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Abstract

Background: The Urbanicity Scale was developed based on the China Health and Nutrition Survey (CHNS) to
measure the urbanization index of communities according to 12 components. The present study was designed to
systematically investigate the factorial validity, reliability, and longitudinal measurement invariance (LMI) of the
Urbanicity Scale.

Methods: Six waves of CHNS data from 2000 to 2015 were adopted. The factor structure and reliability of the
Urbanicity Scale for 301 communities were examined using Bayesian exploratory factor analysis. Metric and scalar
LMIs were evaluated using both the conventional exact and a novel approximate LMI approach via Bayesian
structural equation modeling across various timeframes.

Results: The findings verified the one-factor structure for the Urbanicity Scale, with adequate reliability. LMI was
established for the Urbanicity Scale only over a shorter timeframe from 2006 to 2009 but not over a longer
timeframe from 2000 to 2015. Partial LMI was found in the factor loadings and item intercepts for the Urbanicity
Scale over the 2004 to 2011 period.

Conclusion: Interpretation of the temporal change in urbanicity was supported only for a shorter (2006 to 2009)
but not a longer timeframe (2000 to 2015). Adjustments addressing the partial non-invariance of the measurement
parameters are needed for the analysis of temporal changes in urbanicity between 2004 and 2011.

Keywords: Bayesian structural equation modeling, China health and nutrition survey, Exact invariance, Longitudinal,
Psychometrics, Temporal change, Urbanization
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Background
The past two decades have witnessed a remarkable social
and economic transformation in mainland China [1].
Chinese societies have undergone a continuous
urbanization process in which a growing population
shares a modernized and improved environment for
health infrastructure, housing, sanitation, communica-
tions, markets, and education [2]. Earlier research [3] re-
lied on a crude rural/urban dichotomy and did not
explicitly assess the degree of urbanization using a valid
instrument. In a systematic review [4] of 11 relevant
studies on urbanicity, eight of the studies did not expli-
citly test the psychometric properties of their urbanicity
scales. Astounding inconsistencies in measurement reli-
ability and validity point to the need for a tested, valid,
and reliable measure of urbanicity. The China Health
and Nutrition Survey (CHNS) [5] is a longitudinal na-
tional survey that collected 10 waves of measurements
between 1989 and 2015 on societal and economic trans-
formation at the community level and the nutrition and
health status of citizens in China.
Using the CHNS data across 1989 and 2006, Jones-

Smith and Popkin [6] developed an Urbanicity Scale to
measure the urbanization index of communities based
on 12 community-level components. Compared with
scales developed in other contexts [7, 8], the scale devel-
oped by these authors was the only one rated as being
high quality (rating score = 4 out of 5) in evaluations of
its content validity by expert panels and reviewers, in-
ternal consistency and test–retest reliability, construct
validity through exploratory factor analysis, and criterion
validity. Based on the CHNS data, the Urbanicity Scale
captured unique changes in community contexts across
time and geographic locations and provided useful in-
sights into associated health effects [9]. Despite the uni-
dimensional nature of the Urbanicity Scale, no scale
validation studies have been conducted with the three
more recent waves of CHNS data from 2009 to 2015.
Given the lack of systematic evaluation of the psycho-
metric properties, the first objective of the present study
was to examine the factorial validity and reliability of the
Urbanicity Scale with CHNS data across 2000 and 2015.
Apart from factorial validity and reliability, measure-

ment invariance across time is another essential meas-
urement property for an assessment scale. Longitudinal
measurement invariance (LMI) examines the stability of
factor loadings and item intercepts and requires the
scale to measure latent factors in the same way over
time [10]. If LMI holds, changes in the test scores over
time can be attributed to changes in the underlying con-
struct [11]. For the CHNS data, the dynamic nature of
the urbanization process often necessitates an examin-
ation of the temporal change in urbanicity [12]. To en-
sure meaningful comparisons of the latent factor means

of urbanicity across time, the measurement structures of
the Urbanicity Scale should be invariant or stable in
terms of factor loadings and item intercepts.
In the case of longitudinal non-invariance of measure-

ment parameters, temporal changes in latent factor
means would be conflated with discrepancies in the
loadings and/or intercepts across time [13]. This confla-
tion would, in turn, induce measurement bias and ob-
struct comparisons and inferences regarding latent
factor means. Despite the abundance of research on
urbanization that has used the CHNS data, the assump-
tion of LMI for the Urbanicity Scale is yet to be tested.
The fulfillment of LMI would establish a psychometric
basis for applied researchers to analyze temporal
changes in urbanicity with other substantive variables in
the CHNS data. In light of the research gap, the second
objective of the present study was to examine the LMI
of the Urbanicity Scale with the CHNS data across 2000
and 2015.
Conventional practice on LMI focuses on exact LMI

where factor loadings and item intercepts are expected
to be remain unchanged over time [14]. However, this
assumption could be overly restrictive and difficult to
meet [15, 16]. A recent advancement in the methodo-
logical literature [17–19] advocates the use of approxi-
mate measurement invariance via the Bayesian structural
equation modeling (BSEM) approach [20]. Approximate
LMI replaces the exact zero constraints on the between-
time differences of the measurement parameters with
approximate zero informative priors that allow some
“wiggle room” [20]. The “wiggle room” permits small
differences between the parameters as a compromise be-
tween zero and no constraints and facilitates comparison
of the latent means. Approximate LMI has been shown
to outperform exact or partial LMI in detecting the true
latent mean difference [15]. The present study utilized
the BSEM approach to examine the LMI of the Urbani-
city Scale across 2000 and 2015 via both the exact ap-
proach and the approximate approach.

Methods
Study design and sample
The present study was based on community-level data
originating from six waves of the CHNS in 2000, 2004,
2006, 2009, 2011, and 2015 [5]. The CHNS is a large-
scale panel survey that began back in 1989 to identify
potential linkages between social and economic trans-
formation at the societal level and the nutrition and
health status of citizens in China. The CHNS sampled
and collected information on health, diet, nutrition, and
income from individuals and households. Across the six
waves of measurements from 2000 to 2015, the survey
recruited a total of 301 communities via a multistage,
random cluster sampling process from 12 provinces and
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municipal cities in China. A total of 205 sampled
communities (68.1%) provided complete data across
all six measurement waves and over 70% (N = 216,
71.8%) participated in at least four waves. Nearly one-
fourth of the sampled communities (N = 72, 23.9%)
joined the CHNS in 2011 and provided only the last
two waves of data. Ethical approval for this secondary
analysis was obtained from the human research ethics
committee of the authors’ university (reference num-
ber = EA1809036).

Measures
The urbanization index of the sampled communities was
measured by the Urbanicity Scale developed by Jones-
Smith and Popkin [6]. Urbanicity was operationalized
based on 12 identified components at the community
level: communications, population density, diversity,
economic activity, health infrastructure, housing, trad-
itional markets, social services, transportation, education,
modern markets, and sanitation. Each of the communi-
ties was scored on these 12 components through local
area administrators or official records on an 11-point an-
chored format from 0 to 10, with lower scores denoting
lesser degrees of urbanization. The results of the original
scale development study [6] suggested a unidimensional
structure on urbanicity in the CHNS data. The overall
urbanization index was calculated as the sum of the 12
component scores with a theoretical range from 0 to
120. The Urbanicity Scale showed good reliability (Cron-
bach’s α = 0.85–0.89) and high temporal stability in the
assessments from 1989 to 2006. Urban and rural com-
munities were classified by their baseline urbanization
score in 2000, using a score of 60 as a cutoff.

Data analysis
Table 1 displays the univariate statistics (means, stand-
ard deviations, and skewness) for the 12 components of
the Urbanicity Scale. Given the lack of known multidi-
mensionality in the Urbanicity Scale, exploratory factor
analysis (EFA) was conducted using the oblique Geomin
rotation in Mplus 8.4 [21] to explore one-factor to four-
factor structures. Most of the 12 component scores did
not deviate substantially from normal distributions, with
skewness ranging from − 1.14 to 1.41 throughout the six
waves of measurements. These components were mod-
eled as continuous variables under both the frequentist
and Bayesian approaches. Model comparison of the one-
factor to four-factor models was performed based on the
model fit and eigenvalues using parallel analysis under
maximum likelihood estimation. Bayesian estimation
was applied to derive the Bayesian information criterion
(BIC) and posterior probabilities of the factor models via
the Bayes factor. Missing data were handled via full in-
formation maximum likelihood under the missing-at-
random assumption [22].
All Bayesian models were estimated with two Markov

chain Monte Carlo chains and noninformative priors
over a minimum of 10,000 iterations [23]. The latter half
of the iterations was used to empirically derive the pos-
terior parameter distribution of the parameters. Model
convergence was checked using the trace plots, autocor-
relation plots, and potential scale reduction criterion
[24], with values of less than 1.05 implying small
between-chain variation relative to within-chain vari-
ation. Under the Bayesian posterior predictive checking,
an exact model fit was achieved in case of large posterior
predictive p values (PPP > 0.10) and negative lower 95%
posterior predictive limit (PPL). Approximate model fit

Table 1 Means and standard deviations of the twelve components of the Urbanicity Scale from 2000 to 2015

Item 2000 2004 2006 2009 2011 2015 Skewness

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) Range

Communication 4.85 (1.18) 5.71 (1.50) 6.15 (1.43) 6.77 (1.54) 7.49 (1.56) 6.84 (1.30) −0.73 to − 0.26

Population density 5.82 (1.40) 5.92 (1.46) 5.94 (1.47) 5.98 (1.50) 6.32 (1.56) 6.16 (1.91) −0.37 to 0.19

Diversity 4.57 (1.17) 4.73 (1.21) 5.18 (1.28) 5.45 (1.13) 5.70 (1.29) 5.69 (1.14) −0.02 to 0.59

Economic activity 4.71 (3.25) 5.90 (3.28) 6.53 (3.10) 6.70 (3.24) 7.57 (2.94) 7.47 (3.05) −0.93 to 0.42

Health structure 5.64 (2.23) 5.28 (2.33) 5.03 (2.40) 5.95 (2.57) 5.92 (2.57) 5.72 (2.71) −0.56 to 0.04

Housing 6.02 (2.67) 6.59 (2.50) 6.99 (2.33) 7.63 (2.02) 8.20 (1.77) 8.26 (1.67) −1.14 to 0.01

Traditional market 6.00 (3.48) 5.12 (3.67) 4.86 (3.90) 4.85 (3.47) 4.87 (3.43) 5.22 (3.53) −0.36 to 0.12

Social services 1.72 (1.10) 3.00 (2.58) 3.20 (2.74) 3.74 (3.17) 4.44 (3.30) 4.68 (3.39) 0.34 to 1.29

Transportation 5.72 (2.47) 5.91 (2.40) 5.82 (2.57) 5.97 (2.18) 4.74 (2.06) 6.16 (2.15) −0.31 to − 0.04

Education 3.38 (1.39) 3.36 (1.38) 3.44 (1.51) 3.48 (1.46) 4.05 (1.93) 5.16 (1.47) 0.60 to 1.41

Modern market 4.76 (3.33) 4.73 (3.03) 4.60 (2.92) 4.38 (2.89) 4.62 (2.84) 4.98 (2.85) −0.20 to 0.12

Sanitation 6.02 (3.20) 6.49 (3.02) 6.72 (2.95) 6.90 (2.90) 7.36 (2.72) 7.31 (2.36) −0.83 to − 0.16

Total score 59.2 (18.3) 62.7 (20.4) 64.5 (20.5) 67.8 (19.6) 71.3 (19.5) 73.7 (17.6) −0.35 to 0.04

M item mean, SD standard deviation
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was evaluated using the following cutoff criteria [25]:
comparative fit index (CFI) ≥ 0.95 and root mean square
error of approximation (RMSEA) ≤ 0.06. The reliability
of the Urbanicity Scale was evaluated using Mcdonald’s
omega (ω) with values of at least 0.70 and 0.80 indicating
satisfactory and good composite reliability.
Following the establishment of the factorial validity

and reliability, the BSEM approach was used to examine
the LMI of the Urbanicity Scale from 2000 to 2015.
Configural, metric, and scalar invariance models were
sequentially specified to evaluate the longitudinal invari-
ance of factor structure, factor loadings, and item inter-
cepts, respectively [26]. First, the configural invariance
model was estimated as the baseline model to allow dif-
ferent factor loadings and item intercepts across time.
Then, exact metric and scalar invariance models were
estimated that constrained the factor loadings and item
intercepts to be equal across time, respectively. The
comparison of nested (configural versus metric and
metric versus scalar) models was made based on differ-
ences in approximate fit indices [27]. According to Chen
[28], a decrease of at least 0.01 in the CFI supplemented
by an increase of at least 0.015 in the RMSEA would in-
dicate non-invariance in metric and scalar invariance
models.
In the case of a lack of exact LMI, approximate LMI

models were estimated under the BSEM approach [20].
This approach postulates the measurement parameters
(factor loadings and item intercepts) to be approximately
equal across time via zero-mean, small variance inform-
ative priors [29]. Sensitivity analysis was performed by
increasing the variance (V) for the informative priors
from V = 0.01 to 0.04 and 0.09, which would imply SDs
of ±0.1, ±0.2, and ± 0.3 for the differences in the
measurement parameters, respectively. The results of the
approximate LMI models gave the time-average meas-
urement parameters and time-specific deviations from
the average value. Apart from the statistical significance
of these deviations, violations in LMI were evaluated in
terms of practical significance, with a relative mean
change value of larger than 10% considered as indicative
of substantial bias [30]. In case of substantive longitu-
dinal non-invariance, follow-up measurement invariance
tests would be conducted across different timeframes.
The Mplus analysis scripts are available from the corre-
sponding author upon reasonable request.

Results
Descriptive profile of the communities
The number of communities recruited across the six
waves was 217, 216, 218, 218, 290, and 288, respectively,
from 2000 to 2015. Rural villages accounted for 40.5% of
the 301 sampled communities. Approximately one-
fourth of the communities were cities (N = 80), one-sixth

were towns (N = 53), and the remaining communities
were suburban neighborhoods (N = 46). More than half
(58.1%) of the recruited communities were located at
rural sites and less than half (41.9%) at urban sites. The
urban communities (cities or suburban neighborhoods)
were significantly more urbanized (p < 0.001) than the
rural communities (towns or rural villages) in the 2000
wave, with means (SD) of 71.7 (13.5) and 52.8 (17.1), re-
spectively. There were significant and moderate differ-
ences (Cohen’s d = 0.50–0.64, p < 0.001) in the
urbanization index between the urban and rural commu-
nities across the 2000–2015 waves.

Factorial validity and reliability
Table 2 shows the fit indices of the Bayesian EFA models
of the Urbanicity Scale from 2000 to 2015. Problems oc-
curred in the estimation of EFA models with three and
four factors with no model convergence. The two-factor
model showed a better model fit than the one-factor
model in terms of negative lower 95% PPL and greater
PPP. However, the first factor displayed a much higher
eigenvalue (5.16–6.27) than the second factor (0.90–1.14)
throughout the six waves of assessments. The average ei-
genvalues derived from the parallel analysis ranged from
1.25 to 1.29, which consistently exceeded the eigenvalues
of the second factor across the six waves. The results of
the parallel analysis supported retaining only the first ex-
tracted factor. The one-factor model reliably showed a
lower BIC than the two-factor model from 2000 to 2015.
The results of Bayes factor testing highly favored the
Urbanicity Scale being unidimensional in nature, with
posterior probabilities for only one factor ranging from
0.96 to 1.00 throughout the six measurements.
In the two-factor model, there were significant and

strong correlations (r = 0.55–0.78, p < 0.01) between the
two factors across the six measurement waves. As shown
in the supplemental table, the two-factor solution did
not show a clear and consistent pattern of factor load-
ings on the 12 components from 2004 to 2009. There
were cross-loadings or no significant loadings on a num-
ber of items, and the factor loading pattern differed sub-
stantially across the measurement waves. The unstable
results pointed to potential over-extraction of the fac-
tors. The one-factor model did not show an exact fit
with positive lower 95% PPL and low PPP (≤ 0.05) but
displayed an approximate fit to the data from 2000 to
2015 in terms of RMSEA and CFI. All 12 components
loaded significantly and substantially (λ = 0.41–0.88, p <
0.01) on the total urbanicity factor and the one-factor
solution from 2004 to 2009 (as displayed in the supple-
mental table). In the one-factor model, the urbanicity
factor exhibited good levels of composite reliability (ω =
0.88, 0.91, 0.91, 0.90, 0.90, and 0.85) across the six waves
of measurements from 2000 to 2015, respectively.
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Measurement invariance across 2000–2015
Table 3 shows the fit indices of various one-factor BSEM
measurement invariance models for the Urbanicity Scale
across different timeframes. Under noninformative priors,
the configural model displayed adequate approximate fit

(CFI = 1.00 and RMSEA= 0.000) to the 2000–2015 data.
Specification of exact metric invariance led to greatly in-
creased PPLs and substantial deteriorations in the fit indi-
ces (ΔCFI = − 0.025 and ΔRMSEA = + 0.024) compared
with the configural model, implying that the assumption

Table 2 Fit indices of the Bayesian 1-factor and 2-factor EFA models of the Urbanicity Scale from 2000 to 2015

Year N Model # 2.5%
PPL

97.5%
PPL

PPP BIC PP RMSEA CFI

2000 217 1-factor 36 19.4 80.8 0.002 10,277 0.9996 0.067 0.951

2-factor 47 −17.4 53.7 0.157 10,293 0.0004 0.049 0.979

2004 216 1-factor 36 −6.9 59.4 0.052 10,428 1.0000 0.050 0.977

2-factor 47 −22.8 41.3 0.272 10,460 0.0000 0.043 0.986

2006 218 1-factor 36 13.3 75.7 0.003 10,589 1.0000 0.063 0.963

2-factor 47 −15.7 49.4 0.135 10,611 0.0000 0.055 0.976

2009 218 1-factor 36 16.4 79.2 0.002 10,580 1.0000 0.064 0.959

2-factor 47 −12.7 53.1 0.119 10,603 0.0000 0.061 0.969

2011 290 1-factor 36 62.6 127.0 0.000 13,960 0.9598 0.069 0.945

2-factor 47 14.8 81.3 0.004 13,967 0.0402 0.063 0.964

2015 288 1-factor 36 10.0 76.1 0.010 14,154 1.0000 0.054 0.962

2-factor 47 −10.8 57.3 0.087 14,187 0.0000 0.047 0.971

EFA exploratory factor analysis, # number of free parameters, PPL posterior predictive limit, PPP posterior predictive p-value, BIC Bayesian information criterion, PP
posterior probability, RMSEA root mean square error of approximation, CFI comparative fit index, TLI Tucker-Lewis index

Table 3 Fit indices of 1-factor BSEM measurement invariance models for the Urbanicity Scale

Model specification Prior variance pD 2.5%
PPL

97.5%
PPL

RMSEA CFI ΔRMSEA ΔCFI

2000–2015 (N = 301):

Configural / 389 631.5 1101.6 0.000 1.000 / /

Metric Exact 309 1123.6 1584.5 0.024 0.975 + 0.024 −0.025

Metric V = 0.01 323 819.4 1276.3 0.012 0.994 + 0.012 − 0.006

Scalar Exact 268 2505.7 3004.3 0.050 0.887 + 0.038 − 0.107

Scalar V = 0.01 280 1791.9 2250.2 0.039 0.933 + 0.027 −0.061

Scalar V = 0.04 302 1070.4 1518.8 0.022 0.978 + 0.010 −0.016

Scalar V = 0.09 311 897.6 1350.6 0.016 0.989 + 0.004 −0.005

2004–2011 (N = 295):

Configural / 214 264.0 564.1 0.012 0.996 / /

Metric Exact 173 450.5 732.2 0.027 0.979 + 0.015 −0.017

Metric V = 0.01 181 329.5 619.5 0.018 0.990 + 0.006 −0.006

Scalar Exact 144 1062.4 1368.9 0.052 0.920 + 0.034 −0.070

Scalar V = 0.01 160 580.9 869.3 0.034 0.966 + 0.016 −0.024

Scalar V = 0.04 171 380.3 674.0 0.023 0.985 + 0.005 −0.005

2006–2009 (N = 220):

Configural / 84 41.6 170.5 0.046 0.972 / /

Metric Exact 72 66.9 192.1 0.050 0.965 + 0.004 −0.007

Scalar Exact 61 220.9 339.1 0.071 0.928 + 0.021 −0.037

Scalar V = 0.01 66 103.2 229.1 0.056 0.956 + 0.006 −0.009

PPL posterior predictive limit, pD Estimated number of parameters, RMSEA root mean square error of approximation, CFI comparative fit index; Δ = change in fit
index over the previous nested (bolded) model
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of exact metric invariance was untenable. The alterna-
tive specification of approximate metric invariance
with V = 0.01 did not result in substantial decrements
in the fit indices (ΔCFI = − 0.006 and ΔRMSEA = +
0.012). As shown in Table 4, seven of the 12 compo-
nents (communications, population density, diversity,
housing, social services, education, and sanitation) dis-
played significant and substantial (Δ = 17.5–42.7%) de-
viations from the average λ across time. The majority
(10/13) of the greatest deviations from the average λ
were located in either the 2000 or the 2015 wave.
In terms of scalar longitudinal invariance, specification of

exact scalar invariance led to greatly increased PPLs and
substantial deteriorations in the fit indices (ΔCFI = − 0.107
and ΔRMSEA= + 0.038) relative to the approximate metric
invariance model. This rejected the assumption of exact
scalar invariance from 2000 to 2015. The alternative speci-
fication of approximate scalar invariance with V = 0.01 and
V = 0.04 still resulted in substantial decrements in the fit
indices (ΔCFI = − 0.016 to − 0.061 and ΔRMSEA= + 0.010
to + 0.027). A further increase of prior variance to V = 0.09
led to a comparable model fit (ΔCFI = − 0.005 and
ΔRMSEA= + 0.004). As Table 5 indicates, significant devi-
ations were found across time from the average ν for all 12
components. Ten of the 12 deviations were considered
substantial (Δ = 10.4–60.2%); the exceptions were those for
population density (3.8%) and modern markets (8.0%).
Over half (15/24) of the greatest deviations from the aver-
age ν occurred in either the 2000 or the 2015 wave.

Measurement invariance across 2004–2011
The previous results identified the non-invariant factor
loadings and item intercepts as occurring mostly in the

2000 or 2015 waves. As a result, follow-up measurement
invariance tests were conducted for the Urbanicity Scale
across 2004 and 2011. As shown in Table 3, the configural
model displayed an adequate approximate fit (CFI = 0.996
and RMSEA = 0.012) to the 2004–2011 data. Specification
of exact metric invariance led to greatly increased PPLs
and substantial deteriorations in the fit indices (ΔCFI = −
0.017 and ΔRMSEA = + 0.015) relative to the configural
model, implying the untenability of exact metric invari-
ance. Specification of approximate metric invariance with
V = 0.01 resulted in a fit (ΔCFI = − 0.006 and ΔRMSEA =
+ 0.006) comparable to that of the configural model. As
shown in Table 6, three of the 12 components (diversity,
housing, and education) showed significant and substan-
tial (Δ = 12.1–22.2%) deviations from the average λ across
time. The remaining nine components did not display sig-
nificant and substantial (Δ = 2.0–10.3%) deviations from
the average λ across time. The majority (4/5) of the great-
est deviations from the average λ were found in either the
2004 or the 2011 wave.
In terms of scalar invariance, specification of exact sca-

lar invariance led to sharply increased PPLs and substan-
tial deteriorations in the fit indices (ΔCFI = − 0.070 and
ΔRMSEA = + 0.034) relative to the approximate metric
invariance model. This rejected the assumption of exact
scalar invariance from 2004 to 2011. Although specifica-
tion of approximate scalar invariance with V = 0.01 re-
sulted in substantial decrements in the fit indices
(ΔCFI = − 0.024 and ΔRMSEA = + 0.016), a further in-
crease of prior variance to V = 0.04 led to a model fit
(ΔCFI = − 0.005 and ΔRMSEA = + 0.005) comparable to
that of the approximate metric invariance model. As can
be observed in Table 7, significant deviations were found

Table 4 Results of approximate metric invariance model with prior variance of 0.01 for the differences in factor loadings of the
Urbanicity Scale from 2000 to 2015

Item λ Deviations from the average λ Δ

Average SD 2000 2004 2006 2009 2011 2015

Communication 0.89 0.05 −0.09* 0.06 0.01 0.04 0.11* −0.14* 28.0%

Population density 1.02 0.07 −0.11* − 0.02 − 0.04 0.02 0.00 0.16* 26.1%

Diversity 0.71 0.05 −0.02 0.06* 0.07* − 0.03 0.04 −0.13* 27.7%

Economic activity 2.13 0.11 0.01 0.03 −0.03 0.04 −0.03 − 0.02 3.2%

Health structure 1.09 0.08 −0.01 0.06 0.06 −0.00 −0.06 − 0.05 11.1%

Housing 1.54 0.08 0.16* 0.12* 0.07 −0.01 − 0.11* −0.24* 26.5%

Traditional market 1.65 0.13 −0.05 0.02 0.06 0.04 −0.01 −0.06 6.9%

Social services 0.92 0.07 −0.30* 0.09 0.04 0.03 0.08 0.07 42.7%

Transportation 0.96 0.08 0.04 −0.02 0.02 − 0.01 −0.00 − 0.03 6.8%

Education 1.10 0.07 −0.08* −0.08* 0.06* 0.02 0.19* −0.11* 26.6%

Modern market 1.84 0.11 −0.02 0.03 0.02 −0.02 0.03 −0.03 3.6%

Sanitation 2.03 0.11 0.12* −0.00 0.05 0.04 0.03 −0.24* 17.5%

* p < 0.05; λ = factor loading; SD standard deviation; Δ =maximum proportional deviation from the average loading across the 2000–2015 waves. The top two
significant deviations from the average loading are highlighted in bold
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across time from the average ν for 10 of the 12 compo-
nents (not for traditional and modern markets). Five of
the 10 deviations (in communications, diversity, housing,
social services, and transportation) were considered sub-
stantial (Δ = 12.2–18.6%), and the others were consid-
ered non-substantial (Δ = 2.0–9.1%). The majority (16/
19) of the greatest deviations from the average ν oc-
curred in either the 2004 or the 2011 wave.

Measurement invariance across 2006–2009
The previous results identified most non-invariant factor
loadings and item intercepts as occurring in the 2004 or

2011 wave. Follow-up measurement invariance tests
were conducted for the Urbanicity Scale across 2006 and
2009. As was shown in Table 3, the configural model
displayed adequate approximate fit (CFI = 0.972 and
RMSEA = 0.046) to the 2006–2009 data. Specification of
exact metric invariance led to a fit comparable to that of
the configural model without substantial deteriorations
in the fit indices (ΔCFI = − 0.007 and ΔRMSEA = +
0.004). Specification of exact scalar invariance led to in-
creased PPLs and substantial deteriorations in the fit in-
dices (ΔCFI = − 0.037 and ΔRMSEA = + 0.021) relative to
the exact metric invariance model. These results

Table 6 Results of approximate metric invariance model with prior variance of 0.01 for the differences in factor loadings of the
Urbanicity Scale from 2004 to 2011

Item λ Deviations from the average λ Δ

Average SD 2004 2006 2009 2011

Communication 1.12 0.07 0.01 − 0.04 − 0.01 0.04 7.4%

Population density 1.05 0.08 −0.02 − 0.04 0.02 0.04 7.0%

Diversity 0.86 0.06 0.03 0.04 −0.06* − 0.01 12.1%

Economic activity 2.31 0.13 0.02 −0.02 0.04 −0.04 3.6%

Health structure 1.28 0.11 0.05 0.05 −0.02 −0.08 10.3%

Housing 1.75 0.09 0.17* 0.08* −0.05 − 0.20* 21.0%

Traditional market 2.07 0.16 −0.01 0.04 0.01 −0.04 3.9%

Social services 1.66 0.12 0.01 −0.03 0.01 0.02 3.0%

Transportation 1.06 0.10 −0.01 0.03 0.00 −0.01 3.6%

Education 1.27 0.09 −0.14* 0.02 −0.03 0.15* 22.2%

Modern market 2.11 0.13 0.02 0.01 −0.03 0.00 2.0%

Sanitation 2.35 0.13 0.02 0.04 0.02 −0.08 4.9%

* p < 0.05; λ = factor loading; SD standard deviation; Δ =maximum proportional deviation from the average loading across the 2004–2011 waves. The top two
significant deviations from the average loading are highlighted in bold

Table 5 Results of approximate scalar invariance model with prior variance of 0.09 for the differences in item intercepts of the
Urbanicity Scale from 2000 to 2015

Item ν Deviations from the average ν Δ

Average SD 2000 2004 2006 2009 2011 2015

Communication 6.46 0.06 −1.31* − 0.45* − 0.07 0.51* 0.97* 0.36* 35.3%

Population density 6.26 0.09 − 0.13* −0.03 0.01 0.08* 0.11* − 0.04 3.8%

Diversity 5.36 0.06 −0.58* − 0.40* 0.03 0.25* 0.34* 0.36* 17.4%

Economic activity 6.91 0.15 −1.05* −0.32* 0.13 0.21* 0.55* 0.49* 23.1%

Health structure 5.75 0.10 0.13 −0.12 −0.35* 0.25* 0.12 −0.03 10.4%

Housing 7.66 0.10 −0.94* −0.46* − 0.15* 0.36* 0.57* 0.61* 20.2%

Traditional market 5.39 0.15 0.51* −0.01 −0.12 − 0.15 −0.25* 0.02 14.2%

Social services 3.42 0.10 −1.37* −0.15 0.00 0.30* 0.52* 0.69* 60.2%

Transportation 5.81 0.10 0.05 0.18 0.11 0.22* −0.90* 0.33* 21.2%

Education 4.13 0.09 −0.33* −0.32* − 0.22* − 0.19* 0.00 1.07* 34.0%

Modern market 4.89 0.14 0.09 0.15 −0.01 − 0.23* − 0.16* 0.16* 8.0%

Sanitation 7.19 0.14 −0.51* − 0.12 0.05 0.18* 0.22* 0.19* 10.2%

* p < 0.05; ν = item intercept; SD standard deviation; Δ =maximum proportional deviation from the average intercept across the 2000–2015 waves. The top two
significant deviations from the average intercept are highlighted in bold
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supported the assumption of exact metric invariance
but not exact scalar invariance from 2006 to 2009.
Specification of approximate scalar invariance with
V = 0.01 led to a model fit (ΔCFI = − 0.009 and
ΔRMSEA = + 0.006) comparable to that for the exact
metric invariance model. According to Table 8, sig-
nificant deviations were found across time from the
average ν for four of the 12 components (communica-
tions, diversity, health infrastructure, and housing).
None of these four deviations were considered sub-
stantial (Δ = 3.3–5.6%).

Discussion
The present study involved a systematic evaluation of
the psychometric properties of the Urbanicity Scale
using six waves of CHNS data spanning from 2000 to
2015. In terms of dimensionality, the EFA results ob-
tained from both the frequentist approach (eigenvalues
via parallel analysis) and the Bayesian approach (BIC
and posterior probabilities) support the one-factor struc-
ture as a parsimonious fit of the underlying construct of
urbanicity. Despite the better model fit, the two-factor
model is less parsimonious, less interpretable, and

Table 7 Results of approximate scalar invariance model with prior variance of 0.04 for the differences in item intercepts of the
Urbanicity Scale from 2004 to 2011

Item ν Deviations from the average ν Δ

Average SD 2004 2006 2009 2011

Communication 6.79 0.09 −0.61* − 0.28* 0.24* 0.65* 18.6%

Population density 6.33 0.10 −0.07* − 0.03 0.04 0.06* 2.0%

Diversity 5.45 0.07 −0.44* −0.02 0.18* 0.27* 13.0%

Economic activity 7.24 0.18 −0.35* −0.01 0.05 0.31* 9.1%

Health structure 5.75 0.12 −0.04 − 0.24* 0.21* 0.08 7.8%

Housing 7.80 0.13 −0.53* −0.21* 0.28* 0.46* 12.6%

Traditional market 5.22 0.19 0.11 0.01 −0.01 −0.11 4.3%

Social services 3.93 0.15 −0.24* −0.11 0.12 0.24* 12.2%

Transportation 5.66 0.11 0.20* 0.15 0.29* −0.64* 16.4%

Education 3.92 0.11 −0.15* −0.03 − 0.01 0.19* 8.6%

Modern market 4.92 0.16 0.16 0.06 −0.10 − 0.11 5.4%

Sanitation 7.36 0.17 −0.18* −0.02 0.10 0.11 3.9%

* p < 0.05; ν = item intercept; SD standard deviation; Δ =maximum proportional deviation from the average intercept across the 2004–2011 waves. The top two
significant deviations from the average intercept are highlighted in bold

Table 8 Results of approximate scalar invariance model with prior variance of 0.01 for the differences in item intercepts of the
Urbanicity Scale from 2006 to 2009

Item ν Deviations from the average ν Δ

Average SD 2006 2009

Communication 6.44 0.09 −0.16* 0.16* 5.1%

Population density 5.97 0.10 −0.02 0.02 0.6%

Diversity 5.33 0.08 −0.09* 0.09* 3.3%

Economic activity 6.64 0.20 −0.01 0.01 0.4%

Health structure 5.41 0.15 −0.11* 0.11* 4.1%

Housing 7.35 0.15 −0.21* 0.21* 5.6%

Traditional market 4.88 0.22 0.01 −0.01 0.2%

Social services 3.45 0.17 −0.04 0.04 2.3%

Transportation 5.91 0.14 −0.01 0.01 0.5%

Education 3.47 0.10 −0.01 0.01 0.7%

Modern market 4.51 0.19 0.04 −0.04 1.7%

Sanitation 6.83 0.20 −0.04 0.04 1.1%

* p < 0.05; ν = item intercept; SD standard deviation; Δ =maximum proportional deviation from the average intercept across the 2006–2009 waves. The significant
deviations from the average intercept are highlighted in bold
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subject to potential factor over-extraction. These find-
ings corroborate the unidimensional nature of the Urba-
nicity Scale. Good omega coefficients were consistently
found for the total urbanicity factor throughout all six
waves of measurements, suggesting adequate reliability
for the Urbanicity Scale.
This study is the first to systematically investigate the

LMI for the Urbanicity Scale across a 15-year period
using exact and approximate LMI approaches via BSEM.
Across six waves of measurements from 2000 to 2015,
exact LMI was rejected for both metric invariance (fac-
tor loadings) and scalar invariance (item intercepts). Ap-
proximate LMI models resulted in adequate model fits
with prior variances specified for the differences in fac-
tor loadings (V = 0.01) and item intercepts (V = 0.09).
However, among the 12 items, statistically significant
(p < 0.05) and practically substantial (Δ > 10%) deviations
were found in seven factor loadings and 10 item inter-
cepts across time. The occurrence of non-invariance in
the majority of instances for both measurement parame-
ters essentially implies a lack of LMI for the scale across
this timeframe. In particular, the 2000 wave of CHNS
data exhibited the greatest degrees of non-invariance.
This discrepancy could reflect potential alterations or
shifts in the scoring algorithm of the components in the
Urbanicity Scale between the 2000 and 2004 waves.
Given the lack of LMI across 2000 and 2015, follow-

up LMI analyses were conducted of the scale over
shorter timeframes. Across four waves of measures from
2004 to 2011, exact LMI was not supported in either fac-
tor loadings or item intercepts. Approximate LMI
models resulted in adequate model fits using zero-mean,
small variance informative priors for the differences in
factor loadings (V = 0.01) and item intercepts (V = 0.04).
For the 12 items, statistically significant and practically
substantial deviations were found in three factor load-
ings and five item intercepts across time, and two com-
ponents (diversity and housing) displayed substantial
non-invariance in both parameters. Further investigation
of LMI supported the existence of exact metric invari-
ance across the two waves from 2006 to 2009. Although
the Urbanicity Scale displayed approximate but not exact
scalar invariance across 2006 and 2009, statistically sig-
nificant deviations were found in only four item inter-
cepts, with none being practically substantial (Δ < 6%).
These results demonstrate LMI for the Urbanicity Scale
across the timeframe from 2006 to 2009.

Practical implications
The present study revealed intriguing findings regarding
the measurement stability of the Urbanicity Scale, with
the degrees of non-invariance increasing in proportion
to the length of the timeframe being scrutinized. Our
findings did not support any form of (exact or

approximate) LMI across the longest timespan from
2000 to 2015. The substantial degrees of non-invariance
in both factor loadings and item intercepts (Tables 4
and 5) imply that no partial LMI was feasible under this
timeframe. The findings demonstrated longitudinal
measurement non-invariance from 2000 to 2015, and
comparisons of the latent means of urbanicity would
probably be confounded by the existing measurement
biases across time. The lack of psychometric support
suggests that future longitudinal studies using the CHNS
should not analyze temporal changes in urbanicity
across such a long time span.
The present study did, however, demonstrate LMI of

the scale across adjacent waves between 2006 and 2009.
The trivial non-invariance in the item intercepts (Table
8) should not have substantial impacts on inferences of
temporal changes in urbanicity. A psychometric basis
was established for meaningful comparisons of the latent
means of urbanicity across this timeframe. Our findings
appear to point toward partial approximate LMI for the
Urbanicity Scale across 2004 and 2011. Comparisons of
the latent means of urbanicity across 2004 and 2011 are
theoretically plausible through specification of partial in-
variance models. However, the associated temporal
changes in urbanicity should be interpreted with caution,
and future researchers need to properly adjust for the
partial non-invariance of the measurement parameters
in the scale.

Methodological implications
Assessing the LMI of a measurement scale is fundamen-
tal to establish the temporal stability of the assessed con-
structs and thus enable meaningful interpretation of
longitudinal findings [31]. Nevertheless, examination of
the LMI of assessment scales over multiple (six) re-
peated measurements remains relatively rare. The
present study contributes to the literature on urbanicity
through its novel application of the approximate meas-
urement invariance approach. The approximate LMI ap-
proach allows researchers to make unequivocal trade-
offs between the degrees of model fit and measurement
non-invariance across time [15]. This approach is useful
in assisting researchers to obtain a balance between
achieving a well-fitting model, adhering to the invariance
requirements, and making comparisons possible [32]. In
addition, the use of informative priors via BSEM helps
researchers evaluate the statistical and practical signifi-
cance of between-time differences among measurement
parameters. Given the frequent rejection of classical LMI
tests in applied research, the approximate LMI approach
could be regarded as a promising and realistic
alternative.
Apart from the Bayesian approximate measurement

invariance approach, an alignment method was proposed
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by Muthén and Asparouhov [33] for multiple-group
confirmatory factor analysis. Their alignment method
has the capability to estimate group-specific factor
means and variances in factor models without requiring
exact measurement invariance. The ability to compute
aligned factor scores for the full sample despite the pres-
ence of non-invariance in some groups facilitates com-
parisons of factor means on the basis of a configural
invariance model [34]. This technique is suitable and
feasible for assessing measurement invariance in large
data sets across numerous groups, such as in compari-
sons across multiple countries. Munck, Barber, and
Torney-Purta [35] recently demonstrated the usefulness
of the alignment method for group comparisons of
European youth attitudes toward immigrants across a
total of 92 groups (country by cohort by gender). Future
studies are recommended to evaluate the use of the
alignment method in longitudinal measurement invari-
ance and the possibility of integrating model alignment
with approximate measurement invariance via the Bayes-
ian approach.

Study limitations
Several limitations of the present study should be
pointed out. First, measurement invariance of the Urba-
nicity Scale was only evaluated across time and not
across community context (rural vs. urban sites). The
relatively small sample sizes (N < 200) for the rural and
urban sites did not provide adequate statistical power
for accurate detection of scale measurement invariance.
Additional studies are required to elucidate potential
measurement biases related to contextual factors such as
geographic locations and contexts. Second, the CHNS
did not include data on community characteristics such
as social networks and culture. The Urbanicity Scale de-
rived from the CHNS data could place a disproportion-
ately large emphasis on economic activities, which
would raise doubts regarding the content validity and
item coverage of the scale. Third, the present study fo-
cused only on the factorial validity and LMI but not the
convergent validity and divergent validity of the Urbani-
city Scale. Investigation of its convergent and divergent
validity with reference to individual-level outcomes such
as obesity, physical activity, and lifestyle would require
multilevel analyses that were outside the scope of the
present study. Future research should attempt to evalu-
ate the associations between urbanicity and these sub-
stantive variables as in previous studies [9, 12] while
taking into account the measurement non-invariance in
the parameters across measurement waves.

Conclusions
The present study contributed a systematic evaluation of
the factorial validity, reliability, and LMI of the

Urbanicity Scale using the BSEM approach with six
waves of CHNS data from 2000 to 2015. The findings
verified the one-factor structure of the Urbanicity Scale
with adequate reliability. Regarding measurement
invariance across time, LMI was only established for the
Urbanicity Scale over a shorter timeframe from 2006 to
2009 and not over a longer timeframe from 2000 to
2015. Interpretations of temporal changes in urbanicity
are recommended only for the former timeframe. Ana-
lyzing the temporal change in urbanicity from 2004 to
2011 requires proper adjustments for the partial non-
invariance of the measurement parameters.
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