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Abstract

Background: The infection fatality rate (IFR) of the Coronavirus Disease 2019 (COVID-19) is one of the most discussed
figures in the context of this pandemic. In contrast to the case fatality rate (CFR), the IFR depends on the total number
of infected individuals — not just on the number of confirmed cases. In order to estimate the IFR, several
seroprevalence studies have been or are currently conducted.

Methods: Using German COVID-19 surveillance data and age-group specific IFR estimates from multiple
international studies, this work investigates time-dependent variations in effective IFR over the course of the pandemic.
Three different methods for estimating (effective) IFRs are presented: (a) population-averaged IFRs based on the
assumption that the infection risk is independent of age and time, (b) effective IFRs based on the assumption that the
age distribution of confirmed cases approximately reflects the age distribution of infected individuals, and (c) effective
IFRs accounting for age- and time-dependent dark figures of infections.

Results: Effective IFRs in Germany are estimated to vary over time, as the age distributions of confirmed cases and
estimated infections are changing during the course of the pandemic. In particular during the first and second waves
of infections in spring and autumn/winter 2020, there has been a pronounced shift in the age distribution of
confirmed cases towards older age groups, resulting in larger effective IFR estimates. The temporary increase in
effective IFR during the first wave is estimated to be smaller but still remains when adjusting for age- and
time-dependent dark figures. A comparison of effective IFRs with observed CFRs indicates that a substantial fraction of
the time-dependent variability in observed mortality can be explained by changes in the age distribution of
infections. Furthermore, a vanishing gap between effective IFRs and observed CFRs is apparent after the first infection
wave, while an increasing gap can be observed during the second wave.

Conclusions: The development of estimated effective IFR and observed CFR reflects the changing age distribution of
infections over the course of the COVID-19 pandemic in Germany. Further research is warranted to obtain timely
age-stratified IFR estimates, particularly in light of new variants of the virus.
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Background

The ongoing pandemic of the novel coronavirus disease
COVID-19 provides enormous global challenges for pub-
lic health, society and economy. An important figure in
the context of this pandemic is the infection fatality rate
(IFR), defined by the number of COVID-19 associated
deaths divided by the total number of infections. In con-
trast to the case fatality rate (CFR), the IFR is not only
based on the number of confirmed cases and should there-
fore not be biased by potential drifts in testing policies.
However, as the total number of infections with SARS-
CoV-2 is generally unknown, the IFR can only be esti-
mated based on available surveillance and seroprevalence
data.

Many seroprevalence studies have been conducted
worldwide with the aim of estimating the true numbers
of infections and resulting IFRs. Also in Germany, several
local seroprevalence studies are being conducted (e.g. [1]);
a completed study from the early phase of the pandemic
in the high-prevalence region of Gangelt, Heinsberg,
reports an estimated population-averaged IFR of 0.41%
(95% confidence interval [0.33%; 0.52%]), based on 8
observed deaths until 20th of April 2020 [2]. Overviews
of completed studies from a wide range of countries
can for example be found in [3] and [4]. The meta-
analysis of Meyerowitz-Katz et al. [3] yields an estimated
population-averaged IFR of 0.68% [0.53%; 0.82%], while in
the meta-analysis of Ioannidis [4] estimated population-
averaged IFRs range from 0.02% to 0.86% with a median
IFR of 0.26%. Although the two meta-analyses differ
heavily regarding their results and conclusions, both
observe a high heterogeneity in population-averaged IFR
estimates among different studies and emphasize the
importance of obtaining reliable age-stratified estimates.

More recent meta-analyses [5, 6] investigate age-specific
mortality by estimating infection fatality rates for dif-
ferent age groups. As the risk of death from COVID-
19 is estimated to increase exponentially with age [6],
it is crucial that the age distribution of infections is
taken into account when interpreting estimated “overall”
(population-averaged) IFRs from different seroprevalence
studies in different regions. In fact, a large proportion of
the variability in estimated IFRs between studies in dif-
ferent regions may be explained simply by differences in
demographics, particularly the age structure of popula-
tions. In addition, other factors such as the prevalence
of certain comorbidities, the access to intensive medical
care and systematic differences in social networks might
also contribute to the variability of COVID-19 associated
mortality in different regions.

However, even when considering only a particular
region, the observed mortality of SARS-CoV-2 may vary
over time, as the age distribution of the infected popula-
tion may be changing throughout the pandemic, e.g. due
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to different and changing risk behaviours as well as spe-
cific preventive measures for high-risk groups. In a recent
study regarding “the foreshadow of a second wave” in
Germany, Linden et al. [7] estimate the effective IFR as
a time-dependent measure by considering the infection
fatality rate given the changing age distribution of con-
firmed cases, using age-specific IFR estimates from the
meta-analysis of Levin et al. [6]. The effective IFR is esti-
mated based on the assumption that the distribution of
confirmed cases reflects the distribution of true infections
[7]. This may not necessarily be the case, as e.g. infections
with SARS-CoV-2 may be more likely detected in older
age groups since these tend to experience a more serious
disease course. Furthermore, as the focus of the study by
Linden et al. [7] has been on the analysis of the beginning
of a second wave of infections during late summer 2020,
effective IFRs have not been reported for the earlier phase
of the pandemic in Germany.

Thus, our study aims to investigate time-dependent
variations in effective IFR over the course of the COVID-
19 pandemic in Germany, by combining age-specific IFR
estimates from multiple studies with publicly available
German surveillance data. We compare estimated effec-
tive IFRs based on the age distribution of confirmed
cases with estimates derived from the age distribution
of estimated infections, obtained through estimated age-
and time-dependent dark figures. Results are presented
based on age-specific IFR estimates from four different
studies, illustrating the remaining uncertainty regarding
age-specific mortality.

Methods

We use the German COVID-19 surveillance data provided
by the Robert Koch Institute [8], containing information
on date of disease onset (or date of confirmation of SARS-
CoV-2 infection if disease onset unknown) and informa-
tion on deaths associated with COVID-19 for individual
confirmed cases. Data on age of confirmed cases and
deaths are available for the following age groups A =
{0-4,5-14, 15-34, 35-59, 60-79, 80+}.

We consider cumulative data for each calendar week,
so that potential weekday-specific fluctuations are elimi-
nated. Let C,; denote the number of confirmed cases for
agegroup a € A incalendar weektandletC; = Y, 4 Cu
denote the total number of confirmed cases in week ¢.
Similarly, let I, and I; denote the number of true infec-
tions and let D,; and D; denote the number of deaths,
for age group a and week t. Note that deaths typically
occur weeks after the onset of symptoms from COVID-
19 with an estimated average interval of 16 days [9], while
infections with SARS-CoV-2 occur several days prior to
manifestation of disease with an estimated median incu-
bation period of 5 days [10]. However, here the time
point ¢ in Cuy, I, and D,; always refers to the same
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week where the infection has been manifested or con-
firmed. The course of weekly confirmed cases and deaths
for the different age groups in Germany is depicted in
Fig. 1.

The observed CFR in week ¢ is defined by the num-
ber of deaths D; (resulting from infections in week ¢)
divided by the number of confirmed cases C; in week
t, i.e. CFR; = %. On the other hand, the effective IFR
in week ¢ is defined based on the total number of infec-
tions, i.e. IFR¢gry = %. As the number of infections I is
unknown, we estimate the weekly effective IFR by taking
into account the time-dependent distribution of infections
in the different age groups a € A as well as age-specific
IFR estimates from four different studies. In particular, we
consider one modelling study [11] estimating age-specific
IER for China based on individual-case data from the early
phase of the pandemic (until 25th of February 2020), one
seroprevalence study [12] in Geneva, Switzerland (until
1st of June 2020) specifically designed for age-stratified
estimation of IFR, as well as two recent meta-analyses
[5, 6] combining the evidence from multiple seropreva-
lence studies worldwide. As the age groups in the four
sources of estimated IFR slightly differ from the age
groups A considered in the used surveillance data, age-
specific IFR estimates are adjusted to match with the
age groups A via weighted averaging of estimates, taking
into account the age structure of the German population
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Let ﬁ,(;) denote the resulting estimated IFR for age
group a from study i, with the index i referring to one of
the four literature sources (i € {O'Driscoll [5], Verity [11],
Perez-Saez [12], Levin [6]}).

The true effective IFR.f; can be estimated by a weighted
average of age-specific IFR estimates, i.e.

=) =0
IFRy, = » Qqr - IFR, , (1)

acA

where @&,; denotes an estimator for the fraction of infec-
tions I, /I in age group a in week ¢. Note that estimator
(1) for the effective IFRefs, is based on the crucial assump-
tion that age-dependent infection fatality rates IFR, do
not change over the course of the pandemic and that the
estimates of IFR, from the four international studies are
applicable to Germany.

In the following, we consider three different estima-
tors for the fraction of infections @,,, which are derived
under different assumptions regarding the distribution of
infections.

(a) Under the theoretical assumption that the risk of
infection is independent of age and time (compare

also [7]), the effective IFR — denoted by ﬁg)]z —is
constant over time and estimated by Eq. 1 with
time-independent weights

. . P
(based on data from [13]). B = Ga = 7 (2)
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Fig. 1 Absolute numbers of weekly confirmed cases C, (left plot) and deaths Dy (right plot) for the different age groups in Germany for the year
2020 (data as of April 22, 2021 [8]). In both graphics, the time points t refer to the respective weeks of disease onset (or of confirmation of infection if
disease onset unknown). Additionally, vertical lines indicate the introduction of major mitigation measures in Germany (see also Table 2)
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where the population numbers P, in age groups

a € A and the total population number P =" __, P,
of Germany are regarded as constant over time.

In practice, the (non-uniform) age distribution of
infections is likely to be changing over the course of
the pandemic. Under the assumption that the
distribution of confirmed cases approximately
reflects the distribution of true infections in the
different age groups, i.e.

C I
a,t ~ a,t ,
C I
one can estimate the fraction of unknown infections

in age group a in week ¢ by the corresponding
fraction of confirmed cases

3)

Assumption (3) and the resulting estimator (4)
correspond also to the effective IFR defined in [7].
Note that assumption (3) implies that dark figures of
undetected infections are approximately
independent of age.

Without specific assumptions as in (a) and (b), the
number of infections I, can be alternatively
estimated by considering age- and time-dependent
dark figures via

0}

Ié(il; —Jat * Cﬂ:t’
Da,z
wi thf(l) _ CFRﬂ t_ Cat (5)
@) =0’
FRY IR

where f; 7 denotes the estimated factor for the dark
figure in age group a in week ¢ based on study .
Thus, an alternative estimator for the fraction of all
infections in age group a in week ¢ is given by

(l)

5(@0)
() Lo - Ca
Car = D 20 ©)
ZWGA Ia’,t Za eAf;l ot a ;t

As the number of true infections is at least as high as
the number of confirmed cases (I, > C,;), the
corresponding factor f ; = I,; / Cg for the dark
figure should be lower bounded by 1. Thus, in the
following we use the estimator

FO — max{1, CFR,;: / IFR } Note that, after some

atl —
algebraic manipulations, inserting the weights a)(l) of
Eq. (6) into the weighted arithmetic mean (1) shows
that the resulting estimated effective IFR can also be
viewed as a weighted harmonic mean of the
age-specific IFR estimates with weights proportional
to max{Dg, Cpayt ﬁg)}. Due to relatively small
numbers of observed deaths in younger age groups,
we combine the age groups
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a € {0-4,5-14,15-34, 35-59} yielding joint estimates
Ao(l_)59,t of time-dependent dark figures for ages 0 to
59. To further stabilize the procedure, we estimate
monthly (instead of weekly) dark figures based on

age-specific CFRs observed for each month.

In this study we hence compare three different estima-
tors for the effective IFR, each depending on different
assumptions. Estimator (a) leads to a time-constant effec-

tive ﬁg)E, while estimators (b) and (c) actually take into
account the changing age distribution of confirmed cases
and estimated infections, respectively. All three estimators

depend on the four available age-specific estimates ﬁ{fli)
from the literature (Table 1).

Results

The risk of death among persons infected with SARS-
CoV-2 is estimated to increase substantially with increas-
ing age by each of the four considered studies (Table 1),
which is also supported by the number of observed deaths
D, per age group in Germany (see Fig. 1). However, esti-
mates from the literature show larger discrepancies; as
for example in age group 80+, the IFR estimate from [12]
is given by 5.60% [4.30%; 7.40%], while the correspond-
ing IFR estimate from [6] is as large as 15.61% [12.20%;
19.50%]. On the other hand, for the age group 60-79 the
IFR estimate from [5] is approximately 1%, while the other
studies yield larger estimates for this age group ranging
from 2.49% in [6] to 3.89% in [12]. Furthermore, Table 1
gives estimates of resultlng population-averaged infection

fatality rates IFRDE for Germany, which are derived under
the assumption that the risk of infection with SARS-CoV-
2 is independent of age and time (see assumption (a)).

Population-averaged estimates ﬁg)E for Germany range
from 0.756% [0.717%; 0.796%] by [5] to 1.687% [1.407%;
2.139%] by [6], reflecting the uncertainty regarding age-
specific IFR.

The estimated population-averaged infection fatality

rates ﬁg)]g, based on different age-specific IFR estimates,
can be interpreted as reference mortality figures for the
general German population in order to compare them
to other countries. They have a rather theoretical mean-
ing as they do not reflect the actual age distribution of
the infected population. Figure 2 depicts the changing age
distribution of weekly confirmed cases (central plot) in
comparison to the age distribution of the general popula-
tion (left plot). It can be observed that the age distribution
of confirmed cases shifted considerably towards older
age groups during the first wave in Germany in March
and April 2020. During summer with a relatively low
incidence of COVID-19, confirmed cases were predom-
inantly observed in younger age groups. However, since
September 2020, percentages of confirmed cases among
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Table 1 Age-group specific estimates ﬁ;’) as well as population-averaged estimates ﬁg)E for Germany under age-independent
infection risk, based on studies i € {O'Driscoll[5], Verity[11], Perez-Saez[12], Levin[6]}

Age group O'Driscoll [5] Verity [11] Perez-Saez [12] Levin [6]

0-4 0.002 [0.001; 0.002] 0.002 [0.000; 0.025] 0.002 [0.000; 0.019] 0.001 [0.001; 0.001]
5-14 0.000 [0.000; 0.000] 0.004 [0.001; 0.037] 0.001 [0.000; 0.011] 0.002 [0.007; 0.003]
15-34 0.009 [0.007;0.010] 0.041[0.019;0.110] 0.007 [0.003; 0.013] 0.016 [0.014; 0.020]
35-59 0.122[0.115;0.128] 0.349[0.194; 0.743] 0.070[0.047; 0.097] 0.226 [0.212;0.276]
60-79 0.992 [0.942; 1.045] 2.913[1.670; 5.793] 3.892 [2.985; 5.145] 2491 [2.294; 3.266]
80+ 7274 [6.909; 7.656] 7.800 [3.800; 13.30] 5.600 [4.300; 7.400] 15.61[12.20; 19.50]
IFRg)E 0.756 [0.717;0.796] 1.296 [0.694; 2.453] 1.254[0.959; 1.661] 1.687 [1.407; 2.139]

IFR estimates are given in percentages (with 95% confidence intervals in brackets)

the elderly have been continuously rising again. In the end
of December 2020, the age distribution of confirmed cases
is remarkably similar to the distribution of confirmed
cases in April during the first wave of infections.

The described trend in the distribution of confirmed
cases over time is directly reflected in the correspond-
ing development of estimated effective IFR (based on
method (b)). The left side in Fig. 3 shows that the esti-
mated effective IFR sharply increases from values between
0.5% and 1% in March to values between 1.5% and 3.5%
in April. After this peak, the estimated effective IFR has
been declining to values between 0.2% and 0.5% in the
end of August, corresponding to a relatively young age
distribution of confirmed cases. This observation may be
partly explained by an increased mobility of younger age
groups during the summer holiday period. Since Septem-
ber 2020, as the distribution of confirmed cases has been
shifting more towards older age groups, effective IFR esti-
mates have been rising again up to similar levels as in the
peak during the first wave of infections. This indicates
that with larger SARS-CoV-2 incidences (see Fig. 1) it may
become increasingly difficult to effectively protect vulner-
able risk groups and to prevent the spread of the virus
from younger to older age groups (see also [7]).

As the age distribution of confirmed cases may not gen-
erally reflect the age distribution of true infections, in a
further analysis we account for age- and time-dependent
dark figures (see method (c)). The right hand side of
Fig. 2 depicts the development of estimated true infections
based on IFR estimates from Levin et al. [6]. It can be seen
that the development of estimated infections is similar in
shape to the observed development of confirmed cases.
However, in particular following the high phase of the first
wave of infections in April (compare Fig. 1), the estimated
distribution of infections is shifted towards younger age
groups in comparison to the distribution of confirmed
cases. This shift results from dark figures of infections
which are estimated to be larger in younger age groups in

comparison to the age group 80+ during this particular
time. A plausible explanation for this observation might
be that in times of limited testing capacities, preferential
testing of individuals in age group 80+ has been more pro-
nounced, as these patients are more likely to show (severe)
symptoms from COVID-19 requiring medical interven-
tion. Similar effects on estimated infections during the
first wave are also observed when using age-specific IFR
estimates from O’Driscoll et al. [5] and Perez-Saez et al.
[12], whereas numbers of infections in age group 80+
are estimated to be comparatively larger based on Ver-
ity et al. [11] (detailed results on estimated infections not
shown). During summer 2020, there seems to be a close
alignment of estimated infections with confirmed cases, as
age-dependent factors for dark figures are estimated to be
close to 1 (and would have partly been even below 1). This
may indicate that a large proportion of infections has been
detected with the implemented testing policies during the
summer period.

The right hand side of Fig. 3 depicts the resulting devel-
opment of estimated effective IFR when accounting for
age- and time-dependent dark figures. It can be seen that
the adjustment for dark figures has a particular effect dur-
ing the first wave of the pandemic in Germany, where
estimated effective IFRs tend to be smaller in compar-
ison to the unadjusted estimates based on confirmed
cases (compare to left hand side of Fig. 3). However, even
when adjusting for age-dependent dark figures, there still
remains a pronounced increase in estimated effective IFRs
during the first wave of infections; this indicates that the
increase in mortality cannot exclusively be explained by
preferential testing, but that there has been an actual
change in the age distribution of the infected population.
During summer 2020, the age distribution of estimated
infections more closely aligns with the age distribution of
confirmed cases and thus the estimates of effective IFR
adjusted for dark figures are very similar to the unad-
justed estimates. In contrast to the first wave of infections
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Fig. 2 Age distributions of the general German population (left plot), of weekly confirmed cases (central plot) and of estimated weekly numbers of
infections (right plot) based on the age-specific IFR estimates by Levin et al. [6]
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in spring 2020, during the second wave the adjusted esti-
mates are not systematically lower and partly even larger
than the unadjusted ones.

Figure 3 also shows the development of estimated effec-
tive IFR in comparison with the development of observed
CFR in Germany. It can be seen that trends in observed
CER closely resemble trends in effective IFR estimated
based on the age distribution of confirmed cases (as well
as true infections). This implies that the age distribu-
tion of infections is a major determinant (and predictor)
for the resulting mortality associated with COVID-19.
Despite this, it can be observed that the gap between CFR
and IFR has been declining after the first wave in Ger-
many; in fact, observed CFRs in August and September
are even lower than some estimates of effective IFR. There
may be multiple possible reasons for the decline in CFR,
which are independent of the age distribution of infec-
tions: The first and probably largest contribution to the
observed decline in CER is the steady and considerable
increase in conducted SARS-CoV-2 testing in Germany
[14]. For example, the number of conducted SARS-CoV-2
tests increased from 586,620 in calendar week 31 (end of
July) to 1,121,214 tests in calendar week 35 (end of August)
[15], reflecting a doubling in weekly conducted tests in
Germany, partly due to increased testing in the context of
the summer holiday season. Another plausible reason for
a further decline in observed CFR may be due to other
factors leading to a decrease in age-specific IFR, such as
improvements in treatment of COVID-19 [16], as well as
more targeted and timely initiation of therapy [17], which
may also be positively affected by an increased awareness
of the public. During the second wave of infections in
autumn/winter 2020, the gap between CFR and IFR tends
to be increasing again, but the CFR is still at lower levels in
comparison to the first wave, as dark figures of infections
during the second wave are estimated to be smaller than
during the first.

The course of the pandemic should also be viewed in
light of mitigation efforts in Germany (cf. [18, 19]). Due
to the German federal structure there have been spe-
cific differences in implemented measures between the
16 federal states, although a uniform procedure has been
sought by the federal government and local states. Table 2
provides an overview of important mitigation measures
which have been applied to most regions of Germany.
The effectiveness of interventions during the first infec-
tion wave has been investigated by Dehning et al. [20],
concluding that the entirety of measures in context of the
“first lockdown’, implemented in three consecutive weeks
(cf. Table 2), effectively reduced the spread of the virus
(cf. Fig. 1).

In addition, our results (Fig. 3) show a time-delayed
decline of effective IFR in May 2020 after the incidence
peak in March and April, indicating that the spread of
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Table 2 Time line of COVID-19 mitigation measures [18, 19]
implemented in Germany (cf. Dehning et al. [20])

Date (calendar week)
10 Mar 2020 (week 11)
16 Mar 2020 (week 12)

Mitigation measures

Cancellation of large public events.

Closures of schools, childcare facilities and
non-essential stores.

23 Mar 2020 (week 13) First lockdown, including strict contact

restrictions.

27 Apr 2020 (week 18) Beginning of reopening of stores and
schools. Mask requirements in stores and

public transport.

06 May 2020 (week 19) Relaxation of several measures, including

less stringent contact restrictions.

16 Jun 2020 (week 25) Introduction of German tracing app

("Corona-Warn-App").

16 Jul 2020 (week 29) Specification of “hotspot strategy” with
targeted local measures in particularly

affected districts.

02 Nov 2020 (week 45) Lockdown “light”, including stricter contact
restrictions and closures of restaurants and

leisure facilities.

16 Dec 2020 (week 51) Second lockdown, including closures of
non-essential stores and switch to distance

learning in schools.

Note that, due to the federal structure of Germany, there have been specific
differences in implemented measures between the 16 German federal states (not
listed here)

the virus to older age groups could be reduced after inci-
dences reached more controllable levels. During summer
2020, with relaxed mitigating measures still in place, such
as the requirement of wearing masks in stores and pub-
lic transport, incidences of COVID-19 remained relatively
low. In this time, there was a particularly young age distri-
bution of cases, resulting in small estimated effective IFRs
and a reduced disease burden for high-risk groups. As the
second wave of infections in Germany has been ongoing
at the time of writing, it is too early for a conclusive eval-
uation of mitigation measures, including the “lockdown
light” and the “second lockdown” (see Table 2 and Fig. 1);
however, our results show that estimated effective IFRs
(and observed CFRs) have been continuously rising with
increasing numbers of cases until December 2020.
Limitations of this study include that the analysis is
based on the assumptions that age-specific IFRs are con-
stant over time and that IFR estimates from the four inter-
national studies are applicable to Germany. Furthermore,
in this work we have focused on estimating the effective
IFR based on the changing age distribution of infections;
however, in practice many other factors may also con-
tribute to the variability in mortality of COVID-19, such
as the distribution of different comorbidities as well as the
sex distribution of infected individuals. Another limita-
tion of this study is that, due to relatively small numbers
of observed deaths in young age groups, monthly dark
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figures are estimated jointly for the wide age group of 0
to 59 years, even though true dark figures may further
differentiate in practice (see e.g. [21] for a recent study
of dark figures for children in Germany). Finally, for the
estimation of age- and time-dependent dark figures we
assumed that there are no systematic biases in reported
age-specific deaths, which may not necessarily be the case;
for example, Michelozzi et al. [22] investigate the tem-
poral dynamics in excess mortality in Italian cities and
observe an underestimation of COVID-19 deaths for older
age groups.

Conclusions

We have illustrated that the effective IFR in Germany is
estimated to vary during the course of the pandemic, as
the age distribution of infections is changing over time. In
fact, it can be observed that a large fraction of the time-
dependent variability in CFR can be explained by changes
in the age distribution of infections. The additionally
observed trends in the gap between the CER and effective
IER require further investigation in order to disentangle
the contributions of shifts in testing policies and of other
factors that may induce changes in mortality. Particularly
in light of new variants of the virus, future research should
be targeted at obtaining timely age-specific IFR estimates
for Germany.

Abbreviations
SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; COVID-19:
Coronavirus Disease 2019; IFR: Infection fatality rate; CFR: Case fatality rate
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