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Abstract 

Background:  Drug overdose is one of the top leading causes of accidental death in the U.S., largely due to the opi-
oid epidemic. Although the opioid epidemic is a nationwide issue, it has not affected the nation uniformly.

Methods:  We combined multiple data sources, including emergency medical service response, American Commu-
nity Survey data, and health facilities datasets to analyze distributions of heroin-related overdose incidents in Cincin-
nati, Ohio at the census block group level. The Ripley’s K function and the local Moran’s I statistics were performed to 
examine geographic variation patterns in heroin-related overdose incidents within the study area. Then, conditional 
cluster maps were plotted to examine a relationship between heroin-related incident rates and sociodemographic 
characteristics of areas as well as the resources for opioid use disorder treatment.

Results:  The global spatial analysis indicated that there was a clustered pattern of heroin-related overdose incident 
rates at every distance across the study area. The univariate local spatial analysis identified 7 hot spot clusters, 27 
cold spot clusters, and 1 outlier cluster. Conditional cluster maps showed characteristics of neighborhoods with high 
heroin overdose rates, such as a higher crime rate, a high percentage of the male, a high poverty level, a lower educa-
tion level, and a lower income level. The hot spots in the Southwest areas of Cincinnati had longer distances to opioid 
treatment programs and buprenorphine prescribing physicians than the median, while the hot spots in the South-
Central areas of the city had shorter distances to those health resources.

Conclusions:  Our study showed that the opioid epidemic disproportionately affected Cincinnati. Multi-phased spa-
tial clustering models based on various data sources can be useful to identify areas that require more policy attention 
and targeted interventions to alleviate high heroin-related overdose rates.

Keywords:  Drug overdose, Heroin-related incident, Clustering, Geospatial analysis, Emergency medical service 
response (EMS), Socioeconomic factors
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Background
Drug overdose is one of the top leading causes of acciden-
tal death in the U.S., largely due to the opioid epidemic 
[1].  Since 1999, more than 760,000 people have died 
from drug overdose, and the number of opioid-involved 

overdose deaths has increased over six times across the 
U.S. [2].  Drug overdose deaths involving synthetic opi-
oids other than methadone have continued to rise since 
2014 with more than 36,359 overdose deaths reported 
in 2019, which accounted for  72.9% of opioid-involved 
overdose deaths [3]. Furthermore, over the last 10 years, 
drug overdose deaths involving heroin rose more than 
seven times, although the trend has gone down since 
2016 [2, 3]. Although the opioid epidemic is a nationwide 
issue,  it  has  not affected the nation uniformly [4].  For 
example, opioid-related mortality rates, especially from 
synthetic opioids, have increased more rapidly in the 
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eastern part of the country compared to other regions 
[5]. Understanding geographic variability in the opioid 
epidemic may help identify areas that require more atten-
tion and develop targeted strategies to tackle the public 
health challenge.

Some studies showed opioid-related emergency depart-
ment visits increased over time [6, 7]. A study that exam-
ined naloxone administrations obtained from emergency 
medical service (EMS) also showed the increased num-
ber of non-fatal opioid overdose events over time [8]. 
However, compared to opioid overdose deaths, relatively 
less attention has been paid to opioid-related incidents. 
Given that a non-fatal opioid overdose event is a signifi-
cant predictor of a subsequent overdose death [9–11], 
it is important to understand the prevalence of the inci-
dences and discuss potential interventions that can pre-
vent future deaths. Our study focused on heroin-related 
incidents that used EMS.

Geospatial clustering has been used to analyze the 
geographic variation of phenomena [12], such as dengue 
infection prevalence [13], and spatial clusters of hand, 
foot, and mouth disease [14]. It allows the investigators 
to identify groups of spatial objects (i.e., clusters) that 
have similar characteristics and analyze patterns of the 
clusters (e.g., hot spots, cold spots). Several studies have 
applied geospatial clustering to examine opioid-related 
overdose incidents and deaths, such as identifying hot 
spots of the opioid epidemic [15, 16], understanding geo-
graphical patterns in ambulance runs and nonfatal over-
dose [17, 18], and determining potential target locations 
for publicly deployed naloxone kits [19].

We conducted a case study in Cincinnati, Ohio where 
the opioid epidemic has been a serious issue. Among U.S. 
states, Ohio had the highest number of opioid-involved 
overdose deaths per year from 2014 through 2017 [20]. 
Since 2009, in Ohio, drug overdose deaths have contin-
ued to increase except in 2018 [20]. Cincinnati, a large 
city in southwestern Ohio with a population of about 
300,000 people, was one of 12 opioid hot spots in Ohio 
and had the highest per capita rates of a fatal overdose 
within the state between 2010 and 2017 [16]. In the city, 
heroin overdose incidences still remain high since heroin 
and prescription drugs have ravaged the area [21], and 
the growing prevalence of heroin abuse has led to other 
public health problems such as HIV and needle-borne 
diseases [22].

The objectives of this study are to 1) demonstrate how 
various sources of data can be used to analyze spatial pat-
terns of heroin-related overdose incidents and 2) analyze 
demographic, socioeconomic, and contextual factors 
associated with the spatial patterns. Using EMS response 
data, American Community Survey (ACS) data, and 
health facilities datasets, we built multi-phased spatial 

clustering models and analyzed distributions of heroin-
related overdose incidents at the census block group level 
in Cincinnati.

The rest of the paper is organized as follows. 2 section 
describes our approach, 7 section details the results, and 
8 section provides discussions of our findings and con-
clusions of the paper, along with limitations and direc-
tions of future research.

Methods
Data collection and processing
We used the EMS dataset that includes all responses 
to heroin-related overdose incidents from the Cincin-
nati Fire Department [23] between January 1, 2015, and 
December 31, 2020. Each incident record contains inci-
dent location information, including geospatial informa-
tion, location address, a classification of a neighborhood 
in the city, time of the incident, and disposition of inci-
dent response. Data records regarding incidents outside 
of the study area, without geospatial information, and 
with unassociated disposition codes were excluded from 
this study. Records from canceled calls or false alarms 
and duplicated records were also excluded.

To identify demographic and sociographic character-
istics corresponding to the EMS dataset, we utilized the 
ACS data for 2015 – 2019 [24]. The dataset included 
demographic information for each census block  group, 
such as the adult population size, the population groups 
by age, the ratio of gender, and the ratio of race/ethnic-
ity. The ACS data also included socioeconomic charac-
teristics of each census block group, such as education, 
income, and poverty. In addition, we used Homeland 
Infrastructure Foundation-Level Data (HIFLD) [25] and 
Substance Abuse and Mental Health Services Admin-
istration (SAMHSA) data [26] for 2015–2020 to obtain 
information about available healthcare services, such as 
hospitals, opioid treatment programs, and buprenor-
phine prescribing physicians, in each census block group. 
Using the SAMHSA data, we computed the distance 
from the center of each census block to each of the near-
est neighborhood [26]. Furthermore, we included the 
crime rate data from the Cincinnati Police Department 
[27] between 2015 and 2020.

In the next phase, we mapped individual heroin-related 
incidents to census block groups in Cincinnati using the 
geocode information and computed the average number 
of incidents in each census block for five years. The num-
ber of incidents was adjusted for the size of the popula-
tion of a census block group, and finally, heroin-related 
incidents per 1,000 adult population were used in the 
analysis. Using the same procedures, we computed the 
average crime rate per 1,000 adult population in each 
census block group level. The average heroin-related 
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incidents and crime rate per 1,000 adult population were 
merged with the ACS, HIFLD, and SAMHSA datasets, 
which resulted in 22 variables.

Geospatial analysis
Using the merged dataset, we first examined the spa-
tial distribution of heroin-related incident rates using 
the Jenks natural breaks maps. The Jenks natural breaks 
maps use a nonlinear algorithm to create groups where 
within-group similarity is maximized, and between-
group similarity is minimized [28]. The number of groups 
was determined by optimizing the goodness of variance 
fit.

We then performed a multi-phased geospatial analy-
sis to examine geographic variation patterns in heroin-
related overdose incidents within the study area. Our 
objective was to identify the clusters with high incident 
rates. The spatial clustering was performed at two levels: 
global and local clustering. The global spatial cluster-
ing was conducted using Ripley’s K function that tests if 
heroin-related overdose incidents occur randomly or are 
clustered within the whole study area [29, 30]. The local 
clusters were determined based on the local indicators 
of spatial analysis (LISA), using the Local Moral’s I tool 
in GeoDa software [31]. The following sections explain in 
more details about each analysis.

Global spatial analysis
The Ripley’s K function is a multi-distance spatial cluster-
ing method that describes the dispersed patterns of data 
points. The function is calculated at multiple distances, 
which shows how point-pattern distributions can change 
with scale and compares the observed and expected dis-
tributions of points around an index point within circles 
of various areas. Under the complete spatial randomness, 
the density of points is uniform. If the observed estimate 
of the K function falls above the theoretically expected 
envelope, it indicates that the data points are clustered 
at every distance in the study area. On the other hand, 
if the observed estimate of the K function is within the 
envelope, the data points exhibit complete spatial ran-
domness. Furthermore, if the observed estimate of the 
K function is below the envelope, it means that the data 
points are dispersed within the area of interest.

Given the locations of all events within a defined study 
area, the estimated K(t) is the ratio of the number of 
neighboring events observed within a given distance of 
each event and the density of events, � . The density can 
be estimated as �̂ = N/A , where N is the observed num-
ber of points and A is the area of the study region. The 
estimated K(t) function [29] is shown in Eq. 1:

where t is the radius of a test circle, dij is the distance 
between the i-th and j-th points, and I(x) is an indica-
tor function. The weight function, w(li, lj) , corrects for 
edge effect. If the distance between li and lj is less than or 
equal to t (i.e., the circle which centered at li and passed 
through lj is inside the study area), the weight will be 
equal to 1. If part of the circle falls outside the study area, 
then the weight is equal to the proportion of the circum-
ference of that circle that falls in the study area.

To calculate the Ripley’s K function, we pre-processed 
the geocode information of the heroin-related incidents 
by assigning the World Geodetic System (WGS84) as 
its reference coordinate system and projecting it to Uni-
versal Transverse Mercator (UTM). The pre-processed 
heroin-related incidents were converted to point pat-
tern objects. With the converted point pattern objects, 
we performed the Ripley’s K analysis. To calculate con-
fidence intervals for complete spatial randomness of her-
oin-related incidents within the study area, we conducted 
a Monte Carlo simulation [29]. Since the simulation out-
comes of more than 999 replications remain identical, we 
set our maximum replications of the simulation at 999 
and generated the confidence interval of the outcome at 
α = 0.01.

Local spatial analysis
Since the global spatial clustering analysis yields only 
one statistic to describe the overall point pattern across 
the whole study area, it does not identify where the local 
clusters or spatial outliers are. To determine which areas 
are similar or different from the neighboring areas, we 
performed a local spatial analysis. Local indicators of spa-
tial association (LISA) decompose global indicators into 
the contributions of individual observations to identify 
local cluster patterns or spatial outliers [32]. LISA sta-
tistics satisfy two requirements: 1) for each observation 
they provide a statistic with an assessment of the signifi-
cance of the grouping of similar values around this obser-
vation, and 2) they establish a proportional relationship 
between the sum of the local indices on all observations 
and a corresponding global index.

In LISA, spatial autocorrelation for each location 
with its neighbors is evaluated in five categories: high-
high, low-low, low–high, high-low, and not significant. 
Positive spatial autocorrelation is captured in areas 
close together that have similar values. In this study, an 
area evaluated as high-high indicates it has high her-
oin-related overdose incident rates and its neighboring 
areas also have high heroin-related incident rates (hot 
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spots), whereas an area evaluated as low-low indicates 
it has low heroin-related overdose incidents rates and 
its neighboring areas also have low rates (cold spots). 
On the other hand, negative spatial autocorrelation 
occurs when dissimilar values are shown between an 
area and its neighbors (e.g., low–high and high-low).

The local Moran’s I is a widely used LISA statistic 
which describes spatial clustering of observations in 
high or low values. For each observation i, the local 
Moran’s I equation [32] is shown in Eq. 2:

where zi is the deviation from the mean (i.e., the dif-
ference between the actual value of i and the mean), zj 
is the deviation from the mean for a neighboring area 
j , m2 is the sample variance, wij is the spatial weight for 
the pair of observations i and j , and n is the number 
of observations. That is, the Local Moran’s I statistic is 
computed as the product of a value at location i by its 
weighted sum of the values at neighboring locations, 
where the product is standardized by the sample vari-
ance of all the observations.

We performed a univariate Local Moran’s I analysis 
for heroin-related incident rates using a software called 
GeoDa [31]. After identifying local spatial clusters, we 
plotted LISA conditional cluster maps to examine if 
there is a relationship between heroin-related incident 
rates and sociodemographic characteristics of areas. 
We considered five characteristics, including the pro-
portion of males, the proportion of people below the 
poverty level, the proportion of people with at least 
a college level education, per capita income, and the 
crime rate. These factors were chosen because they 
have been known to be associated with opioid incidents 
and mortality [16, 33, 34]. To determine distributions of 
hot zones for a combination of two variables, we calcu-
lated a conditional probability of hot zones for one var-
iable given a level (low vs. high) of the other variable. 
For example, we computed the conditional probability 
of hot zones for poverty when the education level was 
low and high. Similarly, we computed the conditional 
probability of hot zones for education when the poverty 
level was low and high.

In addition, we examined the relationships between 
heroin-related incident rates and the accessibility to three 
healthcare facilities, which are hospitals, opioid treat-
ment programs, and buprenorphine prescribing physi-
cians. Examination was completed separately using a 
queen contiguity-based spatial weights matrix in GeoDa.

For all the local spatial methods, we set the sta-
tistical significance level to 0.01, and the number of 
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simulations to 9,999 since trying more than 9,999 per-
mutations given a significance level of 0.01 generated 
identical outcomes.

Results
Between January 1, 2015, and December 31, 2020, there 
were 542,136 incidents in total within the study area, of 
which 10,917 were heroin-related incidents. After remov-
ing the irrelevant and duplicated incidents, we used a 
total of 8,767 heroin-related incidents within the 280 
census block groups in Cincinnati, Ohio. Table 1 shows 
the descriptive statistics of the data used in our study and 
the distribution of heroin-related incidents.

Figure 1 shows six clusters of census block groups for 
heroin-related incident rates as determined by the Jenks 
natural breaks method, with darker colors indicating 
higher rates. The results indicated that there were geo-
graphical differences in heroin incident rates in Cincin-
nati: the blocks in the Southwest part of the city had high 

Table 1  Descriptive statistics of the data

*  Opioid Treatment Programs

Variables Median (IQR)

Population, n 978.50 (665.0)

Population density per sq mi, n 5,269.70 (4458.16)

Sex

  Male, % 48.88 (10.21)

Age (years)

  18–24, % 7.98 (7.50)

  25–34, % 17.61 (12.80)

  35–44, % 11.30 (7.26)

  45–55, % 10.61 (7.07)

  55–64, % 11.75 (8.08)

  65 + , % 10.80 (9.76)

Race/Ethnicity

  Non-Hispanic White, % 50.13 (53.87)

  Non-Hispanic Black, % 37.63 (55.77)

  Hispanic, % 1.41 (4.27)

Education level

  Less than High School, % 10.90 (13.05)

  High School, % 54.62 (26.92)

  Bachelor or Higher, % 29.13 (36.59)

Poverty, % 22.25 (29.51)

Per Capita Income, $ 24,672.50 (21,465.25)

Accessibility to Health Facilities

  Distance to Hospitals, 10 miles 1.57 (1.55)

  Distance to Buprenorphine, 10 miles 0.61 (0.67)

  Distance to OTP*, 10 miles 2.14 (2.58)

Crime Rate per 1000 population 7.65 (8.71)

Heroin Incident Rate per 1000 population 0.26 (0.53)
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heroin-related incident rates while those in the Northeast 
part had low incident rates.

Figure 2 shows the result of the global spatial analysis. 
Since the estimate of the observed K function (solid black 
curve) falls above the theoretical K generated by the 

Monte Carlo estimate (dashed red curve), we can con-
clude that there was a clustered pattern of heroin-related 
overdose incident rates at every distance across the study 
area.

Fig. 1  Distribution of heroin-related overdose incident rates by census block groups in Cincinnati, Ohio, from January 2015 to December 2020

Fig. 2  Ripley’s K functions measuring overall spatial clustering across Cincinnati, Ohio for heroin-related incident rates. (Obs: observed; Theo: 
theoretical)
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The univariate LISA cluster map (Fig.  3) shows four 
types of spatial association determined based on her-
oin-related overdose incident rate within a block and its 
neighboring blocks: High-High, Low-Low, Low–High, 
and High-Low. If a block has a high heroin incident rate 
with neighboring blocks of high heroin incident rates, it 
was determined as a high-high cluster, also known as a 
hot spot. In the same scheme, if a block shows a low her-
oin incident rate with neighboring blocks of low heroin 
incident rates, it was classified as a low-low cluster, also 
known as a cold spot. On the other hand, if a block has 
a low incident rate with high heroin incident rate neigh-
bors, it is classified as a low–high outlier. Likewise, if a 
high heroin incident rate block has low heroin incident 
rate neighbors, it is classified as a high-low outlier. Our 
analysis identified seven high-high clusters, 27 low-low 
clusters, one low–high spatial outlier, and zero high-low 
spatial outliers within the study area. The remaining 245 
blocks did not have significant associations between a 
block and its neighbors in terms of heroin-related inci-
dent rates, which means that the heroin-related incident 
rates in these blocks were randomly distributed.

Figure  4 shows the LISA conditional cluster maps for 
heroin incident rates based on five socio-demographic 
characteristics of areas. We included combinations that 
had conditional probabilities higher than 0.6 for both 
variables at a certain level, and only four combinations 
shown in Fig.  4 met the criteria. The conditional prob-
abilities of hot zones for these combinations are shown 
in Tables A1 – A4 in Appendix. The two-by-two micro 
maps were plotted based on median values of two of 
the five characteristics. For example, in Fig.  4 (A) the 
top right map shows clusters in regions with a higher 

percentage of males and a greater percentage of higher 
education than their medians, while the clusters in the 
bottom left map are regions with a lower percentage of 
male and a lower percentage of higher education. Simi-
larly, Fig. 4 (B) shows the distributions of heroin incident 
rates by the education level and poverty level, 4 (C) shows 
the distributions by the percentage of male and income 
level, and 4 (D) shows the distributions by the crime rate 
and income level.

As shown in Fig.  4 (A), 71% of the hot spots were 
located in areas with lower education level and higher 
male percentage. On the other hand, 92% of the cold 
spots were located in areas with higher education and 
52% of the cold spots were in areas with a lower male 
percentage. In Fig. 4 (B), 71% of hot spots were identified 
in areas with lower education and 86% of the hot spots 
were in areas with higher poverty level, which indicates 
hot spots tended to locate in areas with low education 
and high poverty level. On the other hand, 88% of the 
cold spots were located in areas with higher education 
and low poverty level. In Fig. 4 (C), 86% of the hot spots 
were identified in areas with lower income level and 71% 
of hot spots were in areas with a higher male percent-
age, which indicates hot spots tended to locate in areas 
with low-income level and high proportion of male pop-
ulation. On the other hand, 96% of the cold spots were 
located in areas with higher income level and 48% of the 
cold spots were in areas with lower male percentage and 
higher income level. In Fig. 4 (D), 86% of hot spots were 
identified in areas with lower income level and 100% of 
the hot spots were in areas with higher crime rate, which 
indicates hot spots tended to locate in areas with low-
income level and high crime rate. On the other hand, 

Fig. 3  Univariate LISA cluster map identifying significant local clusters of heroin-related incident rates, Cincinnati, Ohio, 2015–2020: High-High: high 
incident rate within a block and high incident rate of neighboring blocks, Low-Low: low incident
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88% of the cold spots were located in areas with higher 
income level and low crime rate.

Figure  5 compares the socio-demographic charac-
teristics of hot spots and cold spots identified from the 
conditional LISA maps within the study area, in which a 
dashed line represents the median of each variable. The 
results indicated that hot spots can be found in areas 
with a higher crime rate, a higher percentage of male 
population, a higher poverty level, a lower percentage of 
the population with higher education, and a lower per 
capita income.

Figure  6 shows LISA conditional cluster maps of the 
accessibility to healthcare facilities such as hospitals (A), 
opioid treatment programs (B), and buprenorphine pre-
scribing physicians (C). The two micro maps were plotted 
for each health facility based on its median distance from 
each census block group center. Figure 6 (A) shows that 
57% of the hot spots were in areas with a longer distance 
to hospitals than its median. On the other hand, Fig.  6 
(B) shows that 86% of the hot spots were in areas with a 

shorter distance to opioid treatment programs. Figure 6 
(C) shows that 71% of the hot spots were in areas with 
a shorter distance to buprenorphine prescribing physi-
cians. The hot spots in the Southwest part of Cincinnati 
(shown in dotted ellipses) had high heroin-related inci-
dent rates and longer distances to all three health facili-
ties, while the hot spots of the South-Central part of the 
city (shown in dotted squares) had high heroin incident 
rates but shorter distances to opioid treatment programs 
and buprenorphine prescribing physicians.

Discussion
This study showed how various data sources can be 
combined and used to examine the spatial patterns of 
heroin-related overdose incidents in Cincinnati, Ohio 
at the census block group level. We used EMS data to 
examine geographical distributions of heroin-related 
overdose incidents. This data is useful to understand 
real-time drug overdose cases that require emergency 
care. In addition to EMS data, we used ACS data, crime 

Fig. 4  LISA conditional cluster maps for combinations of two variables



Page 8 of 12Choi et al. BMC Public Health         (2022) 22:1253 

data, and healthcare facility data to understand demo-
graphic, socioeconomic, and contextual factors that 
may be associated with heroin-related incidents.

There have been studies that used EMS data to exam-
ine geographical patterns of opioid overdose events. 
Pesarsick et  al. [18] and Dworkis et  al. [19] utilized 

Fig. 5  Socio-demographic characteristics of hot spots and cold spots identified from LISA

Fig. 6  LISA conditional cluster maps of the distance to (A) hospitals, (B) the distance to Opioid Treatment Programs, (C) the distance to 
buprenorphine prescribing physicians
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naloxone administration information in EMS data to 
identify local clusters for opioid overdose-related EMS 
runs. Li et  al. used heroin-related overdose incident 
information from the EMS data within Cincinnati, 
Ohio to identify hot spots and potential target sites for 
naloxone kits where they are most needed in a commu-
nity. They also focused on identifying significant pre-
dictors of the incidents using a Poisson spatiotemporal 
regression model. Other commonly used data sources 
for public health surveillance include medical examiner 
data [35], hospital electronic health record data [36], 
and emergency department visit data [37].

Our spatial analysis showed that the opioid epidemic 
disproportionately affected Cincinnati. For example, 
a heroin-related incident rate was concentrated in the 
Southwest part of the city, while the rate was low on the 
East side. This geographic disparity has been found for 
other outcomes related to drug overdose events. Accord-
ing to the City of Cincinnati Community Health Assess-
ment [38], the southern part of the city had high rates of 
overdose visits to hospitals and emergency departments. 
Also, southern counties of Ohio have had high opioid-
related overdose death rates. In particular, Hamilton 
County where Cincinnati is located had the third-highest 
number of overdose deaths in 2019 [39]. Our study inves-
tigated spatial patterns of heroin overdose incidents at a 
block group level, the smallest geographic unit for which 
the US Census Bureau publishes demographic and socio-
economic data, while other research regarding overdose 
mortality has been done at a larger geographic area level 
such as county [33, 34, 40]. A geographical analysis based 
on a finer-grained spatial unit may help capture more 
subtle but important patterns that might be missed when 
using larger spatial units.

In addition to the variability in heroin-related incident 
rates across Cincinnati, our study found demographic 
and socioeconomic characteristics in areas with high 
opioid overdose rates [15, 41, 42]. They include neigh-
borhoods with a higher crime rate, a higher percentage 
of the male and younger age group (18–24) population, 
a lower education level, and a lower income level than 
the average of the city for each factor. These results are 
consistent with findings from other studies that ana-
lyzed the spatial and/or temporal characteristics of the 
opioid epidemic. Demographic factors (e.g., age, gender, 
and race) and socioeconomic factors (e.g., education and 
income) were significantly associated with the risk of opi-
oid overdose incidents or deaths. For example, Hernan-
dez et al. [16] found that the white male population aged 
30–39 had the highest number of deaths due to prescrip-
tion opioid abuse, followed by Black males aged 35–44. 
Amundsen et  al. [34] found that drug-related deaths 
were more common in the population of a younger age 

group (15–44), the lowest level of education, and those 
not participating in the workforce. Li et  al. [15] identi-
fied a positive association between the number of heroin-
related incidents and features of the built environment, 
the proportion of the male population, the population 
aged 35–49 years, and a negative association between the 
number of heroin-related incidents and the proportion of 
the population with a bachelor’s degree or higher, median 
household income, and the number of fast-food restau-
rants. Moreover, other studies [33, 43] found criminal 
justice involvement as one of the main risk factors associ-
ated with high opioid overdose rate.

Queensgate, in which the heroin-related incident rate 
was the highest among all the block groups in Cincin-
nati, showed distinct characteristics from other hot 
spots identified in this study. For example, this area had 
a much lower percentage of the white population and 
an extremely higher crime rate and male population. 
Queensgate mostly consists of industrial and commer-
cial warehouses, and almost 100 percent of residents rent 
their homes. The level of urbanization and residential 
stability in a city may be an additional risk factor for opi-
oid overdoses and related outcomes. Some studies found 
that people who rented were at an increased risk of fatal 
opioid overdose compared to those who owned a house 
[44, 45].

We also examined the association  between the her-
oin-related incident rates and the access to healthcare 
resources for opioid use disorder (OUD) treatment such 
as hospitals, opioid treatment programs, and buprenor-
phine providers within census block groups. We hypoth-
esized that hot spots have limited access to those 
facilities, and this was true in some areas. For example, 
distances from the center of a block group to the clos-
est hospitals, opioid treatment programs, and buprenor-
phine providers were longer in the southeast area of the 
city than the average distances to each of the resources. 
However, contrary to our hypothesis, most of the hot 
spots had a shorter distance to the resources for OUD 
treatment compared to the average distances to each 
of the resources. For example, the south-central area of 
the city has a high heroin-related overdose incident rate 
but a shorter distance to the resources. Maxim et al. [46] 
found similar results about the geo-spatial correlation 
between the location of drug users and recovery houses. 
In their study, about 70% of reported overdose incidents 
occurred within 500 m of recovery houses. On the other 
hand, McLuckie et  al. [47] found that rural counties in 
Illinois with high OUD rates had limited OUD-related 
services by their local health departments. This is a dif-
ferent finding from our study, which may be due to dif-
ferent study areas, such as rural versus metropolitan 
areas. Further investigation is needed to determine the 
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relationship between opioid overdoses and the availabil-
ity of resources.

Findings from geospatial analyses may serve as a basis 
for developing potential public health strategies that can 
alleviate high heroin-related overdose rates. For example, 
we plotted hot zones and cold zones by the accessibil-
ity to healthcare facilities to OUD. Hot zones that have 
limited accessibility to healthcare resources for OUD 
(i.e., long distance to the closest facility) would require 
different approaches than hot zones that have available 
resources close to the areas. In this study, Southwest 
areas of the city (shown in dotted ellipses in Fig. 6) had 
high heroin-related overdose incident rates while acces-
sibility to healthcare resources for opioid use disorder 
treatment was limited. This kind of areas may need to 
consider increasing the number of buprenorphine pro-
viders or opioid treatment programs and providing sup-
port to utilize services in nearby locations. Some of the 
South-Central areas of the city (shown in dotted squares 
in Fig.  6) also had high heroin-related overdose inci-
dent rates but had available resources for OUD within a 
shorter distance. This kind of areas may need to evalu-
ate the utilization of the services they currently provide 
and identify strategies to promote the utilization if it is 
low. To reduce the heroin-related incidence rate across all 
hot spots in the city, it would be important to understand 
controllable risk factors and develop targeted interven-
tions for specific areas. Further analyses that consider 
associations between key characteristics will better 
inform effective and targeted interventions for different 
areas.

Despite our findings, this study has a few limitations. 
First, diagnoses (e.g., opioid overdose) in the EMS data 
may be different from a final diagnosis determined by a 
physician in a hospital. That means, the heroin-related 
incident rates captured through the EMS data might 
be under or overestimated than the actual rate. Also, 
heroin-related incidents used in this study do not repre-
sent the overall incidence rates that occurred in the city. 
Cases seen in various care settings, neither through the 
EMS and nor addressed at all, may have different geo-
graphical patterns. Another limitation is related to the 
estimation of a distance to the closet buprenorphine 
prescribing physicians. We used publicly available treat-
ment locator data to identify buprenorphine prescribing 
physicians. However, we might not include buprenor-
phine-waivered clinicians because they did not consent 
to be on the buprenorphine list and therefore were not 
shown in the data. In addition, we might have included 
buprenorphine-waivered providers who were on the 
buprenorphine list but no longer actively prescribed 
buprenorphine. Despite these limitations, studying local 

EMS data is still critical for timely and targeted public 
health intervention in that it is the first to respond to 
medical emergencies.

Future studies will generalize our multi-phased geo-
spatial analysis to other cities that are highly associ-
ated with the heroin overdose epidemic. The current 
study can be improved by linking EMS data with other 
related data sources, such as naloxone administration 
by first responders, to better understand geospatial 
characteristics of a heroin overdose. In addition, com-
bining spatiotemporal disparities with machine learn-
ing models may help identify patterns at varying spatial 
and temporal scales more accurately.
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