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Abstract

Background: Despite remarkable progress in the reduction of malaria incidence, this disease remains a public health
threat to a significant portion of the world’s population. Surveillance, combined with early detection algorithms, can be
an effective intervention strategy to inform timely public health responses to potential outbreaks. Our main objective
was to compare the potential for detecting malaria outbreaks by selected event detection methods.

Methods: We used historical surveillance data with weekly counts of confirmed Plasmodium falciparum (including
mixed) cases from the Amhara region of Ethiopia, where there was a resurgence of malaria in 2019 following several
years of declining cases. We evaluated three methods for early detection of the 2019 malaria events: 1) the Centers for
Disease Prevention and Control (CDC) Early Aberration Reporting System (EARS), 2) methods based on weekly statistical
thresholds, including the WHO and Cullen methods, and 3) the Farrington methods.

Results: All of the methods evaluated performed better than a naive random alarm generator. We also found distinct
trade-offs between the percent of events detected and the percent of true positive alarms. CDC EARS and weekly
statistical threshold methods had high event sensitivities (80-100% CDC; 57-100% weekly statistical) and low to
moderate alarm specificities (25-40% CDC; 16-61% weekly statistical). Farrington variants had a wide range of scores
(20-100% sensitivities; 16—100% specificities) and could achieve various balances between sensitivity and specificity.

Conclusions: Of the methods tested, we found that the Farrington improved method was most effective at
maximizing both the percent of events detected and true positive alarms for our dataset (> 70% sensitivity
and > 70% specificity). This method uses statistical models to establish thresholds while controlling for
seasonality and multi-year trends, and we suggest that it and other model-based approaches should be
considered more broadly for malaria early detection.
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Background

Over the last few decades, incredible progress has been
made worldwide in reducing malaria cases and deaths.
From 2010 to 2018, the incidence of malaria cases
declined globally from 71 to 57 cases per 1000 population
at risk and malaria deaths fell by 31% during the same
period [1]. However, between 2014 and 2018, the decreas-
ing trend in incidence flattened with some regions seeing
an increase in cases, indicating stalled progress. In 2018,
there were an estimated 228 million cases worldwide,
which was 3 million less than 2017, but 1 million more
than in 2016 [1]. Of the total cases in 2018, 93% (213
million) occurred in the World Health Organization
(WHO) African region [1]. In addition, due to population
growth, the absolute number of people at risk for malaria
globally is increasing, with the sharpest increase seen in
the WHO African region [2]. As a result, there is a
continuing need for improved strategies and tools to
support malaria prevention, control, and elimination.

Malaria surveillance as a core intervention strategy is
one of the pillars of the Global Technical Strategy for
malaria [3, 4]. Information from surveillance systems
can be used to optimize interventions to interrupt dis-
ease transmission and ultimately accelerate elimination.
Timely detection allows officials to intensify control
measures as needed to manage epidemics [4—10]. Many
early-detection algorithms exist, and there is a need to
quantitatively evaluate the performance of these
algorithms for different diseases and locations [11-17].
The central idea behind outbreak detection is to identify
when the case volume exceeds a baseline threshold, and
to use this information in a prospective (not retrospective)
manner to identify epidemics in their early stages [4, 15].
Various algorithms are used to calculate these thresholds,
with different assumptions about the pattern of disease
transmission, including the speed of outbreak develop-
ment, seasonality, and trends [10, 12-16, 18—30].

Early detection algorithms that have been proposed for
malaria include Cullen, WHO quartile, and cumulative
sum (CUSUM) methods [4, 5, 10, 12, 17, 19]. These
techniques define thresholds based on statistical summaries
of historical data. The Cullen and quartile methods are
recommended by WHO to have at least five years of past
data to generate reliable estimates of the thresholds [5, 12].
The Cullen method calculates the mean value over the past
five years of the current time period (e.g., week or month of
year), excluding values from any past outbreak periods.
Case volumes over the mean plus two standard deviations
are considered outbreaks [5, 12, 20]. The WHO quartile
method defines an outbreak by calculating quartile values
for the current seasonal time period (usually the week or
month of the year) over the past five years. An outbreak is
identified when cases exceed the third (75%) quartile. This
approach may be sensitive to slight increases in case
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volume during time periods when there have never been
spikes or outbreaks of cases, but is less affected by abnor-
mal years compared to the Cullen method [5, 12]. Several
variations of the statistical methods have been evaluated
from selected health center data in Ethiopia, and weekly
percentile measures performed as well as ones with more
complex threshold calculations [17]. There are many varia-
tions of the cumulative sum (CUSUM) approach, a type of
control chart that tracks cumulative differences between
observed values and expected values and indicates an out-
break when these cumulative differences exceed a threshold
[5, 12, 18, 21-23].

In many situations, sufficient historical data may not
be available to implement these approaches. Even when
historical data are available, older data may be more
representative of past malaria transmission cycles than
the current malaria situation [4, 10]. In places undergo-
ing intensive malaria intervention efforts, incidence in
recent years may be significantly reduced compared to
only a few years in the past or may exhibit different
seasonal patterns [25]. Thresholds based on previous
years may then fail to capture the new patterns and
intensities of current outbreaks. However, surveillance
and outbreak detection are still crucial in areas of low or
unstable transmission. Immunity to malaria decreases
with the intensity of malaria transmission, and the popula-
tion could be highly vulnerable to malaria outbreaks [5].

Other early detection algorithms use different ap-
proaches for the calculation of the thresholds and may be
more applicable in regions undergoing rapid change in
malaria transmission patterns. The CDC Early Aberration
Reporting System (EARS) has been used as a drop-in tech-
nique for syndromic surveillance after major incidents that
could precipitate disease outbreaks [16, 22, 26, 27, 31].
This suite of methods is similar to quality control charts
and relies on only very recent data to create a baseline and
is therefore useful when long-term data is not available or
not relevant to the current situation. The EARS system is
actively used by U.S. state and local public health offices
[26]. Syndromic surveillance using school-based absentee-
ism has been investigated for potentially identifying
localized malaria outbreaks in Ethiopia [32]. A family of
methods developed by Farrington and later, Noufaily, have
been implemented at several European infectious disease
control centers [24, 28, 33-35]. Farrington methods are
based on quasi-Poisson regression and can take advantage
of historical information while accounting for seasonality,
long-term trends, and previous outbreaks [24, 28, 29].

While previous research has compared various detection
algorithms, many of these studies have used simulated
datasets (e.g. [16, 22, 30]), and it is unclear the extent that
these would be representative of real world outbreaks,
especially in the context of public health interventions.
Therefore, in this article, we used a 7.5year weekly
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surveillance dataset of malaria cases to test the suitability
of 1) CDC EARS methods, 2) methods based on weekly
statistical ~thresholds (including WHO and Cullen
methods), and 3) Farrington methods to detect malaria
outbreaks. To develop a baseline dataset of malaria out-
breaks, we applied a novel method to identify malaria
events of interest to use as retrospective test cases. This re-
search was conducted in the Ambhara region of Ethiopia,
which has been the subject of intense malaria interventions
and experienced a general decline in malaria cases [36]. In
2019 there was a resurgence of malaria cases in the region,
and we used this year as the basis for testing the outbreak
detection algorithms. Our main objectives were to com-
pare sensitivity and true positive rates of the event detec-
tion methods applied to malaria outbreak detection and to
assess their potential for detecting outbreaks.

Methods

Study area and data

The Amhara region is located in northwest Ethiopia
(Fig. 1). Most of the terrain is mountainous, with low-
lands along the northwestern edge of the region. Rainfall
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is highly seasonal, with the heaviest rains from June
through September. There are two major seasons for
malaria transmission: the main transmission season after
the end of the rainy season between September and
December, and a secondary peak at the beginning of
the rainy season in May through August [37, 38]. Popu-
lation in the Amhara region is over 21 million, and the
people primarily live in rural areas and practice subsist-
ence farming [39]. There is widespread transmission of
Plasmodium falciparum and P. vivax malaria, with a
ratio of 1.2 of P. falciparum to P. vivax as seen in blood
film tests from a cross-sectional survey [40]. A national
malaria control program targets the Ethiopian popula-
tion at risk, including the Amhara region. The program
includes four main interventions: distribution of free
long-lasting insecticidal nets (LLINs), indoor residual
spraying (RDS), rapid diagnostic tests (RDTs) available
at all health facilities, and treatment with artemisinin-
based combination therapy (ACT) [39, 40]. Areas with
low transmission rates due to declining malaria inci-
dence and unstable transmission patterns are being
targeted for elimination [39, 41, 42].
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Fig. 1 Amhara region of Ethiopia. Zones are labeled and the 47 woredas included in this study are marked in darker shades
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Administratively, the region is divided into twelve
zones and three administered towns, which are further
divided into between four and 24 woredas, or districts
(Fig. 1). Woredas are subdivided into kebeles (villages).
In the Ambhara region, there are 162 woredas (containing
3543 kebeles), and 47 of the most malaria-prone woredas
were included in the Epidemic Prognosis Incorporating
Disease and Environmental Monitoring for Integrated
Assessment (EPIDEMIA) pilot project [39]. The health
care system is organized into three tiers: primary, second-
ary, and tertiary levels [43]. The primary level in rural
areas includes health posts, health centers, and a primary
hospital. The primary health care units (PHCUs) contain
five health posts (satellite facilities located in kebeles) and
one referral health center. Secondary and tertiary levels
are referral general and specialized hospitals, respectively.

Public health surveillance data on patients seeking care
at health posts or health centers are collected and aggre-
gated by the Amhara Regional State Health Bureau
(ARHB). Among the data collected are the numbers of
malaria cases confirmed by rapid-diagnostic tests (RDT)
or blood film screening, and these counts are grouped as
Plasmodium falciparum (including mixed infections)
and P. vivax (only) malaria. These data are summarized
by the week of the year (based on the ISO 8601 standard
used by WHO) and reported to the woreda health office.
This office aggregates a complete woreda report before
sending the summarized data to the zonal health office,
which compiles all the woreda reports within the zone
and sends the reports to the regional ARHB office, where
they were uploaded into the EPIDEMIA system [39].

This study analyzed data from the 47 EPIDEMIA pilot
woredas, which included weekly case counts of P.
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falciparum (or mixed) and P. vivax malaria starting from
ISO week 28 of 2012 through week 52 of 2019. These
woredas have seen great public health successes in redu-
cing the malaria burden from 2012 through 2018, but
experienced a resurgence in 2019 (Fig. 2).

Between 2013 and 2018, there was a steady decrease
from 349,523 P. falciparum or mixed malaria cases to
104,947 cases, a 70% reduction. However, in 2019 there
were 210,194 cases, a volume that had not been seen
since 2015 (Table 1). We focused our analysis on P.
falciparum (including mixed infections with P. vivax)
which is the predominant parasite species, is of greatest
concern from a public health standpoint, and had the
strongest resurgence in 2019.

Identification of baseline events via trend weighted
seasonal thresholds (TWST)

Prior to evaluating event detection algorithms, specific
events of interest must be defined for each woreda to be
the baseline testing dataset. Here, for research purposes,
we developed an objective approach named trend
weighted seasonal thresholds (TWST) for identifying
events as anomalous increases in the number of reported
malaria cases. The approach was designed to identify
events retrospectively in the context of seasonal patterns
and decreasing long-term trends in disease transmission,
while allowing for variation in patterns across woredas
as well as slight time-shifts in seasonal peaks between
years.

The TWST approach identified two thresholds, weekly
and yearly, for each woreda. This combination of weekly
and yearly thresholds has been used in other work for
defining malaria epidemics [13]. In preparation, the raw
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Fig. 2 Time series graph of malaria case counts by species. The graph of Plasmodium falciparum (and mixed species) and P. vivax case counts
shows the patterns of seasonality, long-term declining trends, and resurgence in 2019
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Table 1 Confirmed malaria case counts from 47 pilot woredas
in the Amhara region by species

Year P. falciparum and mixed P. vivax Total

2012 (W28-W52) 306,832 157,983 464,815
2013 349,523 208,861 558,384
2014 216,553 108,989 325,542
2015 222,103 110,746 332,849
2016 203,610 98,146 301,756
2017 125415 45,176 170,591
2018 104,947 31,695 136,642
2019 210,194 51,906 262,100

weekly time-series were smoothed using a centered 5-
week triangular moving average, which used a sliding
window of five weeks with the week being calculated in
the center. The moving average was weighted with the
center week the most important, and the weeks on ei-
ther side having decreasing weight. The yearly threshold
was calculated as the harmonic mean of the entire year
plus a multiplier based on the standard deviation (1.5 for
P. falciparum and mixed species).

The weekly threshold was calculated in a three-step
process. In the first step, the raw threshold value for a
given week was the harmonic mean of that week in the
year, over the five years of data, plus a multiplier based
on the standard deviation (1 for P. falciparum and
mixed). In the second step, the raw thresholds were
optionally trend weighted based on the year harmonic
mean. If there was a declining trend (from the year pre-
vious), then the weekly threshold values were weighted
proportional to the difference between the current year
harmonic mean and the highest (max) harmonic mean
using a weighting factor, 0.5 for P. falciparum and
mixed: (max — weighting factor * (max — current)) / max.
If there was no declining trend, the weekly thresholds
were weighted based on the previous year mean instead of
the current year. In the third and final step, allowances
were made to prevent minor time shifts in increasing and
decreasing case counts between years from triggering
alerts [32, 44], by inflating weekly thresholds that were not
near in time to peaks. Peak areas were identified using a
percentile cut-off per year (85% for P. falciparum and
mixed), plus short stretches (up to 8 weeks) between these
high rates. The inflation was based on the average of the
year and week harmonic means multiplied by an expan-
sion factor (1.2 for P. falciparum and mixed), which was
then added to the trend weighted threshold of the previ-
ous step to arrive at the final TWST week threshold.
Anomalies were identified if cases exceeded both the
yearly and weekly thresholds, and events were identified if
anomalies lasted for four or more weeks consecutively.
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Events that were separated by only one or two weeks were
merged into one event.

Event detection

Detection algorithms

The previous step, event identification, was based on a
retrospective analysis with full knowledge of the entire
7.5-year time span, yielding specific spikes or abnormal
increases in malaria case counts to be used as a baseline
testing set for the detection algorithms. In contrast,
event detection algorithms were forward-looking, run-
ning in-step with the data and only using values up to a
given week, which mimics real time surveillance efforts
to detect outbreaks as early as possible to mount timely
public health responses. For this study, three types of
event detection algorithms were used: 1) CDC EARS
methods, 2) weekly statistical summaries that included
the commonly-used WHO and Cullen methods, and 3)
Farrington methods [4, 27-29].

For EARS, the three variations C1-Mild, C2-Medium,
and C3-High were tested using the default alpha values
(0.001 for C1 and C2, 0.025 for C3) with four different
baseline periods: the default 7 periods (weeks, here), plus
14, 28, and 56 weeks.

For the weekly statistical summaries, thresholds were
calculated from the week of the year median, mean plus
two standard deviations (Cullen method without remov-
ing past outbreaks), and 75th and 85th percentiles
(WHO method) for three historical time periods: 5 years,
6 years, or weekly maximum of 6 or 7 years depending
on the week of year.

The Farrington algorithm offers parameters to control
various model settings, of which we focused on five: 1)
the number of weeks before and after the week in ques-
tion to use as a window for calculations (‘window half-
size’, w), 2) the number of years of historical data to use
(b), 3) the inclusion of an optional long-term trend, 4)
the number of periods to account for seasonality, and 5)
the number of weeks to exclude at the beginning of the
evaluation period (for events that may already be in pro-
gress). For the Farrington algorithm, 204 variations in a
parameter sensitivity analysis were run. The first four
runs used basic settings without population offsets: 1)
original method with no seasonality (one period), 2)
original method with four periods for seasonality, 3) im-
proved method with no seasonality, 4) improved method
with four periods of seasonality. The original method
was first proposed by Farrington et al. [28] and the
improved method has the changes proposed by Noufaily
et al. [29]. The improved method aims to reduce the
number of false positives through changes in the calcula-
tions of the trend component, reweighting of past events,
seasonality, and error structures [29]. The set of two hun-
dred additional runs utilized the improved method with a
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population offset option and an exhaustive set of combi-
nations of the selected five parameters and values: window
half size (3, 5), years of historical data to include (3, 4, 5, 6,
or maximum adaptive), long-term trend inclusion (trend
or no trend), seasonality periods (1, 2, 4, 8, 12), and past
weeks to exclude at the beginning for spin up time (26
or set equal to window half size). All parameter combi-
nations can be found in the supplemental materials
(Additional File 2, Supplemental Tables S1 and S2) and
a subset of relevant parameter combinations in the
Results (Table 4). All methods were implemented in R
and the surveillance package was used for the EARS
and Farrington methods [27, 45].

Skill comparison test

As a skill comparison test to the real detection algorithms,
six sets of random alarms were also generated. Any algo-
rithm that produces alarms will, by chance, occasionally
occur during an event, and the more alarms triggered, the
more likely events will seem to be detected. This skill test
checked that the event detection methods are performing
better than a null model and provided context in the
comparison between the methods. The random algorithm
produced alarms between one and five weeks long, with a
minimum buffer of four weeks between alarms. The prob-
ability per week of an alarm was varied to create different
total numbers of alarms.

Metrics

Metrics of detection effectiveness were event based,
because using events as the unit of analysis is relevant to
how these algorithms would be used in public health
surveillance to find outbreaks before or as they are
occurring. Two main indicators were used: the percent
of events that were caught, and the percent of alarms
that were associated with events (true positive alarms).
An alarm and event were considered associated if the
alarm was triggered any week during or up to two weeks
prior to the event. Percent of events caught was an
indicator of how well the algorithm detected events, with
higher percentage meaning that fewer events were
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missed. Percent of alarms associated with events was the
true positive rate of the alarms (the percentage of alarms
that overlapped with or up to two weeks prior of an
event). A high percentage of this metric demonstrated
that the algorithm was more likely to trigger alarms
when an event was actually happening and less likely to
generate false alarms. Ideally, event detection algorithms
would trigger alarms for all events (100% events de-
tected) and never when there was not an event (100%
alarms true positive). In addition to events caught, we
also considered if the alarm for the event was timely,
which was defined as an alarm between two weeks prior
and including the start week of an event.

Results

Identified events

The TWST algorithm, developed to identify time pe-
riods of excess malaria case counts that were considered
of potential public health interest, found a total of 255
events for P. falciparum and mixed species. The num-
bers of events declined from 2013 to 2018, however in
2019 the number of events greatly increased. Also,
during 2019, the average number of cases in events was
the highest since 2012 (Table 2, all events are shown
over time in Additional File 1, Supplemental Fig. 1).

The TWST algorithm was specifically designed to
account for seasonality and not identify every seasonal
peak as being an event in the context of overall declining
trends in malaria transmission. However, different wore-
das in the region exhibited various patterns in incidence,
including decreasing trends, increases in the middle or
end of the time period, clear single seasonal peaks, dual
seasonal peaks, and various combinations of these
patterns. The TWST algorithm was flexible enough to
appropriate identify events in these patterns (Fig. 3).

The algorithm was able to identify peaks that would
have been overshadowed by peaks in much earlier years
but are important relative to more recent patterns. For
example, the woreda Abargelie had high peaks in 2013
and to a lesser extent in 2014. During 2015 however, the
season was very quiet with no large peaks. In the fall of

Table 2 Events and malaria case statistics for P. falciparum and mixed malaria

Year Events Average # of cases per event Total # of cases during events % of yearly cases during events
2012 (W28-W52) 34 6500 220,983 72
2013 53 2749 145,686 42
2014 52 1630 84,761 39
2015 32 2635 84,304 38
2016 34 1769 60,162 30
2017 15 1824 27,353 22
2018 5 2667 13334 13
2019 30 2950 88,498 42
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2016, a moderate seasonal peak returned and larger fall
peaks occurred in 2017 and 2018, but if the thresholds
had not considered the 2015 season (trend-weighting),
the 2017 and 2018 peaks would not been identified as
events (Fig. 4). The time-shift allowance in TWST was
also needed to prevent notifications of events where the
peak simply declined more slowly than in other years
(Fig. 4).

Event detection
A total of 234 event detection algorithm and variations
were tested on the 30 TWST-identified events in the
2019 evaluation period (selected entries in Table 3, for
all results see Additional File 2, Supplemental Tables S1
and S2). Of the 234, there were 12 CDC EARS variants,
12 WHO and statistical variants, 205 Farrington variants,
and six random alarm generators (Fig. 5). The six random
alarm generators were run with various probabilities of
generating an event per week: 0.2, 0.1, 0.05, 0.025, 0.012,
and 0.006 which vyielded 233, 151, 92, 61, 33, and 18
alarms respectively, a range similar to the number of
alarms from the other event detection algorithms.

As expected, random alerts performed poorly and had
the lowest percentages of true positive alarms across the

variants (Table 3, Fig. 5). Variants with higher probabil-
ities created more alarms, and saw higher event caught
percent scores, as the more alarms are present the more
likely they are to randomly overlap with an event.

The CDC EARS methods generated large numbers of
alarms (98 to 152), with high percentages of events caught
(80 to 100%) and a wide range of percent timely alarms
(43 to 87%), but also had low to midrange percentages (25
to 40%) of true positive alarms (selected items in Table 3,
full listing in Supplemental materials). Of the weekly stat-
istical summaries, the Cullen mean plus two standard de-
viations variant produced the highest true positive rates
(51 to 61%, depending on the number of years of historical
data included), but the lowest percentages of events
caught (57 to 80%) and the lowest percentages of timely
alarms (13 to 37%). The WHO 75th percentile with 5
years of data, a commonly used algorithm, produced 200
alarms with 97% of events caught (93% timely) but only
26% true positive detections (Table 3). The 85th percentile
variants produced somewhat fewer alarms with higher
true positive rates, and with similar or slightly reduced
events caught and timely alarms.

Examining the Farrington results (orange hollow
circles in Fig. 5), there was a trade-off between events
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are shown for the selected woredas: (a) Abergele, (b) Borena / Debresina, and (c) Artuma Fursi. In Abargelie, the fall 2017 and 2018 peaks would
have been below an unadjusted week threshold (orange dotted line) but were identified using the final TWST thresholds (green dot-dashed line)
that had been trend-weighted. Borena / Debresina and Artuma Fursi shows multiple instances where the non-peak expansion and time-shift
allowances prevented inappropriately identified events on the edges of incidence peaks or in the seasonal troughs

J
Table 3 Results for selected event detection algorithms for P. falciparum and mixed malaria events in 2019
Algorithm % Events caught % Timely % True positive alarms Total number of alarms
Random (p=0.2) 90 70 17 233
Random (p = 0.05) 57 27 22 92
Random (p=0.012) 13 3 4 33
EARS C1 (7 weeks) 90 53 25 146
EARS C2 (7 weeks) 100 73 27 152
EARS C3 (7 weeks) 100 87 30 135
WHO mean + 2sd (5 years) 80 11 51 72
WHO 75th percentile (5 years) 97 28 26 200
WHO 85th percentile (5 years) 97 73 35 143
Farrington A1 97 80 19 203
Farrington A2 100 87 25 163
Farrington B1 90 63 24 146
Farrington B2 93 63 29 116
Farrington C1 100 77 26 156
Farrington C2 40 7 100 16
Farrington C3 73 37 74 39
Farrington C4 83 53 51 63

Farrington parameter details can be found in Table 4
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caught and true positives. The Farrington variants were
based on the sensitivity analysis of five parameters:
window half size (w), years of historical data included
(b), number of periods for seasonality, long-term trend
inclusion, and the exclusion period for spin up time. Not
all parameters influenced the outcomes; window half
size and the exclusion period did not greatly affect the
results, although the 26-week exclusion period was
slightly preferable. The parameters for number of histor-
ical years of data, number of periods for seasonality, and
trend inclusion had the greatest impacts on the outcome
metrics. Of the 200 improved Farrington variants with
population offset, the event caught rate was highest
when the trend was included and there were 4 to 12 pe-
riods for seasonality (Fig. 6). The event caught rate fell
as more years of historical data were included, especially
in variants that did not include a trend.

Of the 200 improved Farrington variants with popula-
tion offsets, the true positive percentages were highest
when no trend was included, two to four periods for
seasonality were included, and increases as more years
of historical data are included (Fig. 7). The number of
alarms generated decreased with additional years of
historical data (size of the marker in Figs. 6 and 7).

The Farrington original and improved methods with
default values (and without seasonality) and no popula-
tion offset were compared against the 200 parameter
sensitivity runs using the improved method with popula-
tion offsets (original A1 and A2, base improved Bl and
B2 in Tables 3 and 4). As seen in Figs. 6 and 7, there
were large trade-offs in the 200 variant set between
events caught and true positive rates. Some Farrington

runs reached 100% events caught, but the highest true
positive rate of that set was only 26% (Farrington C1 in
Table 3). Other variants reached 100% in alarm true
positive rate, but the highest event caught score in that
set was 40% (Farrington C2 in Table 3). Taking a
balanced approach, a variant with reasonable trade-offs
had a score of 73% events caught and 74% alarm true
positive but only 37% events caught timely (Farrington
C3 in Tables 3 and 4). Another, and our selected
balanced variant had 83% events caught and 53% events
caught timely with 51% alarms true positive (Farrington
C4 in Tables 3 and 4).

Discussion

The TWST algorithm that we developed succeeded in
identifying malaria transmission events in the presence
of changing expectations due to decreasing incidence
trends. Using thresholds defined from time periods with
high disease transmission may mask important events in
less active years; events which would be considered
abnormal if compared to more recent activity. This ap-
proach is essential in areas like the Amhara region
where malaria incidence is declining in many woredas
because of public health interventions. In regards to
malaria surveillance, the WHO specifically notes that the
normal or expected patterns of malaria, from which
outbreak thresholds are derived, do change over time in
areas that see sharp decreases in incidence after intensive
control efforts [4]. As woredas approach elimination, the
sizes of malaria events become smaller, but it will still be
necessary to detect and respond quickly to these
outbreaks. In the context of resurgence, having dynamic
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thresholds that adapt to changing conditions is crucial for
identifying malaria peaks that are smaller than larger his-
torical outbreaks, but still significantly larger than malaria
case numbers in recent years.

The operational activities of detecting and responding
to outbreaks are enabled by and integral to malaria
surveillance systems. Surveillance as an intervention is
the third pillar of the WHO global technical strategy for
malaria elimination with differing key aspects as disease
control transitions to pre-elimination, elimination, and
prevention of reintroduction phases [7-9, 46—51]. More
recent frameworks focus on transitions and evolving ap-
proaches needed in setting with changing epidemiology
patterns [7, 46]. The Ambhara region, as mentioned pre-
viously, is in a transition period marked by declining and
changing trends in malaria transmission due to disease

interventions plus a resurgence in 2019. By testing
various algorithms on historical data from this region,
we were able to assess their potential to provide early
detection of resurgent malaria outbreaks. While weekly
statistical methods are very commonly used for malaria
surveillance [4], the CDC EARS and Farrington algo-
rithms to our knowledge have not been previously
assessed for use in malaria surveillance.

In the event detection comparison, the randomly
generated alarms produced the worst results, indicating
that all the algorithms that we tested were better than
the naive assumption of random outbreaks. CDC EARS
is designed to be used even when lacking historical data,
as it creates thresholds from only recent data (7 for C1
and C2 to 11 for C3 previous time steps with a baseline
of 7). A drawback is that this approach cannot effectively
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Table 4 Details of selected Farrington variants, including parameter settings

Farrington Label

Description

Selected Parameters

Al

A2

B2

(@]

a

Cc4

Original Farrington method,
Base settings,

No seasonality,

No population offset

Original Farrington method,
Base settings,
Seasonality with four periods

Improved Farrington method,
Base settings,
No seasonality

Improved Farrington method,
Base settings,
Seasonality with four periods

Improved with population offset;
Highest true positive in highest caught set

Improved with population offset;
Highest caught in highest true positive set

Improved with population offset;
Balanced trade-off option

Improved with population offset;
Selected balanced trade-off

Window half size (w) =3; Years (b) = 5;
Seasonality periods = 4; Trend conditionally included (at 0.05 alpha threshold);
Past weeks to exclude =w

Window half size (w) =3; Years (b) = 5;
Seasonality periods = 1; Trend included; Past weeks to exclude =26

Window half size (w) =3; Years (b) = 5; Seasonality periods = 1; Trend
conditionally included (at 0.05 alpha threshold); Past weeks to exclude =w

Window half size (w) = 3; Years (b) = 5; Seasonality periods = 4; Trend included;
Past weeks to exclude = 26

Window half size (w) =5; Years (b) = 4; Seasonality periods = 4; Trend included;
Past weeks to exclude =26

Window half size (w) = 3; Years (b) = maximum; Seasonality periods = 8; Trend
excluded; Past weeks to exclude =w

Window half size (w) = 3; Years (b) = 5; Seasonality periods = 8; Trend excluded;
Past weeks to exclude =w

Window half size (w)=5; Years (b) = 3; Seasonality periods = 4; Trend excluded;
Past weeks to exclude =w
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account for seasonality and tends to trigger alarms at
every seasonal peak. However, the results indicate that
the EARS algorithms have a high sensitivity to increases
in malaria cases. Thresholds based on weekly statistical
summaries also produced high event caught scores and
moderately higher alarm true positive rates as compared
to CDC EARS methods. Both EARS and WHO methods
tended to produce a high total number of alarms
generated.

The suite of Farrington methods, especially the im-
proved versions, allows adjustments for long-term
trends and seasonal patterns. The Farrington algo-
rithm, in various forms, have been implemented at
public health centers and used for a variety of patho-
gens, particularly for gastrointestinal illnesses in sev-
eral European countries: England, Wales, and
Northern Ireland [28, 33], Scotland [24], Netherlands
[24, 33, 35], Lower Saxony state in Germany [33],
and Sweden [33, 34]. As with the weekly statistical
summaries, the Farrington algorithms require several
years of historical data, which may not always be
available. As expected with the highly seasonal pat-
terns we observe in the Amhara region, including
enough seasonal periods was important as accuracy
suffered when too few periods were included.

A substantial trade-off was found with the inclusion of
long-term trend between the percent of events caught
and the percentage of true positive alarms. Including the
long-term trend as implemented in the Farrington
algorithm increased events caught rate, however, there
was also a decrease in the true alarm rate. In the context
of declining malaria incidence, setting thresholds based
on historical data tends to result in a high threshold that
cannot detect smaller, more recent events. Adjusting the
threshold using the recent trend of declining malaria
cases therefore increases the sensitivity of outbreak de-
tection but can result in large numbers of false alarms if
the resulting threshold is too low. These results do show
that accounting for annual cycles and inter-annual
trends is essential for calibrating malaria early detection
parameters in settings characterized by seasonal trans-
mission and declining malaria trends caused by public
health interventions. In situations where comprehensive
data on interventions are available, other modeling ap-
proaches that explicitly account for interventions could
also be used to predict trends in malaria cases [52].

One of our motivations for comparing early detec-
tion algorithms was to guide the selection of methods
for a malaria early warning system in the Ambhara re-
gion as part of the EPIDEMIA project [39]. Following
discussions among project partners and in consider-
ation of the public health applications of the early de-
tection results, we opted then to give the true
positive metric slightly more importance in the
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evaluation of algorithm performance. We did not
want to generate large numbers of false alarms with
an algorithm that had lower specificity, and we were
cognizant that false alarms could cause ineffective and
costly unnecessary mobilizations of resources. How-
ever, we balanced this desire to avoid false positives
with the need to capture important events accurately
and maintain credibility. In this analysis, we quanti-
fied the trade-off between events caught and true
positive scores by testing a range of methods and pa-
rameterizations, and we found that variations of the
Farrington method were usually best for maximizing
both events caught and true positives.

Depending on the intended public health utilization
of the event detection alarms, other implementations
may choose to prioritize sensitivity over specificity if
identifying all potential malaria outbreaks is more
important than minimizing false positives. Methods
and variants with high sensitivity could be useful for
generating a ‘watch list’ of places that may be seeing
an outbreak beginning or spike in cases. However,
due to the high false alarm rate (low true positive
percentage), warnings based on algorithm variants
with low true positive scores run the risk of causing
alert fatigue, where public health officials may be
overwhelmed by alerts that are not meaningful. Alert
fatigue has been observed with health care providers
during health emergencies where they were inun-
dated with public health communications and had
trouble recalling specific information from the mes-
sages [53]. Health care providers tend to prefer fewer
messages, from one source, and with local guidance
or context [54]. Alarms from a system with high
sensitivity but low specificity would not be suitable
to prompt costly interventions, however, they may be
useful to generate lists of places to monitor more
closely.

Many of the early detection algorithms recommended
for malaria use five full years to create the baseline. We
tested five to 6.5 years in the weekly statistical summary
methods, and from three to 6.5years in the Farrington
variants. However, given continuing changes in malaria
transmission environments resulting from ongoing inter-
ventions, social and demographic changes, and climate
change, it may not be reasonable to expect that historical
malaria more than a few years old is suitable to provide
a baseline for detecting future outbreaks [4, 25, 55-59].
Therefore, it is imperative to continue to explore new
approaches for malaria outbreak detection that can be
used with data covering shorter time periods. Future
studies evaluating other algorithms will likely also
prove insightful, as well as investigating the perform-
ance of the EARS and Farrington methods in other
locations with different patterns of malaria incidence.
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Conclusion

We compared the effectiveness of three methods for
malaria outbreak detection: 1) CDC EARS methods, 2)
methods based on weekly statistical thresholds, including
the WHO and Cullen methods, and 3) Farrington
methods, using 7.5years of malaria surveillance data
from the Ambhara region of Ethiopia. To our knowledge,
this is the first study to assess the potential application
of the EARS and Farrington methods for malaria
outbreak detection. The EARS methods by design use a
very short historical window that cannot account for
seasonal trends in malaria occurrence. As a result, they
were very sensitive to increases in cases and caught most
outbreaks, but they could not effectively distinguish
seasonal increases from outbreaks and generated many
false positive alerts. WHO and statistical methods were
also quite sensitive and detected high percentages of
outbreaks with intermediate percentages of true positive
alerts. Variations of the Farrington method had a wide
range of trade-offs between events caught and true posi-
tive scores. Farrington variants that accounted for sea-
sonality had much higher true positive rates than the
EARS and WHO methods and could achieve a better
balance between true positives and the percent of mal-
aria events caught. We determined that of the methods
compared, the Farrington algorithm was the most flex-
ible and useful approach for operational early detection,
and we have successfully used it in a pilot implementa-
tion of the EPIDEMIA malaria early warning system in
the Amhara region [39]. We suggest that this approach
is more generally useful for detecting infectious disease
outbreaks in transitional environments with strong sea-
sonality and declining trends. The intended used of the
early detection results will drive the choice of algorithm
and parameter settings to optimize sensitivity and speci-
ficity of alarms for particular applications.
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