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Abstract

Background: Structural equation modeling (SEM) is a method used to evaluate linear causal relationships among
variables. This study aimed to investigate the direct and indirect effects of serum 25(OH) D on certain cardiovascular
risk factors using SEM.

Methods: An analytical cross-sectional study was conducted in six provinces of Iran. Subjects (n = 922), aged 19–65
years, were selected from National Food and Nutrition Surveillance. The assessments were sun-exposure behavior,
anthropometric and biochemical measurements. A series of SEM models were tested and the model with the best
fit indices was considered for use in the structural part of the model. Based on the literature review of previous
theoretical models and supporting bivariate analyses, an overall SEM examined direct or indirect associations
among observed and latent variables. We put the demographic, duration of sun exposure, anthropometric and
metabolic variables in our model.

Results: The paths between serum 25(OH) D and BMI were inverse and statistically significant, whereas age
showed a positive association with BMI (B = 0.06, p < 0.001), both direct (st. effect = 0.11, p = 0.01) and indirect via
vitamin D (st. effect = − 0.02, p = 0.01). The results confirmed that serum 25(OH) D concentration is a predictor for
latent variable of lipid profile (B = − 0.13, p = 0.01) both through direct (p = 0.02) and indirect effects via BMI (p =
0.01).

Conclusion: Serum 25(OH) D concentration is a predictor of BMI and also a latent variable of lipid profile via direct
and indirect effects. It can also attenuate the harmful effect of age on BMI and lipid profile particularly in women.

Keywords: Vitamin D, Structural equation modeling, Cardiometabolic risk factors, Blood lipid profile, BMI,
Surveillance
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Background
Vitamin D is a steroid hormone and also an essential
nutrient. Mother Nature has equipped human body
with a machinery to build vitamin D upon skin ex-
posure to direct sunlight. However, urbanization has
broken up this natural relation between man and sun.
Consequently, humans are prone to vitamin D defi-
ciency (VDD) unless they receive sufficient amounts
of the vitamin through dietary sources and supple-
ments [1]. Among the earliest recognized functions of
vitamin D, its effect on calcium homeostasis and
musculoskeletal system has been well appreciated
especially with the remarkable increasing rate of
VDD-related osteoporosis [2, 3]. However, unlike its
calcemic functions, vitamin D non-calcemic actions
have been controversial [4], among which the effect
on blood lipids and related cardiovascular risk has
been a big argument [5–11]. Several observational
studies have reported cardioprotective effects of vita-
min D notably through its optimizing action on blood
lipid components [12]. However, evidence for causal-
ity of this association is limited [13]. A meta-analysis
reported the decreased mortality risk in those supple-
mented with vitamin D as compared to the controls
(Relative risk = 0.93) [14]. It seems that the rise in
mortality in people with low serum 25(OH) D con-
centrations may be particularly linked to CVD [15,
16] and its risk factors including increased blood
pressure [17], blood glucose [18] and body mass
index (BMI) [19]. However, reports on the relation-
ship between circulating 25(OH) D and serum lipids
as the major risk factor for CVD have been inconsist-
ent [7, 8, 20, 21].
Considering high prevalence of suboptimal vitamin

D status around the world, vitamin D supplementa-
tion as a cost-effective intervention may be a straight-
forwardly correctable risk factor for CVD prevention
[8]. The important concern is whether vitamin D has
a beneficial effect on serum lipids and cardiovascular
morbidity.
The structural equation modeling (SEM) is a method

used to evaluate linear causal relationships among vari-
ables and a powerful statistical tool taking into account
the modeling of independent and correlated errors for
examining complex research questions and analyzing the
relationships among multiple variables [22]. Literally,
SEM is an extension of the general linear model that en-
ables measurement of both direct and indirect effects of
variables and incorporate models with multiple
dependent variables by using several regression equa-
tions simultaneously [23, 24]. This study was undertaken
to investigate the direct and indirect effects of serum
25(OH) D on body mass index (BMI) and lipid profile
among adult subjects using SEM approach.

Methods
Ethical statement
The study was conducted according to the Declaration of
Helsinki. Written informed consent was obtained from all
subjects prior to data collection. The protocols of National
Food and Nutrition Surveillance (NFNS) were approved
by the Ethics Committee of National Nutrition and Food
Technology Research Institute (NNFTRI).

Design and participants
Subjects (n = 922), 426 men and 496 women aged 19–
65 years, were selected randomly from registered house-
holds of NFNS, a national health and nutrition program
that has been implemented in Iran since 2013 by NNFT
RI in collaboration with Nutrition Office of the Deputy
of Health of the Ministry of Health and United Nations
Children’s Fund (UNICEF). More details can be found
elsewhere [25]. Briefly, participants who met the inclu-
sion criteria (generally healthy, not using dietary supple-
ments containing vitamin D) were randomly selected
from the registered households from six provinces of
Iran with different latitudes including West Azarbaijan
(latitude 37.5o N,45.0o E), Semnan (latitude 35.5o N,
53.3o E), Lorestan (latitude 33.4o N, 48.3o E), South
Khorasan (latitude 32.8o N, 59.2o E), Khoozestan (lati-
tude 31.3o N, 48.6o E) and Fars (latitude 29.6o N, 52.5o

E) using multistage cluster random sampling method.
Data were collected in mid-winter (20 January to
20Febraury).

Assessments
The protocols of all measurements were prepared and
standardized by scientific committee of NFNS. Research
teams were trained in workshop sessions held centrally
to further make sure that data collection was harmo-
nized across all regions.

Sun exposure behavior
The questionnaire for evaluation of sun exposure behavior
comprised three questions on daily sun exposure during
the last 14 days including (i) whether the subject had a dir-
ect sun exposure (answers: no exposure, 10–60min, 60–
120min, more than 120min), (ii) if yes, at what time of
day (answers: 7–10, 10–15, 15–17), and (iii) sunscreen use
habits (answers: never, sometimes, often, always).

Anthropometric measurements
Standing height was measured without shoes to the
nearest of 0.1 cm. Weight was measured to the nearest
of 0.1 kg and body mass index was calculated as weight
(kg)/height2(m).

Nikooyeh and Neyestani BMC Public Health         (2021) 21:1819 Page 2 of 7



Biochemical analyses
A venous blood sample was collected from each partici-
pant after an overnight fast. Separated serum samples
were aliquoted and stored at − 80 °C until analysis day.
Serum 25(OH) D concentrations were measured by en-
zyme immunoassay (EIA) method (Diasource, Ottignies-
Louvain-la-Neuve, Belgium) with the aid a plate reader
(Stat Fax 3200, Awareness, Palm City, FL, USA).
Total cholesterol (TC), high-density lipoprotein-cholesterol

(HDL-C), triglycerides (TG) and low-density lipoprotein-
cholesterol (LDL-C) were measured using enzymatic
methods (Pars-Azmoon, Tehran, Iran) and an auto-analyzer
(Selecta E; Vitalab, Holliston, Netherlands).

Data analyses
Descriptive statistics was employed for population char-
acteristics. Participants’ characteristics were summarized
as mean ± standard deviation (SD) for continuous vari-
ables and as percentages (%) for categorical variables. In-
dependent sample t test and chi-square test were used
to compare variables between men and women.

Model structure
The theoretical models that “vitamin D status influences
cardio-metabolic risk factors including BMI and lipid

profile” and that “sun exposure behavior and latitude of
living place associate with vitamin D status” were tested
using a structural equation modeling (SEM). First, we
used measurement models to determine which of the
serum lipid components and sun exposure questions
could define the latent constructs of lipid profile and
sun exposure behavior. Then, a series of SEM models
were tested with direct and indirect pathways of associa-
tions between variables. The model with the best fit ac-
cording to the values of several fit indices was
considered for use in the structural part of the model.
Gender was considered as a mediator variable. Bootstrap
approaches were used to the significance of the total,
direct and indirect effect among variables. The model’s
goodness of fit was examined using three fit indices in-
cluding relative chi-square (x2/df), range 2 to 5, the com-
parative fit index (CFI) > 0.90, and the root mean square
error of approximation (RMSEA) < 0.06 [26]. Twelve
subjects (1.3%) were excluded from the analysis by rea-
son of missing data on demographics and other outcome
variables. The significant differences were not detected
among the selected variables (age, gender, BMI and
serum 25(OH)D) between the included (n = 910) and ex-
cluded (n = 12) cases. Analyses were conducted using
statistical program IBM SPSS 21.0 and IBM SPSS AMOS

Table 1 The characteristics of participants based on gender

Variables Men (n = 424) Women (n = 486) p value*

Age, (years) 39.3 ± 7.9 38.6 ± 8.3 0.220

Body mass index, (kg/m2) 26.7 ± 4.1 27.8 ± 4.8 < 0.001

Sun exposure duration, n (%)

No exposure 45 (10.6) 115 (23.7) < 0.001

10–60min 164 (38.7) 279 (57.4)

60–120min 71 (16.7) 60 (12.3)

More than 120min 144 (34.0) 32 (6.6)

Time of day (%)

7–10 62 (14.6) 123 (25.3) < 0.001

10–15 306 (72.2) 304 (62.6)

15–17 56 (13.2) 59 (12.1)

Sunscreen use (%)

Never 383 (90.3) 199 (40.9) < 0.001

Sometimes 25 (5.9) 120 (24.7)

Often 4 (0.9) 55 (11.3)

Always 12 (2.8) 112 (23.0)

25-hydroxy vitamin D (nmol/L) 27.3 ± 15.2 25.9 ± 17.5 0.206

Triglyceride (mg/dL) 148.9 ± 83.6 114.8 ± 61.2 < 0.001

Total cholesterol (mg/dL) 169.3 ± 35.0 167.7 ± 33.1 0.485

LDL (mg/dL) 97.9 ± 28.5 95.3 ± 27.8 0.158

HDL (mg/dL) 41.7 ± 12.3 49.5 ± 11.6 < 0.001

Values are mean ± SD or number (%), p-values for between-group differences were assessed using t.test or chi-square test, as appropriate
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20.0 (Armonk, NY). P value < 0.05 was considered sig-
nificant for all analyses.

Results
Descriptive statistics
The descriptive statistics of the characteristics of the par-
ticipants by gender are demonstrated in Table 1. Women
had a higher BMI and serum HDL, as compared with men
(p < 0.001). However, women exposed themselves to sun
less and used sunscreen more frequently than men (p <
0.001). There was no significant difference in serum
25(OH) D concentrations between two genders (p = 0.22).

Structural equation modeling
The variables associated with the latent variable of sun
exposure behavior were, in order of strength of associ-
ation, duration of sun exposure, time of day and sun-
screen use and latent variable of lipid profile was defined
by four variables of serum TC, LDL-C, TG and HDL-C,
in order of strength of association.
Based on the literature review of previous theoretical

models and supporting bivariate analyses, an overall
SEM examined direct or indirect associations among ob-
served and latent variables. We put the demographic,
duration of sun exposure, anthropometric and metabolic
variables in our SEM (Fig. 1). The model demonstrated a
good fit to the data (x2/df = 2.50; CFI = 0.98; TLI = 0.97;
RMSEA = 0.03).

The paths between serum 25(OH) D and age (st. ef-
fect = 0.08, B = 0.15, p = 0.03) and sun exposure behavior
(st. effect = 0.23, B = 9.73, p < 0.001) were statistically sig-
nificant. Thus, these variables had a direct effect on vita-
min D status. However, the latitude of living place did
not show a significant direct effect on circulating
25(OH) D and sun exposure behavior mediated the ef-
fect of latitude on vitamin D status (st. effect = 0.03, p =
0.04). Moreover, 25(OH) D concentration was inversely
associated with BMI, whereas age showed a positive as-
sociation with BMI (B = 0.06, p < 0.001). The effect of
age on BMI was both direct (st. effect = 0.11, p = 0.009)
and indirect via vitamin D (st. effect = − 0.02, p = 0.006).
The results confirmed the hypothesis that serum

25(OH) D concentration is a predictor for latent variable
of lipid profile (B = − 0.13, p = 0.006) both through direct
(p = 0.02) and indirect effects (p = 0.01). The indirect ef-
fect of serum 25(OH) D on lipid profile was via BMI
(Table 2).

Multi-group analysis
Execution of the multi-group analysis in the model dem-
onstrated that some paths were statistically different be-
tween men and women. Analysis revealed significant
differences (p = 0.03) of path coefficients of serum
25(OH) D and sun exposure behaviors between men
(B = 0.36, p = 0.01) and women (B = 0.18, p = 0.049). In
addition, these analyses showed that age was significant

Fig. 1 The final model with standardized parameter estimates
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predictor of BMI in women (B = 0.11, p < 0.001) but not
in men (B = 0.01, p = 0.68) and path coefficients were dif-
ferent between two genders (p = 0.007). There was a sig-
nificant direct effect of age on lipid profile in both men
(B = 0.94, p < 0.001) and women (B = 0.26, p = 0.02), this
effect was also significantly different between two gen-
ders (p < 0.001). However, multi-group analysis revealed
no significant differences between men and women in
path coefficients of vitamin D and BMI (p = 0.84), vita-
min D and lipid profile (p = 0.660), or BMI and lipid
profile (p = 0.79).

Discussion
To our knowledge, this is the first study to provide evidence
of the relationships among sun exposure behavior, serum
25(OH) D, BMI and lipid profile among adult population
using SEM method. The major advantage of SEM method is
its ability to examine the complex relationships among vari-
ables using a systematic approach with a simultaneous man-
agement of measurement errors [22].

Vitamin D, sun exposure and latitude
In continuation of previous works on determinants of
vitamin D status [27], we found that sun exposure be-
havior, independent of the latitude of living place, was
an important determinant of serum 25(OH) D concen-
tration. In addition, populations in lower latitudes tend
to have lower sun exposure behavior score which may
diminish their dermal vitamin D synthesis. However,
multi-group analysis with the aim to compare path coef-
ficients between men and women showed that sun ex-
posure behavior was a stronger predictor of circulating
25(OH) D in men than in women. One unit increment
in sun exposure behavior score was associated with in-
crease in serum 25(OH) D by 45 nmol/L in men but
only 8 nmol/L in women.
The effect of latitude on vitamin D status has already

been reported [28, 29]. In winter, vitamin D synthesis
may be insufficient and even negligible in the latitudes

higher than 35 degree due to lower intensity of sunlight.
Notwithstanding, a study in Korean people showed that
20–30min of sun exposure per day during summer and
fall was not adequate in achieving sufficient circulating
25(OH) D concentrations [30]. Along the same line, a
study showed that sun exposure during summer when
limited just to face and hands (the usual exposure sites
in Iran due to cultural reasons) may not suffice to pro-
tect against vitamin D deficiency [31, 32].

Efficiency of dermal synthesis of vitamin D according to
sex
The model proposed by the current study suggests that
individuals living in higher latitudes would synthesize
more vitamin D in winter if they had sufficient sun ex-
posure, as compared with the individuals who live in
lower latitudes but have “sun getaway” behavior. How-
ever, circulating 25(OH) D concentrations in only a mi-
nority of the studied population reached the proposed
optimal level of 50 nmol/L. In addition, our results indi-
cate that a latent variable comprised of duration of sun
exposure, time of day and sunscreen use, may adequately
represent the construct of sun behavior that showed a
significant association with 25(OH)D.

Vitamin D and BMI
We found an inverse association between BMI and
25(OH) D which is in accord with some other reports
[33, 34]. Previous investigations demonstrated that age,
in both sexes, is an important predictor of BMI in all
BMI ranges [35, 36]. However, we found that circulating
25(OH) D concentration influences the relationship be-
tween age and BMI. Along the same line, BMI has been
recently proposed as an age-independent predictor of
vitamin D status in women [37]. This provides an indir-
ect linking path, in addition to the direct association.
Altogether, this observation proposes that with in-

creasing 25(OH) D levels, the age-dependent increment
in BMI may be attenuated (increasing of 10 nmol/L in

Table 2 The coefficients and the corresponding P values of the standardized total, direct and indirect effects between variables in
model

St. total effect p-value St. direct effect p-value St. indirect effect p value

Age ➞ Vit D 0.103 0.008 0.075 0.006 0.028 0.006

Age ➞ BMI 0.099 0.012 0.111 0.012 −0.012 0.005

Age ➞ lipid profile 0.377 0.006 0.358 0.009 0.019 0.251

Sun-exposure ➞ vit D 0.230 0.012 0.230 0.012 – –

Sun-exposure ➞BMI −0.027 0.021 – – −0.027 0.021

Sun-exposure ➞ lipid profile −0.04 0.005 – – −0.04 0.005

Vit D ➞ BMI −0.117 0.013 −0.117 0.013 – –

Vit D ➞ lipid profile −0.175 0.011 −0.136 0.023 −0.039 0.012

BMI ➞ lipid profile 0.331 0.014 0.331 0.014 – –
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serum 25(OH) D is associated with reduction of BMI by
0.3 kg/m2).

Vitamin D and lipid profile
The direct and indirect effects of vitamin D on latent
variable of lipid profile are noteworthy. The model
showed that increasing serum 25(OH) D concentration
was linked to decreased chance of lipid profile derange-
ments. In other words, vitamin D was able to lessen the
adverse effects of BMI and age on lipid profile.
Comparing our results with the existing data is not

easy as most investigations have focused on association
between lipid profile components and circulating
25(OH) D concentrations. The beneficial effect of vita-
min D on components of blood lipid profile, CVD and
myocardial infarction risk has been observed in several
randomized controlled trials [38–41]. On the contrary,
some studies did not report any significant effect [42–
44]. As a result, the effect of vitamin D status on lipid
profile has been controversial [45]. Our findings provide,
for the first time through SEM approach, more convin-
cing evidence for beneficial effects of vitamin D on blood
lipids. One of the advantages of using structural equa-
tion models is the focus on latent constructs rather than
on variables used to measure these constructs. Unlike
previous studies, we considered the modulating effect of
vitamin D on lipid profile as a latent construct rather
than its components as single variables.

Conclusion
Altogether, these observations propose that serum
25(OH) D concentration is a predictor of latent variable
of lipid profile and BMI via direct and indirect effects.
Also, with increasing serum 25(OH) D concentrations,
the age-dependent increment in BMI and dyslipidemia
may be attenuated. In addition, vitamin D may be able
to lessen the adverse effects of BMI and age on lipid
profile. Nevertheless, the cross-sectional nature of this
study hinders a conclusive evaluation of causal associa-
tions. Though SEM is applied to evaluate linear causal
relationships among variables [22], precise evaluation of
causality still warrants further clinical trial studies.
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