk area, due to the inter-
action of GDP and UL (socioeconomic), and NHB and 
ND. Tangshan is affected by the joint actions of IURMI 
(policy) and ISDE (environmental), categorising it as 
a policy-environmental high-risk area. Chongqing is 
a comprehensive high-risk area with a number of com-
bined factors, such as GDP and PSI (socioeconomic); 
NHB, NH, ND, IURMI, and PGH (health); AT, AR, ISDE 
(environmental), as shown in Fig. 4.

Fig. 4  Distribution of high-risk areas
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Discussion
Based on GeoDetector with spatial consideration, this 
study revealed the spatial impact of environmental fac-
tors alone, and the spatial impact of interaction between 
environmental factors and other ones on government 
health care expenditure. The following main conclusions 
were obtained:

Air pollution is identified to affect government healthcare 
expenditure
The results of factor detection showed that industrial sul-
fur dioxide (environmental) accounted for 52.83% of gov-
ernment health expenditure, indicating that air pollution 
was one of the core factors affecting government health 
expenditure. The relationship between air pollution and 

Fig. 5  Mechanism of air pollution on government health expenditure
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government health expenditure has been previously veri-
fied by a number of scholars and is consistent with our 
findings [21].

Figure 5 shows the impact mechanism of air pollution 
and various factors on government health expenditure. 
Air pollution has caused a wide range of threats to public 
health, resulting in the surge in a number of diseases – 
such as respiratory system, cardiovascular, and cerebro-
vascular diseases – thus promoting public demand for 
increased health services [22–27]. The demand for health 
services needs to be coordinated with the supply thereof 
– resulting in health services’ actual utilisation. Via this 
process, the corresponding improvement in health ser-
vice allocation, the implementation of health policies, or 
the increase of health insurance costs (as caused by the 
actual utilisation of health services) will lead to govern-
ment health expenditure across multiple dimensions. 
First, government health expenditure is increased to 
ensure the greater investment needed to meet residents’ 
growing demand and utilisation of health services – such 
as the investment in health service allocation and health 
insurance payments. In a study of urban workers in Tian-
jin, China, the proportion of hospitalisation expenses 
for respiratory diseases accounts for more than 70% of 
the total. In contrast, the proportion of non-individual, 
out of pocket payments is 68.9% [28], indicating that 
the health insurance system needs to bear a greater por-
tion of the expenses. Moreover, based on the perspective 
of collaborative governance, more government health 
expenditure should be used for health policies dealing 
with the corresponding health problems caused by envi-
ronmental pollution. As for the impact of air pollution on 
health expenditure, scholars have found that the spillover 
effect is as much as half of the total effect, suggesting that 
greater attention should be paid to the spatial correlation 
between adjacent regions [2, 29]. As Chen has indicated, 
if industrial sulfur dioxide emissions in a city increase 
by 10,000 tons, the mortality rates from lung cancer and 
respiratory diseases will grow by 0.217 and 1.543 per ten 
thousand persons, respectively, in neighbouring areas. 
Furthermore, we can also predict its impact on gov-
ernment health expenditure in surrounding areas. The 
reduction of health expenditure caused by inter-regional 
health reforms is eventually offset by air pollution.

Moreover, various factors will have an indirect and 
superimposed influence on this process at various stages. 
For example, there is a consensus that economic growth 
promotes increased demand for health services and this 
study tried to provide baisis for this causal chain com-
plementation. As shown in Fig.  5, public health is an 
important factor in restricting the labour force, and both 
GDP and industrial development need the labour force 
as a support – that is, public health can further affect 

economic development through its impact on the labour 
force. In addition, one cannot ignore the guiding role of 
policy on public behaviour, potentially having a profound 
significance on the environment and the utilisation of 
health services.

The relaxation of environmental regulations can pro-
mote regional economic development over a short 
period, but the deteriorating ecological environment will 
increase the burden of government health expenditure.

As mentioned at the 68th World Health Assembly, in 
order to combat the health problems caused by envi-
ronmental pollution, it is necessary to widely publicise 
healthy sector policies – such as Health in All Policies 
(HiAP) – and cooperate in implementing communication 
strategies at global, national and local levels, suggesting 
greater policy activity and increased levels of govern-
ment health expenditure [30]. Therefore, the governance 
of air pollution, and its accompanying health problems, 
requires cooperation between regions and departments. 
However, although air pollution is easily spread, due to 
the spatial effect thereof, it is feasible and particularly 
important to control government expenditure.

The superposition of air pollution factors and other factors 
will increase the influence on government healthcare 
expenditure
Although the contribution of air pollution to government 
healthcare expenditure is large enough, it is even more 
surprising that, when air pollution is combined with 
other factors, the contribution will experience further 
changes.

First, the results of the interaction detector show that 
the combination of certain factors is stronger than the 
sum of their single effects – that is to say, the combina-
tion of air pollution and another factor in the study will 
produce a positive synergy effect. These combinations 
include the level of urbanization, PGH, PD and air pol-
lution. As shown throughout the existing literature, the 
level of urbanisation is proven to be one of the catalysts 
for air pollution [31–33]. Furthermore, the UL accounts 
for 16.3% of the general expenditure on health [33]. The 
increasing demand for health services, as brought about 
by urbanisation, is bound to increase the government’s 
healthcare investment profile. However, with the acceler-
ated urbanisation process, the problem of environmental 
degradation has led to the need for additional govern-
ment investment in health services as a remedy [34, 35]. 
If the level of carbon dioxide emissions and the degree of 
urbanisation increase by 1%, the need for health facili-
ties will increase by 0.037 and 0.327%, respectively [36]– 
both of which would mean greater government health 
expenditure. In addition, the concentration of the popu-
lation within cities leads to an uneven distribution of 
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resources and an inconvenient transmission of resource 
information [33], contributing to difficulties experienced 
by residents in reaching needed health services. Further-
more, the inefficient integration of resources leads to the 
waste of health services, which, in essence, wastes funds 
allocated to expenditure on health. Unfortunately, when 
serious air pollution occurs, the imbalance of resource 
distribution between urban and rural areas is further 
exacerbated, with the government needing to pay more 
to account for the contradiction. Urbanisation is an 
important influencing factor in the process of air pollu-
tion’s effect on government health expenditure. Whether 
it is the worsening of the environment, the further expan-
sion of air pollution, an aggravation of the inefficiency 
problem facing resource allocation and planning, and 
the intensification of the relationship between demand 
and supply, government health expenditure has deterio-
rated further, even exceeding the sum of the independent 
effects had by air pollution and urbanisation.

Second, the combination of air pollution with one of 
the factors under consideration results in a value greater 
than the maximum value of the two factors indepen-
dently (that is, the interactive relationship is enhanced). 
However, the contribution of this combination is weaker 
than the simple addition of the two under the independ-
ent assumption. The above combinations include GDP, 
NHB, NH, ND, IURMI, AT, AR, and air pollution. Here 
we focused on the joint effect of urbanisation and air pol-
lution on government health expenditure. GDP has been 
proven as being able to promote the growth of govern-
ment health expenditure [15]. Moreover, GDP improves 
people’s living standards and greatly improves the utili-
sation of health services, especially in light of the nega-
tive effect of air pollution on health, thus generating an 
increased demand for health expenditures and a greater 
economic burden on the government – i.e., the growth 
in GDP amplifies the negative effects had by air pollu-
tion on government health expenditure. In addition, 
environmental factors (AT, AR) [37] have been proven to 
have a direct effect on health and can even affect air pol-
lution (creating a positive feedback loop) [38]. It can be 
seen from the formation of acid rain that industrial sul-
fur dioxide emissions in the air will pose a greater threat 
to people’s health through rainwater [39, 40]. This could 
potentially explain why environmental factors make air 
pollution more important to public health and govern-
ment health expenditure. Factors related to the supply 
of health services (NHB [41], NH, ND [42]) have also 
been confirmed to have an impact on health expendi-
ture. There is still a gap in the current demand for health 
services, with the utilisation of health services unable to 
fully meet demand [43]. However, the emergence of air 
pollution increases the demand for health services and 

intensifies the contradiction. Therefore, more health ser-
vice facilities need to be established, and more govern-
ment health expenditure needs to be generated. Finally, 
as an integration with health policy, health insurance 
policies reduce the thresholds for residents to obtain 
health insurance protection, and help promote fair access 
to health services. Although air pollution increases the 
demand for health services of residents, the health insur-
ance policy enables greater demands for affordable utili-
sation, which requires the government to increase health 
expenditure and share the burden of the ill-health of resi-
dents. Nevertheless, the results of this study suggest that, 
although these factors can increase air pollution’s weight 
on government expenditure, the total effect is only 
greater than either of them, which is not as good as UL 
and PGH (as discussed in the previous paragraph).

Risk area detection and classification
According to the results of risk area detection, a total 
of 169 high-risk areas were found. Interestingly, there 
are 96 simple high-risk areas. The number of high-risk 
areas superimposed by mltiple factors is in the major-
ity. These include socioeconomic-population high-risk 
area (1), socioeconomic-health high-risk areas (1), soci-
oeconomic-policy high-risk areas (22), socioeconomic-
environmental high-risk areas (2), policy-environmental 
high-risk areas (31), socioeconomic-policy-environmen-
tal high-risk areas (13), socioeconomic-health-policy 
high-risk areas (1), socioeconomic-health-policy-envi-
ronmental high-risk areas (1), and socioeconomic-
health-policy-environmental-population high-risk areas 
(1). To improve the cost-effectiveness ratio of govern-
ment health expenditure, different measures need to be 
taken for different characteristics (according to the city), 
rather than a large number of expenses that are repeat-
edly incurred to make up for the adverse health out-
comes caused by air pollution. First of all, for cities whose 
government health expenditure is only restricted by air 
pollution, the existing literature has proven that the air 
pollution in this area is a serious concern and that there 
is spatial spillover effect [29], which may be related to the 
industrial belt located throughout the region. Although 
industrial agglomeration areas provide employment 
opportunities for residents and promote the development 
of the local economy, it is evident that it also increases 
the burdens related to health expenditure for local gov-
ernments. Governments should strengthen environmen-
tal infrastructure [44], implement policy control [44, 45] 
and pay attention to the application of clean energy in 
industrial production to reduce the burdens to healthcare 
expenditure caused by air pollution.

For high-risk areas affected by multiple factors, it is 
necessary to pay greater attention to the simultaneous 
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effects of these factors’ conglomeration, not just air pol-
lution in isolation. Several studies have confirmed the 
influence of social factors [46], health service factors 
[47], environmental factors [48], policy factors [49] and 
PD [50] on health services or healthcare expenditure 
within the context of air pollution. Taking the high-risk 
areas of social-health-environment-policy-population 
(Shanghai) as example, serious air pollution inhibits the 
development of the economy and, subsequently, reduces 
the income levels of residents. However, this general 
decline is more obvious among low-income groups. As 
a result, the gap between the rich and the poor in vari-
ous air-pollution-afflicted regions is growing [51], leading 
to different air pollution responses and other contrib-
uting factors. Ignoring such differences will render the 
government’s actions meaningless. Therefore, health 
policy should be combined with environmental policy 
and urban development planning [52]. In addition, it 
would be helpful for further public health improvement 
and government health expenditure control to reduce 
air pollution sources, adopt intersectoral methods for 
setting clear health benchmarks, targets and report-
ing mechanisms for air pollution detection and control 
emerging clean energy technologies, and to treat air pol-
lution reduction as a health-related indicator in devel-
oping sustainable development policies [30]. A large 
amount of government health expenditure could have 
greatly improved public health. However, air pollution 
has wasted these efforts and has, subsequently, increased 
the government’s burden [11], especially under the con-
flict between supply and demand caused by high popula-
tion density. In the face of increasing health costs, a wide 
range of joint measures between departments, such as 
HiAP, can help improve the role played by government 
health expenditure.

Conclusion
Using the data of China in 2017, we explored the influ-
encing factors of air pollution on government health 
expenditure and its spatial governance by using GeoDe-
tector. The results show that air pollution is indeed the 
explanatory factor of government health expenditure, but 
in this process, UL, PGH, GDP, NHB, ND, NH, IURMI, 
AT, AR and PD all increase this effect. In addition, in 200 
prefecture-level cities and 4 municipalities, 169 regions 
are at high risk. Interestingly, most risk areas are driven 
by multiple factors. This also warns us at the policy level 
that measures should be taken to suit local conditions in 
different regions. In the areas only affected by air pollu-
tion, the government should strengthen the construction 
of environmental infrastructure, implement policy con-
trol, and pay attention to the application of clean energy 
in industrial production, so as to reduce the burden of 

air pollution on medical and health expenditure. But in 
the high-risk areas affected by multiple factors, we must 
pay more attention to the simultaneous influence of these 
factors; at the same time, a variety of joint measures, such 
as HiAP, should be taken among various departments to 
help improve the role of government health expenditure.

Limitations and prospect
First, we use yearly cross-sectional data of 2017 to ana-
lyze the spatial heterogeneity of government health 
expenditure and its associated factors. Despite the use 
of an appropriate methodology to avoid bias as much as 
possible, some limitations of the cross-sectional data are 
difficult to resolve completely. Therefore, it is necessary 
to implement corresponding spatiotemporal heterogene-
ity studies to provide stronger supporting evidence for 
causality when data available. Second, this study is based 
only on SO2 which was proved to have strong impacts 
on health or health expenditure, ignoring other air pol-
lutants. We did not use all common air pollutants in 
this study due to the current controversial methods for 
estimating the effects of air-pollutant mixtures and the 
poor availability of monitoring data for multiple air pol-
lutants. This may lead to an underestimation of air pol-
lution effects, which subsequent studies could attempt 
to improve when more data available and methodologies 
upgraded.
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