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Abstract

Background: Light at night (LAN) as a circadian disruption factor may affect the human immune system and
consequently increase an individual’s susceptibility to the severity of infectious diseases, such as COVID-19. COVID-
19 infections spread differently in each state in the United States (US). The current analysis aimed to test whether
there is an association between LAN and COVID-19 cases in 4 selected US states: Connecticut, New York, California,
and Texas.

Methods: We analyzed clustering patterns of COVID-19 cases in ArcMap and performed a multiple linear regression
model using data of LAN and COVID-19 incidence with adjustment for confounding variables including population
density, percent below poverty, and racial factors.

Results: Hotspots of LAN and COVID-19 cases are located in large cities or metro-centers for all 4 states. LAN
intensity is associated with cases/1 k for overall and lockdown durations in New York and Connecticut (P < 0.001),
but not in Texas and California. The overall case rates are significantly associated with LAN in New York (P < 0.001)
and Connecticut (P < 0.001).

Conclusions: We observed a significant positive correlation between LAN intensity and COVID-19 cases-rate/1 k,
suggesting that circadian disruption of ambient light may increase the COVID-19 infection rate possibly by affecting
an individual’s immune functions. Furthermore, differences in the demographic structure and lockdown policies in
different states play an important role in COVID-19 infections.
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Background
Mammalian circadian rhythms, controlled by a neuro-
logical master clock located in the suprachias matic nu-
cleus (SCN) and the peripheral clocks of somatic cells,
regulate a number of biological and physiological pro-
cesses including the human immune system [1, 2]. Be-
cause immune responses play a major role in fighting
against virus infections [3], a disrupted circadian rhythm
may adversely influence immune functions and conse-
quently increase virus infectivity and its ability to repli-
cate inside hosts [4–6].

Circadian disruptions can be caused by sleep
deprivation, night shift work, frequent air traveling, cir-
cadian gene alterations, and light at night (LAN) expo-
sures [7–10]. Sleep deprivation has been associated with
increased susceptibility to gut infection [11]. In addition,
a higher incidence and severity of respiratory infections
has been reported among night shift workers [12]. These
findings support a significant relationship between dis-
rupted circadian rhythms and an individual’s increased
vulnerability to infectious diseases and suggest that ex-
cess risk could also be observed among individuals with
high LAN exposures for the infection of COVID-19 [2],
a coronavirus causing the global pandemic in 2020.
There are also studies analyzing LAN exposure and

various cancer types, such as breast cancer, prostate

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: yong.zhu@yale.edu
Department of Environmental Health Sciences, Yale University School of
Public Health, New Haven, CT 06520, USA

Meng et al. BMC Public Health         (2021) 21:1509 
https://doi.org/10.1186/s12889-021-11500-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-021-11500-6&domain=pdf
http://orcid.org/0000-0002-6957-1114
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:yong.zhu@yale.edu


cancer, thyroid cancer, and non-Hodgkin Lymphoma [7,
9, 13, 14]. Both global and regional studies have shown
that there is a significant association between intensity
of light at night and breast cancer [7, 14–16]. These
findings suggest that LAN as a circadian disruption can
influence the immune system and hormone releases, and
in turn affect an individual’s susceptibility to infectious
diseases as well.
Light at night comes from either ambient light or

indoor artificial light exposures. Excessive exposure to
LAN may generate light pollution that causes adverse
effects on immune functions [17] and alters circadian
gene functions in the SCN [13]. City-level LAN inten-
sity can be measured by using the U.S. Defense Me-
teorological Satellite Program (DMSP). In the present
analysis, we investigate whether exposure to LAN is
associated with COVID-19 incidence in major cities
in four selected US states: Connecticut, New York,
Texas, and California, each of which represent differ-
ent geological locations.

Methods
Data sources
We obtained COVID-19 cases and testing data from
local health departments. Specifically, we obtained
COVID-19 data for Connecticut from the Connecticut
State Department of Public Health (https://data.ca.gov/
dataset/covid-19-cases), for New York State from the
Open NY Program (https://data.ny.gov/browse?tags=
covid-19), for Texas from Texas Health and Human Ser-
vices (https://dshs.texas.gov/coronavirus/additionaldata.
aspx), and for California from the California Open Data
Portal (https://data.ca.gov/dataset/covid-19-cases). All of
the above databases are open to the public and no per-
missions are required to access these data. In summary,
we obtained 62 data points for New York State, 167 data
points for Connecticut, 56 data points for California,
and 254 data points for Texas, based on the data avail-
ability for either county or town level. Data of COVID-
19 cases were categorized in 3 groups: duration of over-
all (March 20th, 2020 to August 4th, 2020), period of
lockdown, and period of reopening in each state accord-
ing to local state policy on the government websites
[18–22].
LAN intensity data was extracted from satellite images

of nighttime light intensity created by the NASA Earth
Observatory [23]. We also collected demographic data,
including factors of income and poverty, race/ethnicity,
and population density. County level demographic data
for California, Texas, and New York was obtained from
the US Census (https://data.census.gov), and town level
demographic data for Connecticut was obtained from
local public health departments (https://portal.ct.gov/
DPH). County and town level boundaries data was

obtained from local transportation or planning departments
(http://gis.ny.gov/gisdata; https://data.ct.gov; https://gis-
txdot.opendata.arcgis.com; https://gisdata-caltrans.
opendata.arcgis.com).

Geographic information system (GIS) mapping
ArcMap (https://desktop.arcgis.com/en/arcmap) was
used to generate visualized hotspot or density maps for
COVID-19 case rate data and LAN data. The Kernel
Density (KD) in ArcMap 10.8.1 was used to calculate
density from neighborhood features to create a smooth
raster layer from points or polylines. The search radius
was calculated by spatial configuration and the total
number of points in the dataset, and equal breaks were
used for symbology for Connecticut, Texas, and Califor-
nia. Natural breaks were used for symbology for New
York because the LAN level in New York City is much
higher than other cities in New York and natural breaks
can better present data with large differences of inherent
groups. Because of the huge differences in LAN data of
New York City compared to other cities in New York
State, we specifically analyzed the spatial pattern of LAN
and COVID-19 case rates and performed a Geographic-
ally Weighted Regression (GWR). The Spatial Autocor-
relation (Global Moran’s I) tool was used to test spatial
patterns (clustered, dispersed, or random) of points for
cases/1 k during the lockdown, reopening, and overall
periods for New York State. GWR was used to under-
stand regional variation of geo-data.

Statistically analysis
To analyze the correlation between LAN intensities and
COVID-19 case rates per 1000 people, we built multiple
linear regression models with variables of nonwhite rate,
percent below poverty, and population density from the
US Census, 2015: ACS 5-Years Estimates Subject Tables
(https://data.census.gov). Population density is a very im-
portant factor that showed moderate or strong positive
correlation with the number of COVID-19 infections
[24–26]. Controlling the factor of population density in
the regression models can help to eliminate the effect of
human-to-human contact on COVID-19 infection. Mul-
tiple regression models were performed using SAS 9.4
and RStudio.

Results
To represent the different regions of the U.S., we in-
cluded four states, Connecticut, New York, California,
and Texas in the current analysis. Generally, hotspots
of LAN data were located in large cities or metro-
centers for all four states tested, such as Hartford,
CT, New York City, NY, Dallas, TX, and San Fran-
cisco, CA.
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The maximum LAN intensity calculated by ArcMap
tool was 254.68, 254.68, 235.14 and 190.30 in New
York State, Connecticut, Texas, and California, re-
spectively. The mean LAN intensity was 92.31 in
Connecticut and around 40 in the other three states.
The maximum COVID-19 case -rate was in Texas
(around 67 cases/1 k people) among all four states,
followed by California (around 47 cases/1 k people),
New York (around 43 cases/1 k people), and lowest in
Connecticut (around 27 cases/1 k people) at the time
of data collection.
For Connecticut and New York, the hotspots of LAN

intensity, COVID-19 case rates/1 k during lockdown,
and COVID-19 case rates/1 k during the overall duration
shared similar patterns that clustered around major
cities in the state (Fig. 1), but were slightly different
after reopening. Differently, in Texas and California,
there were inconsistent patterns of hotspots for the
four interested variables, but they share the trend that
the hotspot-areas were similar for reopening and
overall durations.
During the lockdown period, the hotspots of COVID-

19 case rates shared similar patterns with LAN data in
Connecticut and New York, but had different geo-
patterns in California and Texas. During the reopening
period, the locations of hotspots of COVID-19 case rates
were very different from the LAN data map in New
York, Texas, and California. The hotspot patterns of
COVID-19 case rates during the overall period were
similar to the LAN map in Connecticut and New York.
On the contrary, the overall hotspots of COVID-19 case
rates were similar to the reopening period in California
and Texas.
An analysis of multivariable regression models also re-

vealed similar patterns to the ones that geo-patterns
showed. The cross comparison among four states
showed that there were statistically significant correla-
tions between LAN intensity and cases/1 k for the over-
all and lockdown durations in New York and
Connecticut (P < 0.001). There was no statistically sig-
nificant association between LAN intensity and cases/1
k, for the overall, lockdown, or reopening durations, in
Texas and California (Table 1 and Fig. 2). The overall
case rates were significantly associated with LAN in New
York (p < 0.001) and Connecticut (p < 0.001), in which
every 1 unit increase of LAN had a 15.6% increase in the
overall case rate in New York, and a 3.7% increase in
Connecticut. The results of the lockdown period were
similar to those for the overall period in New York (p <
0.001) and Connecticut (p < 0.001). During the reopen-
ing period, there was a significant small positive associ-
ation between case rates and LAN data in Connecticut
(p < 0.001). Based on R-squared results, the state-specific
regression models could explain more variations in

New York (R2 = 0.80, 0.78 and 0.40) and Connecticut
(R2 = 0.58, 0.57 and 0.21), compared to the data in
California (R2 = 0.22, 0.37, 0.23) and Texas (R2 = 0.13,
0.02, 0.12), for the overall, lockdown and reopening
durations.
In addition, we also performed an increased regression

model, as the sensitive analysis, with added covariants of
education level, insurance coverage and the rate of dis-
ability in New York, California and Texas. We didn’t in-
clude Connecticut due to data unavailability. The
increased models showed very similar results to the
main models (Table 1) at a similar significant level. This
additional analysis showed that the performance of the
main model did not significantly improve when these
factors were included.

Discussion
Our findings demonstrate significant positive correla-
tions between LAN intensity and COVID-19 case
rates per 1000 in two of the four US states (Connecticut
and New York) studied. These findings support the
proposed hypothesis that high LAN exposures may
disrupt circadian rhythms, which lead to a decrease in
people’s immunity and consequently increase an indi-
vidual’s vulnerability to infectious diseases such as
COVID-19 [2].
The co-distribution of light at night (LAN) and

COVID-19 incidence was more evident in New York
and Connecticut. The regression models we built can
explain more variations of COVID-19 data in New York
and Connecticut than in Texas and California. This dif-
ference might be due to different lockdown/reopening
policies in each state. For example, California had a
shorter lockdown period, and there were no formal “Stay
at Home” orders in Texas, compared to New York which
has similar total COVID-19 cases and population [18–
22]. In states with strict restriction policies, people spent
much more time at home and made less movement
during the pandemic, including traveling, recreation,
grocery shopping, etc.; and much less people moved
between different cities and states [27–29]. The less
strict policies may introduce more social factors into the
analysis that we cannot determine easily at this point.
The more complex situation masks the correlation
between LAN and COVID-19 infection. We also
found some inconsistent results of the effect of fac-
tors of social determinants, which might be due to
the different social and demographic structures in
each state. Moreover, the different COVID-19 testing
policies and availability in different states might intro-
duce more variations into our analysis.
Data points for all four states combined are relatively

less likely to have a very solid statistical analysis, but in
order to discuss different policy impacts, we chose to
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Fig. 1 (See legend on next page.)

Meng et al. BMC Public Health         (2021) 21:1509 Page 4 of 8



analyze states because of the heterogeneity of each state.
The data used in the study is at either town or county
levels, which aggregate individual data into large spatial
area levels and may introduce ecological fallacy. To re-
duce the effect of ecological bias, we performed GWR
models for New York. This approach improved the ana-
lysis and generated a very high R-squared value from the
regression models (Supplement Table 1).
The current analysis focused on the COVID-19 test

rate, and information on the severity of infected patients
were not included due to its unavailability. Confounding
factors considered in the analysis were percent below
poverty, non-white rate, and population density. The in-
creased regression model with added covariant of educa-
tion level, insurance coverage and the rate of disability
showed very similar results to the main model, which
shows that these factors might not play important roles
in the association. More confounders, such as employ-
ment, underlying health conditions, and proximity to
healthcare facilities should also be considered in future
studies if they are available.
Observations from our study are consistent with find-

ings from a recent study that shows melatonin usage is
significantly associated with a 28% reduced likelihood of
a positive laboratory test result for COVID-19 [30].
Melatonin production in the pineal gland is sensitive to
light and it has shown that even exposures to low inten-
sity light can suppress melatonin secretion [31]. LAN
may reduce melatonin levels and consequently increase
risk of COVID-19 infection. Based on our results and
existing literature, decreasing unnecessary LAN expos-
ure might reduce its adverse effect on human immunity.
Increasing awareness of the health effects of LAN and

changing daily behaviors can decrease the exposure of
LAN, which might reduce the vulnerability of pandemic
infection. Daily measures include using heavy curtains
and sleep patches, and turning off unnecessary ambient
lights, etc. Moreover, policy level systematic measures
can largely decrease the LAN exposure in general ambi-
ent environments, such as turning off unnecessary high
intensity lights and decoration lights.
Due to mental pressure, behavior, and daily routine

changes during the pandemic, there are increasing con-
cerns of sleep disturbances and circadian disruptions, es-
pecially for healthcare workers [5, 32, 33]. More
circadian disruptions might lead to more adverse im-
pacts on human immunity, such as causing people to be-
come more vulnerable to infectious diseases and other
hormone-related diseases. This provides more opportun-
ities to analyze how circadian disruptions such as LAN
correlate with hormone-related health outcomes and
temporal immune dynamics [34].

Conclusion
In summary, both LAN intensity and COVID-19 case
rates are higher in major cities or metro-centers in all
four states, due to the nature of cities of higher mobility,
population density, etc. In the current study, we ob-
served a significant positive correlation between LAN in-
tensity and COVID-19 cases-rate/1000, which suggests
that circadian disruption of ambient light may increase
the COVID-19 infection rate possibly by affecting an in-
dividual’s immune functions. Furthermore, differences in
demographic structure and lockdown policies in each
state play an important role in COVID-19 infections.

(See figure on previous page.)
Fig. 1 Co-distribution of light at night (LAN) and COVID-19 incidence in the US states of Connecticut, New York, Texas, and California. We used
ArcGIS to generate the Kernel density maps of LAN intensity and COVID-19 case rate for these 4 states. There are significant positive correlations
between LAN intensity and COVID-19 case rate in Connecticut and New York; no consistent correlation between LAN intensity and COVID-19
case rate in Texas and California. Data of LAN intensity were extracted from NASA Earth Observatory and COVID-19 case rates were obtained from
local health departments

Table 1 Summary table of Regression models of association between COVID case-rate and LAN intensity with covariant: nonwhite
rate, percent below poverty, and population density for the overall, lockdown, and reopening periods for New York, Connecticut,
California, and Texas

Variables N Overall cases rate Lockdown cases rate Reopening cases rate

Beta P-value R2 Beta P-value R2 Beta P-value R2

New York 62 0.156 6.61E-06 0.80 0.148 1.34E-05 0.78 0.003 0.4072 0.40

Connecticut 167 0.037 6.10E-11 0.58 0.030 8.90E-11 0.57 0.006 0.0080 0.21

Texas 254 0.043 0.1602 0.13 0.001 0.8682 0.02 0.041 0.1558 0.12

California 56 0.110 0.1428 0.22 0.001 0.8960 0.37 0.110 0.1297 0.23

N: county level data points for states of NY, CA, TX; town level data points for CT
Beta: beta-estimate for the regression model, representing the coefficient of models
R2: measured the goodness of fitting for regression models, representing percent of data that is able to be explained by the model
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Fig. 2 Scatter points of case-rate/1 k, LAN intensity and regression lines in the US states of Connecticut, New York, Texas, and California. P values
indicate significance of association between COVID case-rate and LAN intensity from Regression models
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Weighted Regression; KD: Kernel Density; DMSP: Defense Meteorological
Satellite Program

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12889-021-11500-6.

Additional file 1 : Supplement Table 1. Spatial Autocorrelation test
(Global Moran’s I) of cases/1 k during lockdown, reopening and overall
durations, and Geographically Weighted Regression of cases /1 k with
variables: LAN2016, nonwhite rate, percent below poverty, and
population density during lockdown, reopening and overall durations, for
New York. Note: Moran’s Index: The tendency of geo-clustering or geo-
dispersion. A positive Moran’s I show the tendency of geo-clustering; Z-
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