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Abstract

Background: The development of public health policy is inextricably linked with governance structure. In our
increasingly globalized world, humanmigration and infectious diseases often spanmultiple administrative jurisdictions
that might have different systems of government and divergent management objectives. However, few studies have
considered how the allocation of regulatory authority among jurisdictions can affect disease management outcomes.

Methods: Here we evaluate the relative merits of decentralized and centralized management by developing and
numerically analyzing a two-jurisdiction SIRSmodel that explicitly incorporates migration. In our model, managers
choose between vaccination, isolation, medication, border closure, and a travel ban on infected individuals while
aiming to minimize either the number of cases or the number of deaths.

Results: We consider a variety of scenarios and show how optimal strategies differ for decentralized and centralized
management levels. We demonstrate that policies formed in the best interest of individual jurisdictions may not
achieve global objectives, and identify situations where locally applied interventions can lead to an overall increase in
the numbers of cases and deaths.

Conclusions: Our approach underscores the importance of tailoring disease management plans to existing
regulatory structures as part of an evidence-based decision framework. Most importantly, we demonstrate that there
needs to be a greater consideration of the degree to which governance structure impacts disease outcomes.

Keywords: Governance, Infectious disease, Management, Mathematical model, Migration, Objectives, Public health
policy

Background
In our increasingly globalized world, infectious diseases
are rarely confined to a single country or administra-
tive region. The SARS-CoV-2 virus, for example, has
crossed national borders and spread to every continent. At
more local scales, outbreaks of diseases such as seasonal
influenza similarly spanmultiple cities or government dis-
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tricts. Infectious diseases do not respect political bound-
aries, yet public health policy decisions are often made
at such national or sub-national levels of government.
This poses a nontrivial management problem, since dif-
ferent administrative districts and levels of government
often have differing objectives, distinct demographics,
and inequitable access to health care resources. The
impact this can have on public health outcomes is vividly
illustrated by the approach to outbreak management for
the COVID-19 pandemic in the United States, which was
heavily state-devolved at first but has now shifted to a
much more federal-level approach.
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The scale mismatch between areas of disease preva-
lence and regulatory jurisdictions leads to a fundamental
tradeoff in infectious disease management. Decentralized
management allows each local government to tailor man-
agement responses to the specifics of its population. For
example, a country may differentially prefer travel bans
or physical distancing measures based on the amount of
migration into the country and its population density.
However, decentralized approaches risk coordination fail-
ures that result when the disease spreads across borders
and might lead to selfish policies in which a governmental
agency does not consider how its actions affect neigh-
boring jurisdictions. In contrast, centralized management
offers better coordination and can account for movement
between regions, but may be unable to tailor responses to
the heterogeneous populations impacted by the disease.
Centralized management is also complicated by the ten-
dency of lower governmental levels to under-report cases
[1] and object to a central power’s decisions. For example,
at the beginning of the COVID-19 pandemic several coun-
tries applied unilateral travel restrictions despite World
Health Organization recommendations to the contrary,
and many rural counties in the United States argued
that state-imposed mandates on business closures were
unnecessary for their communities.
A natural question arises: is it generally better tomanage

an infectious disease at a decentralized or at a central-
ized level? Research in mathematical epidemiology has
used metapopulation models to illustrate how spatial het-
erogeneity and varied connectivity between populations
affect disease spread [2–7], and some work has employed
optimal control theory with time-varying controls to sug-
gest centralized management plans that minimize disease
burden and costs [8–11]. However, these studies limit
their analyses to a single manager that optimizes a global
objective by choosing potentially unrealistic time-varying
controls. On the other hand, the law and economics lit-
erature has sought to understand how authority for envi-
ronmental regulation should be allocated between federal,
state, and local governments [12–14]. Although such work
offers few clear directives, it does highlight an impor-
tant tradeoff: local governments are more adaptive and
havemore accurate information about the cost of environ-
mental regulation, while national governments are better
equipped to assess and implement regulation for pollu-
tants or populations that cross local political boundaries.
Similar ideas have been proposed in public health stud-
ies [1, 15]. For example, the lack of coordinated public
health policies has been cited in criticism of Canada’s
and Australia’s responses to SARS [16, 17] and the United
States’ response to bioterrorism [18, 19]. Yet at the same
time, centralized responses to public health emergencies
are known to underperform policies tailored to local con-
ditions [20, 21], and debates over the proper level of

government to manage infectious diseases have recently
come to the forefront in light of the COVID-19 pandemic
[22–25].
To our knowledge, no study has fully incorporated both

aspects of this tradeoff in a comprehensive disease mod-
eling framework. Herein, we attempt to clarify the relative
merits of different governance structures by employing
a two-patch Susceptible-Infected-Recovered-Susceptible
(SIRS) model. That is, we adapt the classic SIR model
paradigm [26, 27] to additionally account for immunity
loss. This type of disease model breaks a population into
compartments based on each individual’s disease status.
Individuals are then able to move between classes based
on disease-related processes; for example, a susceptible
individual moves into the infected class following inter-
action with and successful transmission from an infected
individual. In our model, each patch represents a spatially
distinct population and we allow for migration between
these patches. Borders are assumed to be porous in that
human movement between them can be transient or per-
manent. This migration is the key feature that connects
the two patches, permits the disease to spread between
jurisdictions, and makes the governance issues impor-
tant. Using this modeling framework, a main objective
is to demonstrate that governance structure is an impor-
tant consideration in designing best strategies for disease
mitigation.
We use this modeling framework to achieve two objec-

tives. First, demonstrate the extent to which governance
structure is an important consideration in designing best
strategies for disease mitigation. While the importance
of governance structure is well recognized in other con-
texts (e.g., pollution control, natural resource manage-
ment) it is less recognized in the epidemiology and public
health literature. Second, to highlight when the differ-
ences between local self-interest and global objectives
are large. When these differences are small, uniform best
management practices and testing protocols will be more
likely to be accepted and implemented by local jurisdic-
tions.
In our analysis, we consider three management

approaches. A decentralized management scheme allows
each patch to unilaterally choose actions that minimize
the disease’s impact within its borders, without consid-
ering the other patch’s actions or objectives. Centralized
management is characterized by a single decision-maker
that seeks to minimize the total impact of the disease
across both patches, but we distinguish between two pos-
sibilities for how the decision-maker chooses actions.
Jurisdiction-specific centralized management allows the
decision-maker to choose different actions for each patch
based on the current state of the disease within each
jurisdiction, while uniform management requires the
decision-maker to implement a one-size-fits-all solution
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by choosing the same action for both patches. Using
this modeling framework, we establish general recom-
mendations for optimal governance in the presence of
the three management types (decentralized, jurisdiction-
specific centralized, and uniform centralized) given two
standard objectives (to minimize the number of cases
or to minimize the number of deaths) and five alterna-
tive control methods (vaccination, isolation, medication,
border closure, and a travel ban on infected individuals).
These types of control methods change the transmission
or transition rates in our model. For example, vaccination
moves individuals directly from the susceptible (S) class
to the recovered (R) class, isolation moves individuals into
the compartment where transmission does not occur, and
medication directly impacts the recovery rate of infected
individuals. Additionally, border closures and travel bans
for infected individuals affect human movement from one
patch to the other.

Methods
To assess whether decentralized or centralized manage-
ment results in better health outcomes, we treat infec-
tious disease control as a Structured Decision Making
problem [28, 29]. First, we outline the two-patch SIRS
model that we will analyze. Then we define five alter-
native interventions, each of which can be implemented
at different intensity levels. Further, we characterize the
differences between decentralized, jurisdiction-specific
centralized, and uniform centralized management lev-
els. Our model allows each management level to select
from two public health objectives: minimizing the num-
ber of infectious cases and minimizing the number of
deaths. As such, we evaluate the expected consequences
of alternative interventions at various intensities for
each level of management given each of the two objec-
tives. Finally, we identify the best management action
for each combination of management level and control
objective.

The base model
We consider two spatially distinct populations A and B,
each of which exists in a separate “patch.” If considering
the control of a disease spreading within a single country,
these patches represent sub-national governments (e.g.
states, provinces, or territories). Alternatively, if consider-
ing the control of a disease spreading internationally, these
patches represent individual countries with susceptible
populations. For consistency we will refer to the patches
as jurisdictions. We model infectious disease dynamics in
each jurisdiction using a canonical frequency-dependent
SIRS model without demography and use parameters
characteristic of a highly infectious disease that has both
disease-induced mortality and a relatively rapid rate of
immunity loss.

The rate at which susceptible individuals acquire the
disease can differ between the jurisdictions. Each juris-
diction has a force of infection given by λi = βSiIi/Ni,
where β is the transmission rate and i denotes the particu-
lar jurisdiction (A or B) so thatNi = Si+ Ii+Ri is the total
population size in jurisdiction i. Once infected, individu-
als recover at a baseline rate γ and die at a rate φ. Note that
recovered individuals are those who have acquired tem-
porary immunity by either recovering from the disease or
receiving a vaccine. Additionally, we assume that individu-
als lose their immunity and return to the susceptible class
at a rate ζ . For simplicity, we assume that the transmission
rate, the baseline recovery rate, and the rate of immunity
loss are inherent to the pathogen itself and hence do not
differ between jurisdictions. However, differences in the
force of infection across jurisdictions (due to differences
in initial conditions) imply that one-size-fits-all control
strategies will not always be best.
We want to model porous borders between the two

jurisdictions, so we incorporate migration for individuals
in all classes. Here, migration refers to both permanent
and transient migration. That is, we are not tracking the
origin jurisdiction of individuals whomove across the bor-
der and we therefore do not consider immigration policy
in guiding our discussion. However, we recognize that
this is an important consideration for future work on the
impact of travel bans in mitigating disease spread.
We assume thatmigration rates are equal for the suscep-

tible and recovered classes, and denote the rate at which
S-class or R-class individuals move from jurisdiction j to
jurisdiction i by δij. Infected individuals may migrate at
a lower rate due to travel restrictions, so we denote the
rate at which I-class individuals move from jurisdiction j
to jurisdiction i by τij. Note that in the absence of travel
restrictions, δij = τij. These assumptions result in the
following two-jurisdiction SIRS model:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dSA
dt

= −βSA
IA
NA

+ ζRA + δABSB − δBASA

dIA
dt

= βSA
IA
NA

− (γ + φ)IA + τABIB − τBAIA

dRA
dt

= γ IA − ζRA + δABRB − δBARA

(1)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dSB
dt

= −βSB
IB
NB

+ ζRB + δBASA − δABSB

dIB
dt

= βSB
IB
NB

− (γ + φ)IB + τBAIA − τABIB

dRB
dt

= γ IB − ζRB + δBARA − δABRB

(2)

Each jurisdiction has an initial population size Ni(0) =
1, 000, 000. We consider four different initial conditions:
(1) each jurisdiction has a single infectious individual, (2)
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jurisdiction A has a single infectious individual and juris-
diction B is undergoing an outbreak (10% of individuals
are initially infected), (3) jurisdiction A is undergoing an
outbreak and jurisdiction B has a single infectious individ-
ual, and (4) both jurisdictions are undergoing an outbreak.
The relevance of including both (2) and (3) becomes
clear when considering decentralized management, since
results may change depending on which jurisdiction is
implementing controls. In all of our analyses, we simu-
late the model for one year to capture the dynamics of a
single epidemic outbreak cycle. All model parameters are
provided in Table 1.

Disease management
We consider five disease control strategies: vaccination,
isolation, administration of medication, travel restrictions
on all individuals (hereafter referred to as “border clo-
sure”), and travel restrictions only on infected individuals
(hereafter referred to as a “travel ban”). For simplicity,
each jurisdiction can choose to either implement one con-
trol strategy or take no action for the duration of the
simulation. While control strategies can differ between
jurisdictions, both controls are implemented at the same
intervention intensity α ∈[ 0, 1], where α is a proportion
of the model parameter of interest. α = 0 indicates that
no control is implemented while α = 1 denotes maximum
implementation intensity.
The details of each control strategy are provided below.

In the presence of management, the original model
equations are modified as follows:

(3)

Table 1 Model parameters

Parameter Definition Value

β Transmission rate 3/5

φ Disease-induced mortality rate 1/7

γ Baseline recovery rate 1/5

ζ Immunity loss rate 1/270

δij Baseline migration rate from j to i for susceptible
and recovered individuals

0.2

τij Baseline migration rate from j to i for infected
individuals

0.2

All units are in 1/days

(4)

where Li denotes isolated individuals in jurisdiction i.
Parameters that can be impacted by management actions
implemented in jurisdiction A are colored red, while
parameters that can be impacted by management actions
implemented in jurisdiction B are colored blue. Changes
to the base model due to disease management are detailed
below and in Table 2.

Vaccination
We consider vaccination in the form of a six month long
immunization program. If vaccination is implemented
by jurisdiction i, then susceptible individuals move to
the recovered class at a rate ωi throughout the entire
simulation. We assume that both naturally-acquired and
vaccine-derived immunity wane at the same rate ζ . In our
model, intervention intensity directly scales the average
time to vaccination so that

ωi = 2
365(1 − α)

(5)

when 0 < α < 1. When α = 0, there is no vaccination
and therefore ωi = 0. When α = 1 we assume that the
susceptible population is vaccinated almost immediately
(1 day) so thatωi = 1. Further, we assume that when α > 0
vaccination is rolled out so that all susceptible individuals
are vaccinated within six months on average (so that the
smallest positive value of ωi is 2/365).

Isolation
To incorporate isolation as a control strategy, we expand
the base model by adding an isolation class (Li) to each
jurisdiction. Throughout the course of the simulation, a

Table 2 Control rates and intensity ranges

Control Definition Range

γ̂i Recovery rate [1/5, 1]

ηi Proportion of newly infectious individuals in
jurisdiction i that get isolated

[0, 1]

ωi Vaccination rate for jurisdiction i [0, 1]

δ̂ij Migration rate from j to i for susceptible and
recovered individuals

[0, 0.2]

τ̂ij Migration rate from j to i for infected individuals [0, 0.2]

All rates have units 1/days
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proportion ηi of infected individuals in jurisdiction i are
moved into isolation. Once in isolation, individuals do not
contribute to the force of infection and are not permit-
ted to travel. Consequently, individuals in Li are also not
included inNi. We assume, however, that isolated individ-
uals do not receive special treatment and hence have the
same recovery and death rates as infected individuals. In
our model intervention intensity directly determines the
isolation rate, so that

ηi = α. (6)

Medication
We assume that medication may be provided to infected
individuals, which has an ultimate effect of increasing
the recovery rate. In particular, we assume that the aver-
age amount of time spent in the infectious class can be
decreased from 5 days to 1 day after medication is pro-
vided. To implement medication in jurisdiction i at a
control intensity α, our model linearly scales the recovery
rate γi by α so that

γ̂i = γ (4α + 1). (7)

Border closure
When a jurisdiction implements border closure, it reduces
the number of individuals who can migrate from the other
jurisdiction. Border closures are implemented uniformly
across all disease classes, e.g. migration of susceptible
individuals is restricted in the same way as migration of
recovered individuals. When α = 1, a complete border
closure is in place and no individuals are allowed to move
into the jurisdiction implementing the closure. Note that
border closure places no restrictions on outgoing migra-
tion: individuals from the jurisdiction implementing the
closure can still leave and travel to the other jurisdiction
(unless the other jurisdiction is also implementing a bor-
der closure policy). In our model, intervention intensity
directly determines the reduction in migration, so that

τ̂ij = τij(1 − α) (8)

and

δ̂ij = δij(1 − α). (9)

Infected travel ban
While border closure hinders travel of individuals in all
disease classes of a given jurisdiction, we assume that a
travel ban only limits themigration of infected individuals.
As in Eq. 8, a travel ban implemented by jurisdiction iwith
intensity α will result in

τ̂ij = τij(1 − α). (10)

However, in contrast to Eq. 9, for travel bans we assume
that

δ̂ij = δij. (11)

Governance structures
We assume that all levels of government have access to
the same set of information and the same set of con-
trol strategies. That is, each manager can implement any
of the five intervention types at the same intervention
intensity as the other jurisdiction. Additionally, we do not
allow for collaboration between decentralized manage-
ment authorities or between centralized and decentralized
management authorities when determining control imple-
mentation.

Decentralizedmanagement
When disease management is coordinated at the decen-
tralized level, each jurisdiction chooses a control strategy
that most effectively meets its own objective without con-
sidering the strategy or objective of the other jurisdiction.
In other words, decentralized managers act selfishly. Note
that chosen control strategies and management objectives
can differ between the two jurisdictions. Since the juris-
dictions disregard each other’s status, each jurisdiction
makes optimal decisions under the assumption that the
other jurisdiction will not implement any control strategy.
Realistically, a jurisdiction might assume that a neighbor-
ing country or state will free-ride on its own management
or may not have the resources to manage the disease.

Centralizedmanagement
While a decentralized decision maker only has authority
to implement control strategies within its own jurisdic-
tion, a centralized decision maker has authority to col-
lectively manage the disease in both jurisdictions at once.
The centralized manager seeks to minimize collective epi-
demic burdens for the total population by choosing a con-
trol strategy which most effectively meets that collective
objective.
We distinguish between two types of centralized gover-

nance structures. A jurisdiction-specific centralized man-
ager may take advantage of jurisdictional differences and
implement different interventions in each jurisdiction. For
example, this form of management is exhibited when a
federal government implements a travel ban in one state
and a quarantine in another. A uniform centralized man-
ager, on the other hand, must implement the same con-
trol strategy in both jurisdictions. In real-world scenar-
ios, governments exercise uniform centralized manage-
ment when they are unwilling or unable to tailor disease
responses to individual regions and opt for a one-size-fits-
all approach.
By definition, jurisdiction-specific centralized manage-

ment will always outperform both decentralized manage-
ment and uniform centralized management regardless of
the objective. Our analysis, then, lies in considering the
additional cases or deaths produced from the other two
governance levels. The additional cases or deaths resulting
from decentralized management represent the cost of
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uncoordinated, decentralized control of the disease. Simi-
larly, the additional cases or deaths resulting from uniform
centralized management represent the cost of implement-
ing one-size-fits-all public health responses. The relative
performance of decentralized management versus uni-
form centralized management is, in turn, determined by
the difference in additional cases or deaths resulting from
management by these two governance structures.

Management objectives
We assume that managers can choose to optimize one of
two objectives: the cumulative number of infectious cases
or the cumulative number of disease-induced deaths.
Although it may seem intuitive to assume that minimizing
the number of cases is equivalent to minimizing the num-
ber of deaths, this is not necessarily true. Previous work
has shown that the number of infectious cases is not a
constant scalar multiple of the number of disease-induced
deaths [30]. In our model, this occurs because some indi-
viduals might get infected multiple times due to immunity
loss but each individual can only die once. Therefore, it is
necessary to distinguish between these two objectives and
consider both separately.

Results
Decentralized management
Under the assumption that only jurisdiction A applies
interventions, the best type of control at the decentralized
level depends on both the initial conditions and control
intensity (see Table 3). When there is initially a single
case in each jurisdiction, it is almost always preferable to
administer vaccination. Vaccination is also the preferred
management option across all initial conditions when the
vaccine is rapidly rolled out.
In contrast, when one or both jurisdictions is under-

going an outbreak and the control intensity is imperfect,

then medication is the preferred treatment option. Mov-
ing individuals quickly into the recovered class following
infection minimizes their ability to spread infection to
others. Vaccination, on the other hand, is only the bet-
ter option when it rapidly moves individuals into the
recovered class and outpaces the effects of medication.
In most of the scenarios we considered, border clo-

sures and travel bans actually increase the cumulative
number of deaths and cases across both jurisdictions
relative to not implementing any control. For example,
given an initial condition of 1 infected individual in A
and 10% of the population infected in B, a border clo-
sure or travel ban implemented by jurisdiction A will
decrease the numbers of cases and deaths in jurisdiction
A but cause an even greater increase in these numbers
for jurisdiction B (Fig. 1). Thus, one jurisdiction acting
in its own best interest may negatively impact the other
jurisdiction as well as the overall case load and death
toll. These results align with findings from [31]. The only
exception results from an initial condition of a single
infectious individual in each jurisdiction. In this case, a
partial border closure or travel ban can often mitigate
disease impacts relative to no control (see Table 3). How-
ever, it is never as successful as medication, vaccination, or
isolation.
Increasing the intensity of a control tends to amplify

the general trends outlined above. In particular, increas-
ing the control intensity for a vaccination, medication, or
isolation program decreases the number of cases and the
number of deaths (Fig. 1). Further graphical representa-
tions of our results can be found in the Supplementary
Information (SI).

Centralized management
Our results demonstrate that management practices
which were the best choices for decentralized governance

Table 3 Control rankings for decentralized management

Initial condition, objective
Control intensity

0.25 0.5 0.75 1

Single case AB, min cases VMLTCN VMLCNT VMLCNT VMLCNT

Single case AB, min deaths MVLTCN VMLTCN VMLCNT VMLCNT

Outbreak B, min cases MLVNCT MLVNCT MLVNCT VMLNTC

Outbreak B, min deaths MLVNCT MLVNCT MLVNCT VMLNTC

Outbreak A, min cases MLVNCT MLVNCT MLVNCT VMLNCT

Outbreak A, min deaths MLVNCT MLVNCT MLVNTC VMLNCT

Outbreak A & B, min cases MLVNCT MLVNCT MLVNCT VMLNCT

Outbreak A & B, min deaths MLVNCT MLVNCT MLVNCT VMLNCT

Rankings of control types at four different control intensities and four sets of initial conditions (rankings are in order of most effective to least effective). N = no control, V =
vaccination, L = isolation, M = medication, C = border closure, and T = travel ban for infected individuals only. Red text reflects scenarios in which no control outperforms a
management option
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Fig. 1 Results for decentralized management when jurisdiction A implements the specified control while jurisdiction B does not implement any
control. Each plot displays the number of cases with a given control applied relative to the number of cases in the absence of control for jurisdiction
A (left panel), jurisdiction B (middle panel), and the total across both jurisdictions (right panel) against control intensity. N = no control, M =
medication, T = travel ban for infected individuals only, C = border closure, V = vaccination, and L = isolation

might no longer be optimal when the disease is man-
aged at a centralized level. Moreover, the effectiveness of
centralized control depends on whether the management
authority is limited to uniform, one-size-fits-all policies or
is able to tailor control strategies to each jurisdiction and
thereby take advantage of jurisdictional differences in the
force of infection.

Uniform centralizedmanagement
When there is a single infectious case in each jurisdic-
tion, the relative performance of vaccination, isolation,

andmedication depends on the intensity at which the con-
trol is applied. At low intensity, vaccination is preferred.
For higher control intensities, on the other hand, all three
control options are nearly equally effective under uni-
form centralized management. Other initial conditions,
however, result in objective-dependent changes to the
rankings of management options (Table 4).
For all initial conditions where at least one jurisdic-

tion is already undergoing an outbreak, treating infected
individuals with medication is usually more effective than
vaccination. This observation, however, depends critically

Table 4 Control rankings for uniform centralized management

Initial condition, objective
Control intensity

0.25 0.5 0.75 1

Single case AB, min cases VML, T=C=N M=L, V, T=C=N M=L, V, T=C=N V=M=L, T=C=N

Single case AB, min deaths VML, T=C=N M=L, V, T=C=N M=L, V, T=C=N V=M=L, T=C=N

Outbreak B, min cases MLVNTC MLVNTC MLVNTC VMLCNT

Outbreak B, min deaths MLVNTC MLVNTC MLVNTC MLVCNT

Outbreak A, min cases MLVNTC MLVNTC MLVNTC VMLCNT

Outbreak A, min deaths MLVNTC MLVNTC MLVNTC MLVCNT

Outbreak A & B, min cases MLV, N=T=C MLV, N=T=C MLV, N=T=C VML, N=T=C

Outbreak A & B, min deaths MLV, N=T=C MLV, N=T=C MLV, N=T=C MLV, C=N=T

Rankings of control types at four different control intensities and four sets of initial conditions (rankings are in order of most effective to least effective). N = no control, V =
vaccination, L = isolation, M = medication, C = travel ban for all individuals, and T = travel ban for infected individuals only. Red text reflects scenarios in which no control
outperforms a management option
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on the management objective: vaccination outperforms
medication if the control intensity is sufficiently high and
the objective is to minimize the number of cases, not
deaths. Intuitively, in such a scenario a medication pro-
gram can prevent more deaths than a vaccine. The total
number of cases, however, would be greater than under
a strategy of vaccination. This result contrasts with the
case of decentralized management, where vaccination is
preferred under both objectives if the control intensity is
sufficiently high. In the decentralized scenario, only one
jurisdiction is being managed. If the objective is to min-
imize the number of deaths and medication is applied in
one jurisdiction, then dispersal of infected individuals is
capable of causing enough cases (and subsequent deaths)
to suggest vaccination as a more effective management
scenario. Of course, these results apply for our model
and parameterization but, in practice, will depend on the
particular dispersal and disease-specific dynamics.
As with decentralized management, full border closures

or travel bans under a uniform centralized government are
capable of increasing the numbers of cases and deaths rel-
ative to no control. Under some conditions (e.g. a single
infection in each jurisdiction), implementing a full bor-
der closure or travel ban does not reduce cases or deaths
relative to the no-control scenario. Occasionally, there is
a positive effect of full border closure but the positive
impact of this strategy on meeting objectives is negligi-
ble relative to vaccination, isolation, and medication.
Graphical representations of these results are provided in
the SI.

Jurisdiction-specific centralizedmanagement
Given an initial condition of one case in each jurisdiction,
vaccinating one jurisdiction while administering medi-
cation in the other is the best management strategy at
low control intensities. Administering medication in both

jurisdictions is the best option as intervention intensi-
ties increase. An exception is that vaccination is preferred
in both jurisdictions if the objective is to minimize the
number of cases and control intensity is sufficiently high.
When the objective is to minimize the number of infec-

tious cases and one or both jurisdictions is undergoing
an outbreak, the results for jurisdiction-specific central-
ized management align with those for uniform centralized
management (Table 5). In particular, administering medi-
cation in both jurisdictions is the best management policy
for lower control intensities and switches to vaccination
when the control intensity is high. The results are also
consistent across governance structures under the same
conditions when the objective is to minimize the number
of deaths, with exception of very high control intensity.
Interestingly, in the case of high control intensity

and an objective of minimizing the number of deaths,
jurisdiction-specific border closure can be optimal when
one jurisdiction begins mid-outbreak while the other ini-
tially has a single infectious individual. Administering
medication to the jurisdiction undergoing an outbreak
while implementing border closure for the other jurisdic-
tion will be the best course of action. This suggests that
border closures may be most effective in preventing out-
breaks from establishing in jurisdictions with few infected
individuals.
Simulation results for all possible combinations of inter-

ventions at every initial condition are provided in Figs. 2, 3
and 4 under a control intensity of α = 0.5. Note that
the simulation results for an initial outbreak only in juris-
diction A are provided in the SI, as these results are the
transpose of Fig. 3. In all cases, any management policy
that uses either vaccination, isolation, or medication in at
least one jurisdiction leads to an overall reduction in both
the number of cases and the number of deaths relative to
no control.

Table 5 Control rankings for jurisdiction-specific centralized management

Initial condition, objective
Control intensity

0.25 0.5 0.75 1

Single case AB, min cases V, M M, M M, M V, V

Single case AB, min deaths V, M M, M M, M M, M

Outbreak B, min cases M, M M, M M, M V, V

Outbreak B, min deaths M, M M, M M, M C, M

Outbreak A, min cases M, M M, M M, M V, V

Outbreak A, min deaths M, M M, M M, M M, C

Outbreak A & B, min cases M, M M, M M, M V, V

Outbreak A & B, min deaths M, M M, M M, M M, M

The best control strategy for jurisdiction A (listed first) and jurisdiction B (listed second) at four different control intensities and four sets of initial conditions. N = no control, V
= vaccination, L = isolation, M = medication, C = border closure, and T = travel ban for infected individuals only
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Fig. 2 Results for centralized management when different types of control are applied in each jurisdiction. Here both jurisdictions are initially in an
outbreak state (10% of each population is initially infected). Each square corresponds to a different combination of control options, with jurisdiction
A represented on the horizontal axis and jurisdiction B represented on the vertical axis. The colors on the left (right) grid denote the total number of
cases (deaths) across both jurisdictions relative to the total number of cases (deaths) in the absence of control. Gray indicates that the combination
of controls does not change the outcome relative to the no-control scenario and red (blue) indicates that there are more (fewer) cases or deaths
relative to the no-control scenario

When does local self-interest achieve global objectives?
A key result we wish to highlight is that policies formed
in the best interest of individual jurisdictions may not
achieve global objectives. Table 6 shows the best man-
agement strategy for jurisdiction A from a decentralized
perspective (first entry) and two possible global perspec-
tives (centralized one-size-fits-all, second entry; central-
ized jurisdiction-specific, third entry). Bracketed entries
indicate that the centralized decision maker is indiffer-
ent between the indicated controls. Here, we assume
the centralized decision maker will use jurisdiction A’s
preference as a “tie breaker,” to avoid conflicts between
local and central governments. Orange entries indicate
scenarios where the best interest of jurisdiction A will
not achieve the global objective. Cyan entries indicate
situations where disagreements between centralized and
decentralized decision makers may arise depending on
whether the centralized decision maker utilizes one-size-
fits-all or jurisdiction-specific controls.
If one jurisdiction is undergoing an outbreak, then the

policy that is in the best interest of jurisdiction A is
usually also chosen by both types of centralized manage-
ment. Thus, if the centralized and decentralized decision
makers’ objective is to minimize cases, local self-interest

will generally achieve global objectives. An exception,
however, is if the control intensity is sufficiently high and
the objective is to minimize the number of deaths. In such
cases, the policy in the best interest of jurisdiction A (vac-
cination) is not as successful as the global approach of
applying medication or a combination of medication and
travel restrictions. In the latter case, the global objective
is better achieved by implementing a complete travel ban
to prevent disease establishment in one jurisdiction while
managing the other with medication.
However, if there is only a single case in each jurisdiction

then policies that are in the best interest of jurisdiction A
may not achieve global objectives regardless of the control
intensity. When jurisdiction A is free to choose the con-
trol type that best mitigates the impacts of disease within
its borders, it almost always chooses vaccination in our
particular disease parameterization (with the exception
of low control intensity and an objective of minimiz-
ing deaths). A centralized manager, however, will often
instead prescribe medication to jurisdiction A.

Conclusions
Public health policy is often complicated by the fact that
political boundaries rarely correspond to the boundaries
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Fig. 3 Results for centralized management when different types of control are applied in each jurisdiction. Here jurisdiction B is initially in an
outbreak state (10% of the population is initially infected) whereas jurisdiction A initially has a single infected individual. Each square corresponds to
a different combination of control options, with jurisdiction A represented on the horizontal axis and jurisdiction B represented on the vertical axis.
The colors on the left (right) grid denote the total number of cases (deaths) across both jurisdictions relative to the total number of cases (deaths) in
the absence of control. Gray indicates that the combination of controls does not change the outcome relative to the no-control scenario and red
(blue) indicates that there are more (fewer) cases or deaths relative to the no-control scenario

of populations and risk factors. This mismatch is espe-
cially pertinent when managing an infectious disease that
impacts multiple regulatory jurisdictions [32]. Govern-
ments in the various jurisdictions might have different
management objectives, unequal access to resources, and
disparate views on cooperation. And no matter how dis-
tinct these political divisions might seem, the movement
of individuals between jurisdictions indicates that actions
taken by the management authority in one jurisdiction
will affect disease dynamics in neighboring jurisdictions
as well. Thus, policymakers must carefully consider what
level of governance is ideal for managing infectious dis-
eases in a transboundary setting.
We developed and analyzed a mathematical model to

assess the benefits and drawbacks of different governance
structures in a two-jurisdiction setting. In particular, we
considered how each of three management levels would
choose from among five control strategies when seeking
to minimize either the number of cases or the num-
ber of deaths. Our results demonstrate that control out-
comes can strongly depend on two governance factors: (1)
whether control is implemented at a centralized or decen-
tralized level and (2) whether the managers’ objectives are
to minimize cases or minimize deaths.

In general, we find that disease management policies
created in the best interest of individual jurisdictions may
not be optimal from a global perspective. Under the condi-
tions presented in this work, this can arise whenmanagers
seek to minimize the number of disease-induced deaths.
Given this objective, a centralized manager may pre-
scribe medication when a decentralized manager would
instead choose to vaccinate. This is especially true when
the intensity of the vaccine roll-out is high. Moreover,
our results illustrate how jurisdiction-specific central-
ized management outperforms uniform centralized man-
agement. A centralized government with the ability to
act equitably in terms of health outcomes will always
outperform a government that acts equitably in terms of
control efforts. Similar results have also been shown by
studies of measles vaccination efforts in Malawi, where
vaccination strategies that focused on generating equity
in outcomes yielded better results than the strategy of
equally administering vaccines to all regions [20, 21].
Under certain scenarios, we find that decentralized

management policies can even increase the overall num-
bers of cases or deaths. This occurs in our model for
both types of travel restrictions: full border closure and a
travel ban on infected individuals. Note that the negative
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Fig. 4 Results for centralized management when different types of control are applied in each jurisdiction. Here each of the two jurisdictions initially
has a single infected individual. Each square corresponds to a different combination of control options, with jurisdiction A represented on the
horizontal axis and jurisdiction B represented on the vertical axis. The colors on the left (right) grid denote the total number of cases (deaths) across
both jurisdictions relative to the total number of cases (deaths) in the absence of control. Gray indicates that the combination of controls does not
change the outcome relative to the no-control scenario and red (blue) indicates that there are more (fewer) cases or deaths relative to the
no-control scenario

impact of travel bans is much less pronounced under
centralized management, which suggests that the nega-
tive impact of travel restrictions depends on whether they
are implemented at a centralized or decentralized level.
Under jurisdiction-specific centralizedmanagement, such
travel restrictions can be the best management strategy
for a jurisdiction that is disease-free while using another
strategy in a jurisdiction undergoing an outbreak. This

implies that such restrictions might be most effective for
preventing new outbreaks rather than controlling exist-
ing outbreaks across multiple regions. The result that
travel interventions can actually worsen disease outbreaks
is echoed in the theoretical work of Hsieh et al. (2007)
[31]. In real world situations, travel restrictions have led
to unintended consequences in addition to directly exac-
erbating case and death numbers. For example, travel

Table 6 Best controls for jurisdiction A under each governance structure

Initial condition, objective
Control intensity

0.25 0.5 0.75 1

Single case AB, min cases V, V, [V, M] V, [M, L], M V, [M, L], M V, [V, M, L], V

Single case AB, min deaths M, V, [V, M] V, [M, L], M V, [M, L], M V, [V, M, L], M

Outbreak B, min cases M, M, M M, M, M M, M, M V, V, V

Outbreak B, min deaths M, M, M M, M, M M, M, M V, M, [C, M]

Outbreak A, min cases M, M, M M, M, M M, M, M V, V, V

Outbreak A, min deaths M, M, M M, M, M M, M, M V, M, [M, C]

Outbreak A & B, min cases M, M, M M, M, M M, M, M V, V, V

Outbreak A & B, min deaths M, M, M M, M, M M, M, M V, M, M

The first entry in each list of controls is the choice of a decentralized manager, the second entry is the choice of a uniform centralized manager, and the third entry is the
choice of a jurisdiction-specific centralized manager. Orange entries indicate scenarios where the best interest of individual jurisdictions will not achieve the global objective.
Cyan entries indicate scenarios where the best interest of individual jurisdictions may not achieve global objectives
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restrictions imposed by the United States and European
countries during the 2014 West African Ebola outbreak
did curb spread to those countries, but the commercial
flights that did not leave West Africa also did not return.
As a result, transportingmedical equipment, supplies, and
personnel back into the outbreak region became more
difficult.
In terms of the relative merits of control strategies

themselves, our results suggest that allocating effort into
developing and administering effective vaccinations and
medications should be prioritized. In contrast, focusing
effort on travel bans may only be most effective when
attempting to prevent the initial establishment of a dis-
ease in a given region. However, it is important to note
that our results are based on a single parameterization of
a coupled two-patch SIRS model and are thus parameter-
dependent. For example, we show in the SI that negative
impacts of travel bans are diminished for lower rates of
immunity loss. We also evaluate our results on a one-
year time scale, whereas other timescales may be more
relevant in other scenarios. A more thorough consid-
eration of uncertainty is certainly warranted in future
research, and methods exist that examine uncertainty in
projections about the impact of management interven-
tions [29, 33–35]. Rather than attempt to quantify the
possible range of uncertainty, we have opted to present a
set of examples that clearly demonstrate how governance
structure and choice of objectives can have crucial impli-
cations in the implementation of strategies for disease
management.
We also did not assign economic costs to the control

strategies. While vaccination may be the best strategy
to minimize cases or deaths, it might be more expen-
sive than other strategies. These costs should be consid-
ered when making actual disease management decisions.
However, modeling the costs of interventions would have
presented several challenges that are beyond the scope
of the current paper. First, incorporating disease- and
country-specific costs would have limited our ability to
make general points about the importance of governance
structure. Second, a model with costs must be analyzed
under a cost-effectiveness framework, where preferred
control strategies are those that minimize the cost of lim-
iting the number of cases or deaths to a given level. In
order to implement this approach, judgments must be
made about the acceptable numbers of cases or deaths.
Further research that considers economic, political, and
social factors is certainly needed, but we do not antici-
pate that accounting for these factors would change our
results concerning the relative advantages of centralized
and decentralized disease management. Relatedly, it may
be important for future models to allow for even greater
flexibility in governance structure depending on specific
real-world scenarios.

In summary, we have provided a modeling framework
that can be used to examine how different governance
structures across multiple jurisdictions can affect dis-
ease management outcomes in a wide variety of settings.
Although we present theoretical examples, our approach
can be tailored to any focal disease management situ-
ation and relevant governance structures. We showed
how to assess the success or failure of alternative con-
trol strategies and, more significantly, we demonstrated
that those outcomes depend on the choice of governance
level and management objectives. Our results indicate
that in certain situations uniform, centralized control out-
performs a decentralized approach, provided such policy
is guided by scientific advice on optimal control strategies.
However, there are also situations where federal authori-
ties can achieve better outcomes by delegating decisions
to the regional or local level, thereby allowing more
finely-tuned responses to local conditions. Ultimately, our
results accentuate a critical need for states and coun-
tries to cooperate on ensuring equitable outcomes when
managing infectious disease outbreaks [36–40].
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