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Abstract 

Background:  Great achievements have been achieved by free antiretroviral therapy (ART). A rapid and accurate pre-
diction of survival in people living with HIV/AIDS (PLHIV) is needed for effective management. We aimed to establish 
an effective prognostic model to forecast the survival of PLHIV after ART.

Methods:  The participants were enrolled from a follow-up cohort over 2003-2019 in Nanjing AIDS Prevention and 
Control Information System. A nested case-control study was employed with HIV-related death, and a propensity-
score matching (PSM) approach was applied in a ratio of 1:4 to allocate the patients. Univariable and multivariable Cox 
proportional hazards analyses were performed based on the training set to determine the risk factors. The discrimi-
nation was qualified using the area under the curve (AUC) and concordance index (C-Index). The nomogram was 
calibrated using the calibration curve. The clinical benefit of prognostic nomogram was assessed by decision curve 
analysis (DCA).

Results:  Predictive factors including CD4 cell count (CD4), body mass index (BMI) and hemoglobin (HB) were 
determined and incorporated into the nomogram. In the training set, AUC and C-index (95% CI) were 0.831 and 0.798 
(0.758, 0.839), respectively. The validation set revealed a good discrimination with an AUC of 0.802 and a C-index (95% 
CI) of 0.786 (0.681, 0.892). The calibration curve also exhibited a high consistency in the predictive power (especially in 
the first 3 years after ART initiation) of the nomogram. Moreover, DCA demonstrated that the nomogram was clinically 
beneficial.

Conclusion:  The nomogram is effective and accurate in forecasting the survival of PLHIV, and beneficial for medical 
workers in health administration.
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Introduction
Over the past 30 years, HIV has become a major global 
public health challenge [1]. In China, free antiretroviral 
therapy (ART), launched in 2003, has proven to efficiently 
recover CD4 cell count (CD4), lower viral load (VL) and 
curb HIV transmission [2]. Nevertheless, the poor prog-
nosis of people living with HIV/AIDS (PLHIV) after ART 
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remains a concern [3, 4]. It is essential to create a tool to 
rapidly and accurately predict death risk among PLHIV.

Studies have shown that CD4, CD8 cell count (CD8), 
and VL before treatment are closely associated with 
the mortality of PLHIV [5–13]. Clinical indicators are 
reported to have a close association with death risk 
of PLHIV [5, 7–16]. Some laboratory indicators, such 
as hemoglobin (HB), platelet-related indexes, are also 
related to the progression and mortality of HIV-related 
diseases after ART [3, 17–23].

Since the combination of several independent indica-
tors, rather than a single predictive factor, has a stronger 
predictive power, several scoring systems based on the 
multiple risk factors have been proposed to forecast the 
mortality of PLHIV. However, there still lacks a widely-
held effective scoring system to predict the survival of 
ART-treated PLHIV.

In recent years, various multi-factor models have been 
designed to estimate disease outcomes. A risk-scoring 
system can be established according to the recommen-
dation of Transparent Reporting of a multivariable pre-
diction model for Individual Prognosis or Diagnosis 
(TRIPOD) [24]. Nomogram is convenient to predict the 
prognosis of patients [25]. Previous nomograms have 
failed to assess the outcomes of ART. For example, in 
the model by Margaret et  al. [26], a concordance index 
(C-Index) of 0.75 (95% CI: 0.74-0.81) in the training set 
and a C-Index of 0.69 (95% CI: 0.59-0.77) in the valida-
tion set were presented. This model achieves a satisfac-
tory performance, but far from excellent. Few prognostic 
models based on PLHIV after receiving ART have pre-
sented good discrimination and calibration. In the model 
established by Hou et  al. [27], the C-Indexes are 0.91 
(95% CI: 0.86-0.97) in the training set and 0.92 (95% CI: 
0.82-1.00) in the validation set.

In the present study, to build a simple and effective 
prognostic model to forecast the survival of PLHIV after 
ART, a nested case-control study was employed with 
HIV-related mortality events, and a propensity-score 
matching (PSM) approach was applied to allocate the 
patients in a ratio of 1:4. To make the model more reliable 
and robust, bootstrap was used for internal validation. 
The discrimination and calibration of the model were 
evaluated based on the training set and validation set. 
Decision curve analysis (DCA) was also used to evaluate 
the performance of the nomogram.

Materials and methods
Study design
The data used in this study were extracted from patients 
who received ART between 2003 and 2019 from Nan-
jing AIDS Prevention and Control Information System 
(AIDS-PCIS). All patients received a free ART containing 

at least three antiviral medicines. The follow-up started 
after ART initiation and the participants were visited 
every 3 months. The observation end point was Decem-
ber 31, 2019, and the outcome was death. The survival 
time was defined as the duration from ART initiation 
to death or December 31, 2019. The inclusion criteria 
included: (1) living in Nanjing; (2) being visited at least 
once; (3) being over 18 years old when ART started; and 
(4) having complete laboratory test data before starting 
ART. At the end of the follow-up, a total of 4573 patients 
met the inclusion criteria. Among them, 120 patients 
died of HIV/AIDS-related diseases and were determined 
as the cases in the nested case-control study. The flow-
chart of recruitment participants is shown in the Fig. 1.

Data collection
Demographic data and clinical information were 
retrieved from face-to-face surveys at the patients’ enroll-
ment or extracted from their medical records using a 
structured questionnaire designed specifically for AIDS-
PCIS. The information included the date of birth, gender, 
height, weight, marital status, infection route and WHO 
clinical stage. The age of the patient was calculated from 
the date of birth to the date of starting ART. Body mass 
index (BMI) was calculated using the following formula: 
BMI = weight (kg) / (height (m) × height (m)).

The laboratory testing data were obtained from the 
Nanjing Center for Disease Control and Prevention 
(CDC) or local hospitals. The laboratory testing indi-
cators included CD4, white blood cell (WBC), blood 
platelets (PLT), HB, serum creatinine (CR), triglycer-
ides (TG), total cholesterol (TC), fasting blood glucose 
(FBG), aspartate aminotransferase (AST), alanine ami-
notransferase (ALT) and total bilirubin (TBIL). All these 
laboratory tests were carried out by the trained techni-
cal personnel strictly following clinical guidelines at each 
visit in the central laboratory of local hospitals or Nan-
jing CDC.

Routine blood biochemical indexes, such as TG, TC, 
FBG, CR, AST, ALT, and TBIL, were measured using 
a Beckman AU5800 automatic biochemical analyzer 
(Beckman COULTER K., Japan). Other indexes including 
WBC, HB and PLT were evaluated by Sysmex Xe-2100 
automatic blood cell analyzer (Sysmex Corporation, 
Japan). CD4 was determined by the BD FACSCalibur 
flow cytometer (Becton Dickinson Corporation, USA).

Statistical analysis
Data processing
For a multi-factor regression model, there is no simple 
method to estimate its proper sample size. When the 
number of predictors is much larger than that of out-
comes, overfitting may occur. Previous literature showed 
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that in the conservative estimation, one prediction fac-
tor requires at least 10 effective outcomes. In this study, 
there were 120 cases with effective outcomes, so the 
number of predictors should be less than 12.

Since directly dropping the data with missing values 
might lead to selection bias, or decrease the power of a 
test, missing value imputation was applied to obtain suit-
able values by employing the values of other variables 
before data analysis. The results were listed in Fig.  2. A 
sensitivity analysis was carried out to evaluate the filling 
effect of the missing values (Table 1).

A total of 120 deaths caused by HIV/AIDS-related dis-
eases were determined as the cases in the nested case-
control study. S(60) was set as the index date (month). To 
ensure that all the subjects in the case group could have 
a matching control, PSM was applied in a ratio of 1:4 to 
determine the participants (a case was well matched with 
4 controls in age, gender and index date) [28]. Finally, 600 
subjects were included in this study with 120 dead and 
480 alive PLHIV who were separated into 120 blocks.

Establishment and validation of prediction model
The patients were randomly split into a training set and 
a validation set in a ratio of 7:3. The comparability of the 

training set and validation set was then evaluated. Con-
tinuous variables with normal distribution were pre-
sented as mean ± standard deviation, and t-tests were 
used to infer the differences between the training and 
validation sets. The continuous variables with skewed 
distribution were described using median (first quar-
tile, second quartile). The Wilcoxon rank-sum tests were 
employed for comparisons. Frequency (ratio) was utilized 
to describe the characteristics of categorical variables, 
and comparisons between the two sets were performed 
using chi-square tests or Fisher’s exact tests.

Then the data in the training set were used to fit a 
model and the data in validation set were applied to 
evaluate the efficacy of the model. Based on the data in 
the training set, univariable Cox proportional hazards 
analysis was performed for each variable. P-values of the 
variables were calculated based on the univariable Cox 
proportional hazards regression model. The variables 
with p-values less than or equal to 0.2 were included 
in a multivariable Cox proportional hazards regres-
sion model. After the multivariable analysis, the factors 
with p-value less than or equal to 0.05 were included in 
the prediction model. According to Occam’s Razor, the 
model with the fewest variables is the best [29]. Finally, 

Fig. 1  A flowchart of predicted HIV-related survival of people living with HIV/AIDS (PLHIV) using nomogram model



Page 4 of 12Jiang et al. BMC Public Health           (2022) 22:30 

we considered both the statistically significant risk fac-
tors and professionally significant factors, such as the dif-
ficulty of index measurement, the cost of measurement 

and the difficulty of application, and then determined the 
predictive factors and select a prediction model with the 
best predictive performance.

Fig. 2  Proportion of missing values (A) and distribution of combinations of missing values (B) in training set. Abbreviations: BMI = body mass 
index; WBC = white blood cell; PLT = blood platelet; HB = hemoglobin; CR = creatinine; TG = triglyceride; TC = total cholesterol; FBG = fasting blood 
glucose; AST = aspartate aminotransferase; ALT = alanine aminotransferase; TBIL = total bilirubin

Table 1  Sensitivity analysis in imputation for missing data

Abbreviations: BMI body mass index, WBC white blood cell, PLT blood platelet, HB hemoglobin, CR creatinine, TG triglyceride, TC total cholesterol, FBG fasting blood 
glucose, AST aspartate aminotransferase, ALT alanine aminotransferase, TBIL total bilirubin

Variables Before imputation(mean ± standard deviation) After imputation(mean ± standard deviation) P value

Weight, kg 64.8 ± 10.2 64.8 ± 10.1 0.953

Height, cm 172.0 ± 6.1 172.0 ± 6.1 0.828

BMI, kg/m2 21.9 ± 3.0 21.8 ± 3.0 0.564

WBC, 109/L 5.7 ± 2.0 5.7 ± 2.0 0.991

PLT, 109/L 188.7 ± 62.5 188.6 ± 62.5 0.961

HB, g/L 142.7 ± 30.9 142.7 ± 30.9 0.995

CR, mmol/L 71.3 ± 19.4 71.3 ± 19.4 0.932

TG, mmol/L 1.7 ± 2.3 1.7 ± 2.3 0.928

TC, mmol/L 4.3 ± 1.3 4.3 ± 1.3 0.976

FBG, mmol/L 5.6 ± 1.3 5.6 ± 1.3 0.922

AST, U/L 27.0 ± 27.2 27.1 ± 27.2 0.955

ALT, U/L 30.2 ± 29.2 30.2 ± 29.2 0.986

TBIL, mmol/L 12.0 ± 6.2 12.0 ± 6.2 0.964
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The repeatability and extrapolation of the predic-
tion model should be evaluated. A strict evaluation of 
the prediction model should include internal valida-
tion and external validation. The internal validation is 
performed using the same dataset as the training set. 
This study employed the bootstrap resampling [30] for 
internal validation because of the lack of additional 
data to verify the model. The 1000 resampling per-
formances of the model were averaged as the internal 
validation performance.

Discrimination and calibration are the two most 
common evaluation indicators. The discrimination 
of the prediction model is quantified using the area 
under the curve (AUC) and C-Index. The C-Index value 
ranges from 0 to 1. The closer C-Index is to 1, the bet-
ter the discrimination of the model is. A C-Index of 
0.5 indicates that the model has no predictive ability. 
When C-Index is less than 0.5, the model prediction 
is contrary to the actual results. In general, a C-Index 
of 0.7 indicates a good prediction performance of the 
model. However, discrimination cannot reflect whether 
the estimate of absolute risk of prediction model is 
accurate or not because it is only based on risk scores 
or the ranking of prediction probabilities. Calibra-
tion is a more accurate indicator to qualify the predic-
tion model. In this study, the calibration of the model 
was evaluated using the calibration curve. We sorted 
the predicted probabilities of all participants from the 
smallest to the largest, and divided the patients into 
ten equal parts. The average predicted probability of 
patients in each divided part was used as x-axis and the 
proportion of actual events as y-axis. Ideally, the cali-
bration graph was a straight line with an intercept of 0 
and a slope of 1. The predictive ability of the model was 
also evaluated using decision curve analysis (DCA).

Integrated discrimination improvement (IDI), net 
reclassification index or improvement (NRI) and other 
indicators that are used to compare models or evalu-
ate the increase in predictive performance of individual 
predictors were not discussed in the present study.

Presentation of nomogram
The prediction model was visualized and presented by 
a nomogram. To calculate the score of each variable 
at each level, a scoring standard was developed based 
on the standard regression coefficients of all variables. 
Then using the scores of these factors, we calculated a 
total score to indicate the survival probability of each 
patient.

All data analyses and figures were made using R soft-
ware version 4.1.0. All hypothesis tests were two-sided, 
with an α level of 0.05.

Results
Establishment of prediction model
In this PSM-based nested case-control study, the charac-
teristics of the 600 PLHIV (420 from the training set and 
180 from the validation set) revealed that both sets were 
similar in all variables (Table 2).

In the univariable Cox proportional hazards regres-
sion analysis of the training set, infection route, baseline 
Tuberculosis (TB), continuous diarrhea, continuous or 
intermittent fever, shingles, WHO clinical stage, CD4, 
BMI, HB, CR, TC, FBG, AST and ALT were detected 
to be statistically related to the mortality of PLHIV 
(Table 3). Variables with p-value less than or equal to 0.2 
in the univariable analysis were included in the multi-
variable Cox proportional hazards regression model. To 
avoid multicollinearity caused by the strong relationship 
between WHO clinical stage and CD4, WHO clinical 
stage was not included in the multivariable Cox propor-
tional hazards regression model. Shingles, CD4, BMI, HB 
and TC were found linked to HIV/AIDS-related death. 
In order to establish an optimal prediction model, the 
individual and combined performance of these factors 
were then evaluated using ROC analysis and C-Index. As 
shown in Fig. 3A, the AUCs of Shingles, CD4, BMI, HB 
and TC in the training set were 0.549, 0.755, 0.729, 0.669 
and 0.596, respectively. The AUC of combine 1 (Shin-
gles + CD4 + BMI + HB + TC) was 0.82, and the AUC 
of combine 2 (CD4 + BMI + HB) was 0.831. To compare 
the predictive performances of combine 1 and combine 
2, their C-Indexes were calculated, and the results were 
0.806 (95% CI: 0.766, 0.846) and 0.798 (95% CI: 0.758, 
0.839), indicating both models had a prediction accu-
racy of around 80%. Besides, no statistically significant 
difference in the C-Indexes between combine model 
was observed (P = 0.957) (Fig.  4A). The discrimination 
between the two models was not large, but combine 2 
involved fewer variables. Thus, combine 2 model was 
chosen and the three variables CD4, BMI and HB were 
preliminarily selected to construct a prediction model of 
three-year and five-year survival of PLHIV after ART.

Validation of prediction model
To verify the efficacy of the model in predicting the sur-
vival of PLHIV, bootstrap resampling was used for inter-
nal validation of the model. In the validation set, the 
AUCs of Shingles, CD4, BMI, HB and TC were 0.509, 
0.821, 0.676, 0.77 and 0.654 in the ROC analysis chart 
(Fig. 3B).

The AUC of combine 1 achieved 0.802, and the AUC 
of combine 2 (prediction model) was also 0.802. The 
C-Indexes of combine 1 (0.786; 95% CI: 0.679, 0.893) and 
combine 2 (0.786; 95% CI: 0.681, 0.892) were similar and 
the difference was not statistically significant (P = 0.998), 
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Table 2  Baseline demographics and clinical characteristics of patients in the training set and the validation set

Abbreviations: ALT alanine aminotransferase, AST aspartate aminotransferase, BMI body mass index, CD4 CD4 cell count, WBC white blood cell, PLT blood platelet, HB 
hemoglobin, CR creatinine, TG triglyceride, TC total cholesterol, FBG fasting blood glucose, TBIL total bilirubin, TB Tuberculosis

Variable Training set (N = 420) Validation set (N = 180) P value

Continuous variables

  Age, year 50.00 (40.00,57.00) 48.00 (37.75,61.00) 0.376

  Interval from onset to diagnosis, day 52.00 (33.00,159.50) 46.50 (26.00,149.00) 0.107

  ALT, U/L 21.65 (15.57,32.92) 22.15 (16.00,32.65) 0.629

  AST, U/L 22.15 (17.90,30.33) 23.45 (18.95,31.23) 0.173

  BMI, kg/m2 21.85 (19.84,23.94) 21.48 (19.24,23.68) 0.106

  CD4, cells/μL 259.50 (111.50,384.50) 243.50 (101.00,377.25) 0.79

  TC, mmol/L 4.15 (3.55,4.82) 4.12 (3.48,4.80) 0.559

  CR, μmol/L 69.00 (61.00,77.00) 69.00 (59.83,78.00) 0.778

  FBG, mmol/L 5.60 (5.10,6.09) 5.37 (4.91,5.92) 0.051

  HB, g/L 136.00 (119.75,151.00) 136.00 (117.75,152.25) 0.956

  PLT, 109/L 172.00 (137.00,213.25) 167.50 (135.75,219.00) 0.808

  TBIL, μmol/L 10.25 (7.80,14.00) 10.30 (6.80,13.40) 0.203

  TG, mmol/L 1.38 (1.03,1.87) 1.32 (0.96,1.97) 0.458

  WBC, 109/L 5.20 (4.10,6.38) 5.04 (4.01,6.38) 0.475

Discrete variables

  Gender, n(%)

    Male 386 (91.90) 160 (88.89) 0.276

    Female 34 (8.10) 20 (11.11)

  Hepatitis B Virus, n(%)

    Negative 390 (92.86) 170 (94.44) 0.593

    Positive 30 (7.14) 10 (5.56)

  Hepatitis C Virus, n(%)

    Negative 413 (98.33) 178 (98.89) 0.731

    Positive 7 (1.67) 2 (1.11)

  Marital status, n(%)

    Unmarried 68 (16.19) 42 (23.33) 0.05

    Married 352 (83.81) 138 (76.67)

  Shingles, n(%)

    No 375 (89.29) 165 (91.67) 0.458

    Yes 45 (10.71) 15 (8.33)

  Infection route, n(%)

    Homosexual transmission 240 (57.14) 98 (54.44) 0.77

    Heterosexual transmission 122 (29.05) 54 (30.00)

    Other transmission 58 (13.81) 28 (15.56)

  Baseline TB, n(%)

    No 407 (96.90) 175 (97.22) 1.00

    Yes 13 (3.10) 5 (2.78)

  WHO clinical stage, n(%)

    I, II 189 (45.00) 75 (41.67) 0.655

    III 102 (24.29) 43 (23.89)

    IV 129 (30.71) 62 (34.44)

  Continuous or intermittent fever, n(%)

    No 387 (92.14) 167 (92.78) 0.868

    Yes 33 (7.86) 13 (7.22)

  Continuous diarrhea (> one month), n(%)

    No 397 (94.52) 165 (91.67) 0.202

    Yes 23 (5.48) 15 (8.33)
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which showed that the discrimination of combine 1 
and combine 2 (prediction model) was not very large 
(Fig. 4B). The calibration curve also exhibited a high con-
sistency in predicting the survival of PLHIV (especially in 
the first 3 years after ART initiation) (Fig. 5).

As shown in Fig. 6, in both the training set and the vali-
dation set, the prediction model (combine 2) showed bet-
ter performance. Overall, the DCA curve demonstrated 
that the prediction model (combine 2) could make valu-
able and profitable judgements. In addition, among the 
detected factors, CD4 was more beneficial than the other 
routine clinical laboratory indicators in predicting the 
three-year and five-year survival probabilities of PLHIV. 
In Fig. 6D, DCA curve showed that the prediction model 

had no good benefits in predicting five-year survival 
probabilities of PLHIV in the validation set.

Performance of nomogram
A nomogram was drawn according to the determined 
prediction model. As seen in Fig. 7, each selected pre-
dictor was assigned with a score according to its value 
in the nomogram based on the established predic-
tion model. Then a vertical line perpendicular to the 
Point axis was drawn from this point. The intersection 
point on the Point axis represented the score under the 
determined value of the predictor. For example, when 
CD4 was 1200 cells/μL, the score was 0 point; when 

Table 3  Univariable and multivariable Cox proportional hazards analysis of the training set

Note: # p < 0.2; * p < 0.05; *** p < 0.001

Abbreviations: CD4 CD4 cell count, WBC white blood cell, PLT blood platelet, HB hemoglobin, CR creatinine, TG triglyceride, TC total cholesterol, FBG fasting blood 
glucose, AST aspartate aminotransferase, ALT alanine aminotransferase, TBIL total bilirubin, TB Tuberculosis

Variables Univariable Multivariable
HR (95%CI) P value AHR (95%CI) P value

Female 1.364 (0.686,2.712) 0.376

Marital Status (Married) 0.83 (0.496,1.388) 0.478

Infection route

  Homosexual transmission Ref Ref Ref Ref

  Heterosexual transmission 1.551 (0.984,2.446) 0.059# 1.327 (0.821, 2.145) 0.248

  Other transmission 1.979 (1.142,3.428) 0.015* 1.193 (0.661, 2.154) 0.478

Baseline TB 2.024 (0.821,4.986) 0.125# 1.264 (0.491, 3.255) 0.584

HBV (Negative) 0.619 (0.227,1.689) 0.349

HCV (Negative) 0.702 (0.098,5.04) 0.725

Continuous diarrhea (> one month) 2.478 (1.286,4.775) 0.007* 2.271 (1.088, 4.742) 0.058

Continuous or intermittent fever 2.028 (1.141,3.605) 0.016* 0.905 (0.448, 1.680) 0.628

Shingles 1.905 (1.138,3.187) 0.014* 1.965 (1.140, 3.390) 0.018*

WHO clinical stage

  I, II Ref Ref – –

  III 1.572 (0.908,2.721) 0.106# – –

  IV 2.692 (1.678,4.318) < .001*** – –

Age, year 1.007 (0.99,1.023) 0.424

Interval from onset to diagnosis, day 1.000 (1.000,1.000) 0.564

CD4, cells/μL 0.995 (0.994,0.997) < .001*** 0.996 (0.995, 0.0.998) < .001***

BMI, kg/m2 0.795 (0.74,0.853) < .001*** 0.875 (0.809, 0.946) < .001***

WBC, 109/L 0.969 (0.888,1.057) 0.476

PLT, 109/L 0.998 (0.995,1.001) 0.254

HB, g/L 0.968 (0.961,0.975) < .001*** 0.975 (0.965, 0.984) < .001***

CR, μmol/L 1.002 (1,1.005) 0.099# 1.002 (0.999, 1.005) 0.175

TG, mmol/L 0.963 (0.849,1.093) 0.562

TC, mmol/L 0.707 (0.57,0.877) 0.002* 0.821 (0.670, 1.006) 0.038*

FBG, mmol/L 0.731 (0.59,0.905) 0.004* 0.938 (0.769, 1.145) 0.442

AST, U/L 1.011 (1.006,1.017) < .001*** 1.001 (0.989, 1.014) 0.951

ALT, U/L 1.008 (1.002,1.014) 0.008* 1.002 (0.992, 1.012) 0.647

TBIL, mmol/L 0.991 (0.957,1.027) 0.617
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BMI was 12 kg/m2, the score was 63 points. By anal-
ogy, the score of each predictor could be determined, 
and summed up. Similarly, after the total score was 
calculated, a vertical line was drawn from the point of 
the patient’s total score on the Total Points axis to the 
axis of survival probability (such as three-year survival 

probability or five-year survival probability). The 
intersection point on the axis of survival probability 
represented the patient’s three-year or five-year sur-
vival probability.

Fig. 3  ROC curves of Shingles, CD4, BMI, HB and TC, combine 1 (Shingles, CD4, BMI, HB and TC) and combine 2 (CD4, BMI and HB) in the training set 
(A) and the validation set (B). Abbreviations: CD4 = CD4 cell count; BMI = body mass index; HB = hemoglobin; TC = total cholesterol

Fig. 4  C-Indexes of combine 1 (Shingles, CD4, BMI, HB and TC) and combine 2 (CD4, BMI and HB) in the training set (A) and the validation set (B)
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Discussion
Although the survival of PLHIV has been improved 
significantly with the promotion of free ART, a rapid 
and accurate prediction can benefit the personalized 
management of PLHIV and the allocation of medical 
resources [26].

For prognosis, due to a longitudinal temporal logic 
between predictors and outcome, the cohort study is 
used to analyze the data and fit a prognostic model. 
Randomized controlled clinical trials are considered as 
a prospective cohort study with more rigorous inclu-
sion criteria, which therefore can be used to establish a 
prognostic model. However, it has limitations in extrapo-
lation. Due to the population selection bias and informa-
tion bias, retrospective cohort studies are not suitable 
for constructing a prognostic model, while nested case-
control or case cohort studies are more economical and 
feasible for studies with rare outcomes or expensive pre-
dictive factor measurements. To decrease the influence 
of the limitation, we took into account the survival time 

when performed PSM. Based on this nested case-control 
study of an HIV/AIDS ART cohort in Nanjing, the rela-
tionship between routine laboratory indicators and the 
survival probability of PLHIV was evaluated. A prognos-
tic model (including CD4, BMI and HB) with satisfactory 
discrimination and calibration was developed to predict 
the three-year and five-year survival of PLHIV receiving 
ART. Then the result of this prognostic model was shown 
in the form of a nomogram.

Nomogram is simple, direct and effective in predict-
ing the prognosis of PLHIV [24]. In this study, the mul-
tivariable Cox proportional hazards regression model 
indicated that the five factors (Shingles, CD4, BMI, HB 
and TC) were associated with the HIV/AIDS-related sur-
vival time. To overcome the limitation of a single predic-
tor and simplify the prediction procedure, three detected 
factors (CD4, BMI and HB) were combined to construct 
a prognostic model to predict the three-year and five-
year survival of ART-treated PLHIV, which exhibited a 
high consistency.

Fig. 5  Calibration curves for predicting overall survival by combine 1 (Shingles, CD4, BMI, HB and TC) and combine 2 (CD4, BMI and HB) in the 
training set and the validation set. Notes: Calibration curves for 3-year overall survival (A), 5-year overall survival (C) in the training set; calibration 
curves for 3-year overall survival (B), 5-year overall survival (D) in the validation set
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WHO clinical stage had a close association with PLHIV 
survival [13] but was excluded in the nomogram. The 
main reason was that there was a strong relationship 
between WHO clinical stage and CD4 in the current 
study, which caused multicollinearity. In addition, the 
laboratory indicators (CD4) usually are more sensitive 
in predicting survival rate of PLHIV than the clinical 
indicators (WHO clinical stage). In recent years, many 
researchers have reported that some laboratory indica-
tors are connected with the survival of PLHIV. In this 
study, CD4, BMI and HB were significantly correlated 
with the survival of PLHIV and showed good consistency 
with these published studies [10, 16, 21, 26].

An obesity paradox was seen in this predictive nomo-
gram of PLHIV, and those with high BMI had a low risk of 
death. This may be due to the fact that the protective effect 
of BMI helps preserve the immune system response and 
slow the progression of HIV [31]. There is some evidence 

that a higher BMI is associated with more robust CD4 
recovery in ART-treated patients [32]. Previous studies 
also suggested that the immune reconstitution on ART 
was often the highest among overweighted patients [33].

DCA is commonly applied to assess the efficacy of 
specific clinical prediction models [34]. In this study, 
DCA was used to assess the potential clinical benefits 
of nomogram, which revealed that nomogram was more 
effective and accurate than a single indicator in forecast-
ing the survival of PLHIV. Prediction models are always 
less powerful in predicting outcomes during a long time. 
With more samples in the future, the performance of pre-
diction models might be improved.

The present model has a limitation. It was established 
based on a few easily collected and low-cost predictors 
due to the underdeveloped technology in the past. How-
ever, as the economy and technology evolve, clinical pre-
diction models that involve a larger number of data (big 

Fig. 6  The DCA curve of Shingles, Diarrhea, WHO, CD4, BMI and HB, combine 1 (Shingles, CD4, BMI, HB and TC) and combine 2 (CD4, BMI and 
HB) in the training set and the validation set. Notes: DCA curve for 3-year overall survival (A), 5-year overall survival (B) in the training set; DCA 
curves for 3-year overall survival (C), 5-year overall survival (D) in the validation set. The horizontal axis represents the threshold probability, the 
probability of whether a patient receives treatment. The vertical axis represents the net benefit rate after the advantages minus the disadvantages. 
Under the same threshold probability, a larger net benefit implies that patients can obtain the maximum benefit using this model. The closer the 
curve in the DCA graph is to the top, the higher the value of the model diagnosis is. Abbreviations: CD4 = CD4 cell count; BMI = body mass index; 
HB = hemoglobin; TC = total cholesterol
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data) will be developed. Hopefully, more complex models 
and algorithms based on machine learning and artificial 
intelligence will provide more benefits to medical work-
ers, PLHIV and medical decision makers.
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