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Abstract 

Background:  Despite thousands of influenza cases annually recorded by surveillance systems around the globe, 
estimating the transmission patterns of seasonal influenza is challenging.

Methods:  We develop an age-structured mathematical model to influenza transmission to analyze ten consecutive 
seasons (from 2010 to 2011 to 2019–2020) of influenza epidemiological and virological data reported to the Italian 
surveillance system.

Results:  We estimate that 18.4–29.3% of influenza infections are detected by the surveillance system. Influenza infec-
tion attack rate varied between 12.7 and 30.5% and is generally larger for seasons characterized by the circulation of 
A/H3N2 and/or B types/subtypes. Individuals aged 14 years or less are the most affected age-segment of the popula-
tion, with A viruses especially affecting children aged 0–4 years. For all influenza types/subtypes, the mean effective 
reproduction number is estimated to be generally in the range 1.09–1.33 (9 out of 10 seasons) and never exceeding 
1.41. The age-specific susceptibility to infection appears to be a type/subtype-specific feature.

Conclusions:  The results presented in this study provide insights on type/subtype-specific transmission patterns of 
seasonal influenza that could be instrumental to fine-tune immunization strategies and non-pharmaceutical interven-
tions aimed at limiting seasonal influenza spread and burden.
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Introduction
Annual influenza epidemics cause a marked excess of 
mortality and hospitalization as well as significant eco-
nomic and healthcare burden [1]. Worldwide, influenza-
associated respiratory deaths are estimated to be in the 
range 4.0–8.8 per 100,000 individuals, with a heavier bur-
den of 17.9–223.5 deaths per 100,000 people among indi-
viduals aged 75 years or more [2]. To monitor influenza 

spread, surveillance is carried out worldwide by means 
of records of patients showing influenza-like illness (ILI) 
and virological investigation of circulating types/sub-
types. Moreover, due to the continuous antigenic changes 
of the virus, the investigation of the circulating influenza 
types and subtypes and the assessment of their burden 
in specific age classes across different seasons is crucial 
to update the composition of the vaccine and increase 
its efficacy [3]. However, due to the low proportion of 
individuals developing clinical symptoms after influenza 
infection [4] and thus the low proportion of individuals 
consulting general practitioners [5], the picture returned 
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by the surveillance data is far from being representative 
of the true influenza burden.

Mathematical models of infectious disease trans-
mission represent key tools to properly interpret the 
observed data and to provide quantitative estimates of 
quantities that hard to measure directly [6–9]. In this 
study, we use mathematical modeling to estimate three 
key epidemiological indicators: i) the influenza infection 
attack rate (overall and by age), which corresponds to 
the proportion of individuals infected by influenza over 
the entire course of the season; ii) the effective repro-
ductive number, Reff - i.e., the mean number of second-
ary infections caused by a typical infectious individual in 
a partially immune population; and iii) the age-specific 
susceptibility to infection by virus type/subtype. Each 
epidemiological indicator is estimated for ten influenza 
seasons (from 2010 to 2011 to 2019–2020) in Italy and 
for each circulating influenza type/subtype.

Modeling and comparing the influenza types/subtypes 
allows us elucidating type/subtype-specific features, 
such as the age-specific susceptibility to infection, and 
to what extent the co-circulation of different types/sub-
types alters the transmission patterns at the population 
level of the single type/subtype, measured in terms of the 
effective reproduction number. The estimates provided 
in this study shed new light on the transmission dynam-
ics of seasonal influenza, showing that the total infection 
attack rate has a low variability across different seasons, 
the reproduction number is not markedly different by 
influenza type/subtype, and underage individuals play a 
central role in spreading the infection.

Methods
Influenza like illness and virological surveillance data
We analyze the data reported to the Italian epidemio-
logical and virological influenza surveillance system 
from 2010 to 2011 to 2019–2020. Briefly, sentinel GPs 
(general practitioners (GPs) and pediatricians (PDs)) are 
asked to report weekly influenza like illness cases (ILI, 
defined as acute onset of fever > 38 °C, + respiratory 
symptoms+ one of these symptoms: headache, general 
discomfort, asthenia) occurring during the year, from 
week 42 to week 17, using standardized forms. Specific 
information regarding age (0–4, 5–14, 15–64, > 64 years) 
and influenza vaccine status are collected and reported 
using web-based electronic Case Report Forms [10]. GPs 
and PDs are also able to define their assisted population 
by age group because every individual in Italy has to be 
appointed to a specific GP through the regional health 
service. This measure provides the denominator to cal-
culate the incidence of ILI cases by age group at the 
National and regional level (every year 2% of the regional 
population is requested to be under surveillance as per 

indication of the National Public Health Institute that 
coordinates the surveillance scheme).

Virological surveillance data
For surveillance of circulating influenza viruses – sam-
pling kits are sent out to regional coordinator for surveil-
lance that randomly select sentinel GPs during the weeks 
between week 46 and week 17 to collect throat swabs 
among ILI-patients. The number of randomly selected 
swabs is proportional to the weekly incidence of reported 
ILIs [see Fig.S1 in Additional File 1]. These swabs are ana-
lyzed at the regional Reference Laboratories distributed 
in 15 different Italian regions [11]. Results are collected 
and reported using web-based electronic CFR from the 
National Influenza Centre (NIC). Every season, a sub-
set of samples of ILI-patients are collected and analyzed 
(e.g. antigenic and genetic characterization) by the Ital-
ian National Institute of Health (ISS), with a proportion 
of positive specimens between 20 and 40% [12].

Virological data from the Italian region of Lombardy 
for the 2010–2011 season [13] and from the National 
Influenza Surveillance Scheme from 2011 to 2012 to 
2019–2020 season [14] are used in our analysis. A com-
parison between national virological surveillance and 
virological data for Italian region of Lombardy from 2010 
to 2011 to 2016–2017 season is reported in the Appendix 
[see Fig.S2 in Additional File 1].

Seroepidemiological data
We analyze seroepidemiological data collected before 
and at the end of the 2009 A/H1N1 pandemic to assess 
both the pre- [15] and post- [16] pandemic susceptibil-
ity to infection and the level of immunity by age-group 
to the 2009 A/H1N1 influenza virus in the Italian gen-
eral population. The level of immunity against the 2009 
A/H1N1 influenza virus in pre- and post-pandemic sera 
are determined using left over sera taken for diagnostic 
purposes or routine ascertainment obtained from clini-
cal laboratories. The antibody titres are measured by the 
haemagglutination inhibition (HI) assay (the presence of 
protective antibody (≥1∶40), are calculated using exact 
binomial 95% CI on both pre- and post- pandemic sero-
logical data) [16].

For each season we consider two datasets: i) the weekly 
incidence of ILI cases by age group (four age groups: 
0–4 years, 5–14 years, 15–64 years, and 65+ years) [17], 
and ii) the share of samples collected among ILI cases 
testing positive for each of three influenza types/sub-
types (namely, A/H1N1pdm09, A/H3N2, and B – both 
Victoria and Yamagata) by age (same four age groups of 
the ILI cases) [13, 14]and the seroepidemiological profile 
of the Italian population against 2009 H1N1 influenza 
pandemic.
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In addition to the epidemiological data, for each sea-
son, we collect data about the influenza vaccination cov-
erage by age group [18] and age structure of the Italian 
population [19]. Estimates of vaccine effectiveness by 
type/subtype are taken from Belongia et al. [20]. Details 
on the data used for the analyses are presented in the 
Appendix [see Tables S1-S4 in Additional File 1].

Estimation of ILI reporting rate
We subtract the proportion of samples positive for 2009 
A/H1N1 pandemic virus (A/California/07/2009) identi-
fied after and before the 2009 A/H1N1 pandemic virus 
circulated in Italy to obtain an estimate of the infec-
tion attack rate (AR) of the pandemic for individuals 
aged 0–14 years and 15+ years. We label these quanti-
ties as AR0 − 14 and AR15+, respectively. We then sum 
the weekly ILI cases reported to the surveillance system 
during the pandemic in the same two age groups and 
multiply it by the share of samples collected among ILI 
cases testing positive for A/H1N1pdm09. These quanti-
ties, denoted as ARILI

0−14 and ARILI
15+ , essentially represent 

the attack rate detected by the surveillance system of the 
Italian National Institute of Health (ISS). Therefore, we 
can estimate the reporting rate of the surveillance sys-
tem for the age group 0–14 years and 15+ years as the 
ratios r0−14 = ARILI

0−14/AR0−14 and r15+ = ARILI
15+/AR15+ , 

respectively. Details are provided in the Appendix [see 
Section 3 in Additional File 1].

Estimation of age‑specific infection attack rates 
for seasonal influenza
We leverage the estimated reporting rates by age of the 
surveillance system to estimate the infection attack rate 
of each type/subtype for each of the analyzed influ-
enza seasons. In particular, we define ILIa(w; y) the inci-
dence of ILI cases reported to the surveillance system 
for age group a on week w of season y. We also define 
fa(y, s) the share of ILI samples for age group a testing 
positive for type/subtype s in season y. Therefore, fol-
lowing the procedure presented in [16], we can esti-
mate the incidence of influenza cases linked to type/
subtype s for each age group and influenza season as 
ILIsa

(

w; y
)

= ILIa
(

w; y
)

∗ fa
(

y, s
)

 . By summing over all 
weeks, we can get an estimate to the age-specific AR 
detected by the surveillance system. Using the reporting 
rate by age of the surveillance system (see previous sec-
tion), we can estimate the influenza infection AR by age 
in season y as ARs

a =
∑

w∈yILI
s
a

(

w; y
)

/ra . Note that, as 
we have estimates of the reporting rate for only two age 
groups (0–14 and 15+ years) but ILI cases for four age 
groups (0–4, 5–14, 15–64, 65+ years), we apply r0 − 14 to 
age groups 0–4 and 5–14 years and we apply r15+ to age 

groups 15–64 and 65+ years. Details are provided in the 
Appendix [see Section 4 in Additional File 1].

Modeling analysis
To obtain posterior estimates of the epidemic reproduc-
tion number and age-specific susceptibility to infection 
for each influenza type/subtype and season, we use a 
Bayesian approach. First, we define an ordinary differ-
ential equation influenza transmission model following 
the classic SEIR scheme. Essentially, susceptible indi-
viduals (S) can acquire the infection and enter the latent 
compartment (L) after contact with an infectious indi-
vidual (I). After a latent period, latent individuals become 
infectious and can transmit the infection. Finally, after 
an infectious period, infectious individual recovers and 
enter the removed (R) compartment. The latent period 
is set to 1.5 days [21] and the infectious period is set to 
1.2 days in such a way that the resulting generation time 
is 2.7 days, in agreement with the literature [22].

The population is further divided into 86 age groups 
(1-year age groups from 0 to 84 year and one age group 
for individuals aged 85 years or older) to account for 
a heterogeneous contact pattern by age, which is well 
known to be a major determinant of influenza dynam-
ics [23, 24]. In particular, we use the age-specific contact 
matrix derived for the Italian population at 1-year age 
resolution presented in [24]. In addition, three model 
parameters account for the relative susceptibility to 
infection of individuals between 5 and 14 years of age, 
between 15 and 64 years of age and individuals aged 65 
or older with respect to individuals aged 4 or younger. 
These parameters capture social, hygienic, and biological 
determinants (e.g., residual immunity to the circulating 
type/subtype) of the infection, which are not captured 
by the heterogeneous age-mixing pattern [7, 16, 25–27]. 
We set the initial condition of the system by considering 
the observed age-specific vaccination coverage and type/
subtype-specific vaccine efficacy [20]. The model is regu-
lated by four free parameters: the transmission rate, and 
the susceptibility to infection of age groups 5–14, 15–64, 
65+ years relative to the age group 0–4 year (for which 
the susceptibility to infection is set to the reference value 
of 1).

For each season and influenza type/subtype, we explore 
the likelihood of observing the estimated type/subtype-
specific infection attack rate ( ARs

a

)

 given a set of model 
parameters by using a differential evolution Markov 
chain Monte Carlo (MCMC) approach [28]. To address 
potential bias due to paucity of data that may also affect 
the goodness of MCMC convergence, we report results 
only for the types/subtypes accounting for at least 6% of 
the samples testing positive for influenza. The posterior 
distribution of the (season- and type/subtype-specific) 
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effective reproduction number Reff is then computed at 
the beginning of the season by using the next-generation 
matrix approach [29]. Specifically, Reff was computed as 
the dominant eigenvalue of the Next Generation Matrix 
(NGM) [29] associated with the dynamical system con-
sidered, accounting not only for age patterns in the Ital-
ian contact matrix but also for the susceptibility to 
infection among different age classes. In other words, Reff 
represents the number of secondary infections averaged 
over the age distribution of the typical infector for each 
season and influenza type/subtype and accounts for the 
partial immunity of the population at the onset of the 
influenza season. Details on the methodology are 
reported in the Appendix [see Sections  5 and 6 in 
Additional File 1].

Results
In each of the ten analyzed seasons, the incidence of ILI 
cases reported to the Italian surveillance system shows 
an annual epidemic characterized by a peak occurring 
in February with the exception of the 2016–2017 season 
when the peak was recorded in December (Fig. 1A). The 
maximum peak week incidence varied from 6.1 cases per 
1000 individuals in the 2015–2016 season to 14.7 cases 
per 1000 individuals in the 2017–2018 season (Fig. 1A). 
The share of ILI cases testing positive for influenza ranges 
from 22.9% in the 2013–2014 season and 42.6% in the 
2010–2011 season (Fig. 1B). All the analyzed seasons are 
characterized by the co-circulation of A/H1N1pdm09, A/
H3N2, and B types/subtypes, although in some seasons 
most samples tested positive for one virus only (e.g., in 

the 2011–2012 season, 96% of the samples testing posi-
tive for influenza are associated with A/H3N2 infection), 
while in other seasons all the types/subtypes showed a 
similar share (e.g., in the 2019–2020 season) [see Table S3 
in Additional File 1].

The estimated reporting rates of the Italian surveil-
lance system are r0 − 14 = 0.184 (95%CI: 0.164–0.208) and 
r15+ = 0.293 (95%CI: 0.204–0.445) for individuals aged 
0–14 years and 15+ years, respectively. These values are 
in general agreement with independent estimates avail-
able in the literature [5, 25, 30]. When accounting for 
the reporting rate, we have a clearer picture of the actual 
magnitude of the seasonal influenza epidemics by type/
subtype (Fig. 1C). The peak week incidences ranged from 
5.8 influenza infections per 1000 individuals (95%CI: 
5.0–7.0 infections per 1000 individuals) to 19.8 influenza 
infections per 1000 individuals (95%CI: 16.9–25.0 infec-
tions per 1000 individuals). For each season, the infec-
tion attack rate (all types/subtypes) ranged from 12.7% 
(95%CI: 10.7–15.9%) in the 2016–2017 season to 30.5% 
(95%CI: 26.8–36.5%) in the 2017–2018 season (Fig. 2A). 
The type/subtype-specific infection attack rate is instead 
highly variable across seasons (Fig.  2B-D). The largest 
infection attack rate for A/H3N2 influenza was 22.6% 
(95%CI: 19.3–27.3%), observed during the 2011–2012 
season; for B it was 18.3% (95%CI: 15.7–21.9%) in the 
2012–2013 season; for A/H1N1pdm09 it was 14.1% 
(95%CI: 12.3–16.9%) in the 2017–2018 season. Inter-
estingly, the second largest infection attack rate for A/
H1N1pdm09 was recorded the season following the 
pandemic, 12.4% (95%CI: 8.3–18.1%), and it was slightly 

Fig. 1  A Weekly incidence of ILI cases per 1000 individuals reported to the Italian surveillance system for the ten seasons from 2010 to 2011 to 
2019–2020. B As A, but for ILI cases testing positive for influenza virus. C As B, but for the estimated incidence of influenza infections, adjusted by 
considering the reporting rate
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lower than that observed during the pandemic year, 
16.3% (95%CI: 9.4–23.1%) [16]. Essentially no circula-
tion of A/H1N1pdm09 was recorded in 2011–2012 and 
2016–2017, while low circulation was observed in the 
2013–2014, 2015–2016 and 2019–2020 seasons (esti-
mated infection attack rates lower than 5%).

By considering infection attack rates by age, the figure 
is very heterogeneous across different seasons and influ-
enza subtype (Fig.  2B-D). Specifically, for A/H1N1 sub-
type, the infection attack rate decreases by age group, 
while for A/H3N2 this hold only in the 2011–2012 sea-
son, when it is the predominant subtype. During sea-
sons when all three types/subtypes co-circulated, i.e., 
2014–2015, 2015–2016, and 2019–2020, individuals aged 
5–14 years were the most affected by A/H3N2. On the 
other side, in all the analyzed seasons, the most affected 
age group by influenza B is 5–14 years with attack rates as 
high as 46.3% (95%CI: 38.1–54.8%) during the 2012–2013 
season. The elderly appear to be the least affected seg-
ment of the population across all types/subtypes and sea-
sons, showing an attack rate consistently lower than 5.0%.

We estimate the effective reproduction number to be 
in the range 1.08–1.41 (see Table. 1), in agreement with 
the literature on seasonal influenza [31]. We find that the 
reproduction number of A/H1N1pdm09 was highest in 
2017–2018 season and reached the value of 1.41 (95%CI: 
1.37–1.46), lower than values observed in Italy for the 
pandemic [5]. Only during three seasons the mean effec-
tive reproduction number exceeded 1.3: for A/H3N2 

subtype in the 2011–2012 season (estimated mean 1.31, 
95%CI: 1.27–1.34) and for B virus in the 2012–2013 sea-
son (estimated mean 1.33 95%CI: 1.29–1.38).

We estimate the susceptibility to infection to be rather 
constant across different seasons, but rather heteroge-
neous across different types/subtypes, suggesting that 
this epidemiological parameter is highly characteristic 
of each type/subtype (Fig. 3). In all seasons, we estimate 

Fig. 2  A Estimated mean attack rate (total and by age group) for all types/subtypes (total) and B-D.by type/subtype in the ten seasons from 2010 
to 2011 to 2019–2020. The vertical lines represent 95%CI calculated with an exact binomial test applied to the number of samples testing positive 
for each type/subtype and the number of tested samples

Table 1  Estimated posterior distribution of the effective 
reproduction number (mean and 95%CI). Only types/subtypes 
that accounted for more than 15% of the seropositive samples 
are considered

Season Mean effective reproduction number (95%CI)

Influenza type/subtype

A/H1N1pdm09 A/H3N2 B

2010–2011 1.29 (1.16–1.5) – 1.28 (1.19–1.38)

2011–2012 – 1.31 (1.27–1.34) –

2012–2013 1.11 (1.1–1.12) – 1.33 (1.29–1.38)

2013–2014 1.1 (1.09–1.11) 1.11 (1.09–1.12) –

2014–2015 1.14 (1.12–1.15) 1.14 (1.12–1.16) 1.1 (1.08–1.11)

2015–2016 1.08 (1.07–1.1) 1.09 (1.08–1.11) 1.25 (1.22–1.27)

2016–2017 – 1.16 (1.14–1.17) –

2017–2018 1.41 (1.37–1.46) – 1.27 (1.25–1.3)

2018–2019 1.22 (1.2–1.24) 1.19 (1.17–1.21) –

2019–2020 1.11 (1.09–1.12) 1.14 (1.13–1.15) 1.23 (1.22–1.25)
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the susceptibility to A/H1N1pdm09 infection to be in the 
range 0.25–0.49 for both 5–14 years and 15–64 years age 
groups, markedly different from what was estimated for 
the 2009 pandemic where school-age individuals were 
highly susceptible to infection [7, 16, 25–27, 32].

A markedly larger susceptibility to infection was esti-
mated for individuals aged 5–14 years for the other two 
types/subtypes, reaching values of 0.86 (95%CI: 0.55–
1.33) for B influenza during the 2010–2011 season and 
0.70 (95%CI: 0.64–0.76) for A/H3N2 influenza during 
the 2013–2014 season. For all types/subtypes, a highly 
variable susceptibility to infection is estimated for the 
elderly, with mean values ranging from nearly 0.16 up 
to 2.44. This is due to the low number of samples col-
lected (and also testing positive) among ILI cases aged 
65+ years, which results in highly variable Bayesian esti-
mates. However, in the seasons where influenza circula-
tion among the elderly is detected, the elderly tends to be 
more susceptible to A/H3N2 and B infection than to A/
H1N1pdm09 infection.

Two sensitivity analyses were conducted to assess the 
robustness of our results with respect to the length of 
the generation time. Specifically, we reported results on 
Reff and age-specific susceptibility to infection obtained 
by setting the generation time in the range 1.7–3.7 days, 
based on a systematic review of serial intervals of respira-
tory infectious diseases [22].

Estimates of all four parameters are coherent with 
results of the baseline analysis [see Fig.S4-S5 and 
Table S4-S5 in Additional File 1].

Discussion
By analyzing epidemiological and surveillance data as 
well as seroepidemiological, socio-demographic, and 
contact data, we used mathematical modeling to char-
acterize influenza transmission patterns over ten influ-
enza seasons in Italy. We witnessed an alternation of 

a predominant type/subtype and the co-circulation of 
multiple types/subtypes. Nonetheless, we estimate the 
effective reproduction number to be mostly in the range 
1.1–1.3 and only in one season above 1.4, in general 
agreement with the literature [31]. Age-specific suscep-
tibility to infection appears to be type/subtype-related, 
with a markedly larger susceptibility of 5–14 years old 
individuals to A/H3N2 and B influenza infection than 
to A/H1N1pdm09 influenza infection. Susceptibility to 
infection estimates for the elderly are highly variable both 
by type/subtype and by season. The estimated reporting 
rate to the Italian national surveillance system of about 1 
case out of 3–5 is in line with the estimates found in pre-
vious studies [5, 25, 30].

The estimated total infection attack rate varied between 
about 13% to about 30% across seasons.

To our knowledge, there are no studies reporting esti-
mates on seroconversion rates for seasonal influenza 
neither for Italy nor for other European countries to com-
pare our results with. However, a recent study based on 
data collected in central and southern Vietnam between 
2009 to 2015 estimated annual attack rates at 25.6% (95% 
CI: 24.1–27.1%) for H3 strains and at 16.0% (95% CI: 
14.7–17.3%) for H1 strains [33], and another longitudi-
nal study conducted in Hong Kong between 2009 and 
2011 on influenza A estimated seroconversion rates as 
high as 22%, and slightly higher among the elderly for A/
H3N2 [34], which are in line with our estimates. When 
analyzing the infection attack rate by age, an even larger 
variability was estimated, mainly associated with the dif-
ferent infection patterns of the three types/subtypes. In 
fact, individuals aged 0–4 years are generally the most 
affected group by influenza A/H1N1pdm09 subtype 
while B influenza virus affects mainly individuals aged 
5–14 years. However, A/H1N1pdm09 and B types/sub-
types affect the elderly less than A/H3N2, probably due 
to the high degree of antigenic drift of the A/H3N2 virus 

Fig. 3  Estimated posterior distributions of the susceptibility to infection of 5-14y (A), 15-64y (B) and 65 + y (C) age group (mean and 95%CI) relative 
to the 0–4 years age group (for which the susceptibility to infection is set to the reference value of 1). Only types/subtypes that accounted for more 
than 15% of the positive samples are considered. The values reported above the vertical lines in the right panels represent the 97.5% percentile of 
the distribution, when the value exceed the limit of the vertical axis
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[35], and the consequent lower vaccine effectiveness 
against A/H3N2 infection [20] and higher susceptibility 
to infection. Overall, individuals aged 14 years or less are 
the most affected segment of the population, coherently 
with seroepidemiological studies performed on the 2009 
pandemic [16, 36–38], probably due to both a larger sus-
ceptibility to infection, as measured in this study and in 
the literature [7, 16, 26, 27], and to the larger number of 
social contacts of school-age individuals with respect to 
the rest of the population [23–25].

We estimate the elderly to be the least affected age 
group. However, this segment of the population is asso-
ciated in the literature with larger hospitalization and 
mortality rates [39, 40]. Therefore, also in the light of the 
rapid increase in the aging of populations throughout 
the world, this makes the study of immunosenescence in 
older individuals and the development of more immu-
nogenic vaccines, two pipeline priorities in the control 
and prevention of influenza [41]. Moreover, although our 
estimates of the age-specific susceptibility to infection 
cannot be used to discern between biological, social, or 
hygienic determinants, they provide relevant indications 
for interventions targeting specific age segments of the 
population, school-age individuals above all.

These results support the importance of recommend-
ing the vaccine also to school-age healthy children, as 
already done by some EU countries and internationally 
[42] and call for further studies on school closure strat-
egies as a possible non-pharmaceutical intervention to 
mitigate influenza spread in case of severe and/or pan-
demic seasons [25, 43–48].

It is important to stress that our study suffer of some 
limitations. First, neither we explicitly consider the 
potential cross protection among different types/sub-
types nor the co-circulation of multiple influenza types/
subtypes. However, by considering age- and season-spe-
cific susceptibility to infection to each influenza type/
subtype, the estimated infection attack rates by age are 
not strongly affected by the lack of an explicit simula-
tion of cross protection and co-circulation of multiple 
influenza types/subtypes. To pin down the effect of cross 
protection alone, the collection of serological data for dif-
ferent influenza type/subtype of the Italian population 
in different age classes would be warranted. A second 
limitation is that we relied on reporting rates estimated 
during the H1N1 pandemic in Italy, which are avail-
able for two age strata of the population that encompass 
include individuals possibly characterized by very differ-
ent risks and behaviors. However, these estimates are in 
general agreement with independent estimates available 
in the literature [5, 25, 32]. A third limitation is that we 
assumed that the estimated reporting rates are constant 
across all the analyzed seasons and types/subtypes. The 

calculation of type/subtype- and season-specific report-
ing rates was not possible due to the unavailability of the 
necessary data (pre- and post-influenza season serologi-
cal data). Although our assumption is partially backed 
up by the findings of Carrat and colleagues [4], who 
estimated a similar share of individuals developing clini-
cal symptoms after influenza infection for A/H1N1, A/
H3N2, and B influenza types/subtypes, there is evidence 
of a vaccine-associated reduction of symptoms among 
vaccinated patients [49]. We acknowledge that the adop-
tion of reporting rates estimated for the 2009 H1N1 
pandemic, which do not account for vaccination, may 
affect our estimates of transmissibility and age-specific 
susceptibility to infection. A final limitation is that the 
attack rates were estimated using virological data by age 
over the entire course of the influenza season, without 
accounting for possible heterogeneities over time, due to 
data unavailability. Although this may bias our estimates 
of the effective reproduction number and susceptibility 
to infection for the three types/sub-types, we would like 
to stress that the virological surveillance is designed in 
such a way that the number of analyzed samples is pro-
portional to the incidence of reported ILIs. Indeed, the 
general aim of virological surveillance is to facilitate vac-
cine strain selection by understanding the circulating 
influenza virus types, subtypes, and lineages and the age 
distribution of influenza confirmed cases [50].

Conclusions
Our study provides indications on age- and type/
subtype-specific incidence rates and susceptibility to 
infection as well as pathogen transmissibility, thus 
contributing to define a clear picture of the epidemiol-
ogy of seasonal influenza in Italy. Our work provides 
relevant insights on age-specific targets for influenza 
immunization and non-pharmaceutical intervention 
plans, possibly also tailored on the circulating influenza 
type/subtype.
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