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Abstract

Background: We evaluated whether occupancy modeling, an approach developed for detecting rare wildlife
species, could overcome inherent accuracy limitations associated with rapid disease tests to generate fast, accurate,
and affordable SARS-CoV-2 prevalence estimates. Occupancy modeling uses repeated sampling to estimate
probability of false negative results, like those linked to rapid tests, for generating unbiased prevalence estimates.

Methods: We developed a simulation study to estimate SARS-CoV-2 prevalence using rapid, low-sensitivity, low-
cost tests and slower, high-sensitivity, higher cost tests across a range of disease prevalence and sampling
strategies.

Results: Occupancy modeling overcame the low sensitivity of rapid tests to generate prevalence estimates
comparable to more accurate, slower tests. Moreover, minimal repeated sampling was required to offset low test
sensitivity at low disease prevalence (0.1%), when rapid testing is most critical for informing disease management.

Conclusions: Occupancy modeling enables the use of rapid tests to provide accurate, affordable, real-time
estimates of the prevalence of emerging infectious diseases like SARS-CoV-2.
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Background
The emergence of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) as a worldwide pandemic
has demonstrated both the logistical challenge of effect-
ively monitoring an emerging infectious disease and the
enormous health and socio-economic costs associated
with failing to meet this challenge. The ability to accur-
ately track an emerging infectious disease within a popu-
lation is critical for balancing direct health impacts of
the disease against socio-economic impacts of commu-
nity mitigation strategies for the disease through “shelter

in place” rules [1, 2]. Effective community-level monitor-
ing, particularly at low disease prevalence, is essential to
inform disease management to both suppress the initial
invasion and to maintain low prevalence thereafter. To
date, attention has focused on inadequate testing access,
test supply chain disruptions, and testing delays [3–5],
but, as these problems are resolved, the clear challenge
remaining lies in test efficacy and optimal sampling
strategies needed to provide accurate community-level
metrics of disease dynamics.
Effectively managing an emerging infectious disease

requires logistically feasible, fast, and accurate
community-level monitoring to inform real-time deci-
sions about community mitigation actions [2, 6]. A pri-
mary hurdle to achieving accurate community-level

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: jamie.l.sanderlin@usda.gov
1USDA Forest Service, Rocky Mountain Research Station, 2500 S. Pine Knoll
Dr., Flagstaff, AZ, USA
Full list of author information is available at the end of the article

Sanderlin et al. BMC Public Health          (2021) 21:577 
https://doi.org/10.1186/s12889-021-10609-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-021-10609-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jamie.l.sanderlin@usda.gov


monitoring is the tradeoff between speed and accuracy
inherent in disease tests; rapid tests (e.g., antigen tests
developed by Abbott [7]) are more error prone and
therefore have a lower sensitivity for disease detection
[8–10]. Historically, and throughout the current pan-
demic, disease testing has focused on individual testing,
emphasizing accurate diagnosis of symptomatic individ-
uals conducted with slower, higher sensitivity tests [11].
For SARS-CoV-2 and other emerging diseases, initial
sampling tends to target the most severe cases, whereby
moderate and mild cases are not sampled, leading to an
underestimation of true community prevalence [4].
Novel modeling approaches developed for sampling

rare animals in wildlife sciences hold great potential to
address the inherent limitations of rapid tests [12]. Be-
cause many wildlife species of concern are rare and/or
sparsely distributed, this discipline has spent decades de-
veloping tools to improve population estimation with
imperfect detection [13–15]. Imperfect detection trans-
lates to false negative and/or false positive errors as it re-
lates to disease prevalence. One such class of models is
called occupancy models [16, 17]. Occupancy models
address imperfect detection by collecting repeated sam-
ples (observations) of a species to statistically model
sampling error rates and use this information to improve
estimates of species’ presence/absence. Importantly, oc-
cupancy models can account for imperfect detection
arising from biological processes and the effort to ob-
serve these processes. For example, occupancy modeling
has been used in India to overcome issues of sampling
for tigers (Panthera tigris) linked to their rarity, camou-
flage, stealth, and nocturnal behaviors [18]. Occupancy
modeling has also been used to generate unbiased esti-
mates of pathogen occurrence and prevalence in wildlife
[19]. Importantly, due to more resource limitations in
wildlife sciences compared to human health fields, wild-
life researchers have developed tools for optimizing sam-
pling designs [20] that can be adapted to generate
efficacious and accurate sampling designs for estimating
human disease prevalence.
Here we test whether occupancy modeling frameworks

that account for imperfect detection from false negatives
(test sensitivity) due to biological and observation pro-
cesses could be used to address low test sensitivity in
SARS-CoV-2 rapid tests. We focused on U.S. county-
level estimates, although this approach may be applied
at larger geographic or population scales. We specifically
ask two questions: 1) “Can an occupancy modeling
framework applied to rapid, low-sensitivity tests provide
similar accuracy (e.g., less bias and greater precision) es-
timates of SARS-CoV-2 prevalence as higher sensitivity,
more accurate tests?”; 2) “Given a fixed number of tests
(due to laboratory capacity, fixed budget, or combination
of these constraints), what is the best sampling strategy

for deploying rapid tests to optimize accuracy while con-
sidering logistical and cost constraints?” We conducted a
series of simulations to answer these questions by
deploying two types of tests for SARS-CoV-2: a rapid,
low sensitivity, cheaper test and a slower, high sensitiv-
ity, yet more expensive test. We examined a range of
SARS-CoV-2 prevalence values. In addition, because we
were interested in effective sampling strategies, we ex-
amined how the proportion of individuals initially sam-
pled, number of repeat tests, and proportion of
individuals with repeat tests affected prevalence
estimates.

Methods
In its origins, occupancy modeling relies on repeated
sampling for the presence of an organism at a site [16,
17]. Here, the organism we wish to detect is SARS-CoV-
2, and the place, or site, is the individual where the dis-
ease might be found. A site—in this case a person—is
“occupied” if the organism (the virus) is present, and
“unoccupied” otherwise; occupied and unoccupied are
analogous to infected and uninfected. The occupancy
modeling goal as applied here is to determine the pro-
portion of sites (people) within the population (county)
that are occupied (infected) given imperfect detection
from false negatives (test sensitivity). Thus, occupancy
modeling provides an appropriate statistical design for
estimating disease prevalence.

Model
We used a Bayesian hierarchical occupancy model [21],
which includes biological and observation processes.
The following describes the variables used to model each
process.

Biological process
Following a single-season occupancy model [16, 17],
where I represents infected and U represents uninfected,
we modeled true SARS-CoV-2 presence in an individual
(j) as a latent (not directly observed) Bernoulli variable
(zj) with probability of success as the average infection
probability within individuals in the community (ψI):

z j � Bernoulli ΨIð Þ: ð1Þ

Number of infected individuals (NI) and uninfected indi-
viduals (NU) can be estimated as derived parameters,
and NPOP (number of individuals in the population) is
known:

NI ¼
XNPOP

j¼1
z j; ð2Þ

and NU =NPOP −NI.

Sanderlin et al. BMC Public Health          (2021) 21:577 Page 2 of 10



Observational process
We modeled the observation process as a simple ran-
dom sample (independent of symptoms) with imperfect
detection from false negatives (low test sensitivity) as a
zero-inflated binomial process. In occupancy modeling,
there is a formal requirement for closure at the site level,
i.e., with disease prevalence, each sampled person in the
population must remain either infected or uninfected
throughout the sampling period. Test sensitivity is esti-
mated through repeated independent samples at a site.
Individuals sampled (i.e., sites) would therefore have
multiple tests (Nsample,j) taken at a single ‘visit’ during
the sampling period. This is difficult to achieve with Re-
verse Transcription quantitative PCR (RT-qPCR)-based
tests but is amenable to rapid and inexpensive tests such
as antigen tests developed by Abbott [7] or other similar
tests. We modeled infected individual detection (yj) as a
binomial random variable, with number of binomial tri-
als represented as number of repeat tests per sampled
individual (Nsample,j) and success of those trials as an un-
known probability (muj), dependent on true SARS-CoV-
2 presence in an individual (zj) and test sensitivity (ptest)
(muj = zj × ptest):

y j � Binomial Nsample; j;muj
� �

: ð3Þ

In this case, infected individual detections (yj) and num-
ber of repeat tests per individual (Nsample,j) represent
known real world data from a simple random sample of
a hypothetical county with SARS-CoV-2.

Simulations
To evaluate multiple biological and observational process
scenarios, we conducted a series of simulations that varied
values within both processes. We used information from
literature (if available) to support selection of low,
medium, and high levels for each parameter (Add-
itional file 1). We used the median U.S. county population
size of 25,000 (Census Bureau 2019) across all simulations
to represent population size (Npop) to reflect realistic
SARS-CoV-2 U.S. sampling scenarios. To account for
SARS-CoV-2 prevalence affecting test sensitivity, we ex-
amined simulations with three values of very low (0.001),
low (0.01), and moderate (0.1) prevalence (ψI). Within the
observation process, we modeled deployment of two
SARS-CoV-2 test types by modeling two test sensitivity
(ptest) values based on known test sensitivities (Additional
file 1): low (0.30) and high (0.78).
In addition, because we were interested in optimal

sampling strategies (question 2), we modified total num-
ber of tests per individual (Nsample,j) by varying propor-
tion of individuals initially sampled, number of repeat
tests per individual, and proportion of individuals with
repeat tests. We used three values for proportion of

individuals initially sampled to represent low (0.001),
medium (0.01), and high (0.05) proportions within the
county. Because occupancy modeling relies on repeated
testing, we modeled sampling with a single repeat test (2
tests total) or 4 repeat tests (5 tests per individual total).
We also varied proportion of individuals that were re-
peatedly sampled to represent 10, 50 and 100% of the
sampled individuals repeat tested to account for the po-
tential that some individuals initially sampled are unwill-
ing to be resampled in a single visit.
The combination of all parameter values described

above resulted in 108 unique simulation scenarios (Add-
itional file 1), which were created with program R [22].
To create a simulation scenario, we simulated a popula-
tion (25,000) with occupied and unoccupied individuals
(Eq. 1) with one of the three prevalence values. We then
simulated sampling that population with imperfect de-
tection from false negatives (test sensitivity; Eq. 3) and
varied observation process parameters described above
(proportion of individuals initially sampled, number of
repeat tests, and proportion of individuals that were re-
peat sampled). Next, we used observed data for a single
scenario as an input in the Bayesian hierarchical model
(Eq. 1–3) Markov chain Monte Carlo (MCMC) process,
ran the model in JAGS [23] using the rjags, jagsUI [24],
and coda [25] packages, to obtain posterior estimates of
SARS-CoV-2 prevalence (ψI) and test sensitivity (ptest).
That was for one replicate of the simulation-estimation
process for one scenario. We used 100 replicates of the
simulation-estimation process for each simulation sce-
nario. For each of the 100 simulation-estimation repli-
cates, we used independent, non-informative priors for
ψI and ptest and ran three parallel chains (length = 10,000
iterations, burn-in = 1000 iterations, no thinning) to esti-
mate the posterior distribution median of model param-
eters and 95% Bayesian credible intervals (BCI) for each
replicate. We assessed model convergence by using R̂ <
1.1 [26]. We then compared true values we used to gen-
erate the biological and sampling processes to estimated
prevalence (ψI) and test sensitivity (ptest) for each repli-
cate of the simulation-estimation process over all simu-
lation scenarios.
For all simulations, we assumed the population was

closed to movement during the sampling time frame
and each individual was available for sampling in the
county. We also assumed disease state (i.e., occupied or
unoccupied) did not change during the sample period.
These conditions equate to a short sampling time win-
dow (point prevalence).

Evaluating simulations for occupancy modeling (question 1)
To evaluate if an occupancy modeling framework with
rapid tests could provide accurate SARS-CoV-2
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prevalence estimates, we examined relative root mean
square error (RRMSE) for prevalence (ψI) and test sensi-
tivity (ptest). RRMSE, or accuracy, is the combination of
bias and precision defined as:

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=rð ÞPn

i¼1 θ̂i − θi
� �2

r

θ
; ð4Þ

where r is number of replicates, θ̂i is the estimated par-
ameter (posterior median) at replicate i, θi is the true
parameter value at replicate i, and θ is the mean of the
true parameter values over all replicates. We also calcu-
lated relative bias (RBIAS), percent coverage, and Bayes-
ian Credible Interval (BCI) length (Additional file 2,
Additional file 3).

Evaluating simulations for optimal sampling strategies
(question 2)
To evaluate optimal sampling strategies given fixed re-
sources (i.e., number of tests available, fixed budget) at
the county level, we used a constrained optimization
framework [27] consisting of three components: (i) deci-
sion variables (proportion of individuals initially sam-
pled, number of repeat tests per individual, proportion
of individuals with repeat tests), (ii) objective function
(minimize SARS-CoV-2 prevalence RRMSE), and (iii)
constraints (total number of samples represented as a
cost). We illustrate this framework using a cost con-
straint, but this framework can also include a time con-
straint, as quicker results could influence individual
behavior and contribute to slowing disease spread [6].
The cost function was:

C ¼ Cs � Nsample; ð5Þ

where C was total cost; Cs was per sample cost for col-
lecting sample, sample storage, sample preparation, and
test materials; and Nsample was total number of samples
(sum of samples from initially sampled individuals
within the county and from all repeated tests for a sub-
set of individuals). For ptest of 0.3 associated with a rapid
test, Cs was $5 [28]. For ptest of 0.78 associated with a
RT-qPCR test, Cs was $100. We expect laboratory costs
to vary by county and laboratory technician and collec-
tion staff salary, and thus present a general cost function
to illustrate a framework to evaluate accuracy and asso-
ciated costs with decision variables for different test
types. We also recognize that start-up costs for labora-
tories may be substantial, thus we assume counties will
utilize laboratories that already have necessary equip-
ment and technical expertise.
Given our RRMSE prevalence simulation values for

each combination of decision variables, our objective

function was to minimize prevalence RRMSE subject to
constraints:

C ¼ C0 þ Cs � Nsample≤d;

RRMSE≤e:

We constrained total cost below d to evaluate a range
of sampling strategies given a fixed number of tests
available (due to laboratory capacity, fixed budget, or
combination of these constraints) and RRMSE below e
to represent a desired amount of prevalence accuracy.
We demonstrated the optimization process graphically:
optimal sampling strategy was determined by examining
where accuracy (RRMSE) asymptotes given costs (i.e.,
there is marginal gain for additional sampling) before
cost constraints.

Results
Overall, we found that occupancy modeling in conjunc-
tion with resampling strategies can overcome low test
sensitivity associated with rapid tests to provide accurate
SARS-CoV-2 prevalence estimates comparable to those
of more accurate but slower tests. In addition, we identi-
fied optimal sampling strategies using cost constraints
across all prevalence levels. The specific results of each
are discussed below for simulation data
(Additional file 4).

Evaluating simulations for occupancy modeling (question
1)
Accounting for biological and observation processes
Relative bias and accuracy (RRMSE) of SARS-CoV-2
prevalence were influenced by both true prevalence (bio-
logical process) and sampling strategy (observation
process). Estimates were influenced most by prevalence
magnitude, followed by sampling strategy (Figs. 1-3,
Additional file 2). Not surprisingly, overall, SARS-CoV-2
prevalence accuracy was lower and more variable among
sampling strategies when the disease was extremely rare
(true prevalence 0.001). Accuracy improved as preva-
lence increased and/or a greater proportion of the popu-
lation was sampled. With true prevalence of 0.01 and
0.1, accuracy increases (RRMSE decreases) were smaller
with increases in the proportion of a population initially
sampled.

Improvement with repeated testing
More repeat tests greatly improved SARS-CoV-2 preva-
lence accuracy (RRMSE) estimates, especially with fewer
total tests (Fig. 2). For example, when a county had 1%
prevalence and 250 tests to allocate, if 50 people get 5
repeat tests the RRMSE was reduced by 2.2% compared
to a scenario with 250 people that got a single test.

Sanderlin et al. BMC Public Health          (2021) 21:577 Page 4 of 10



Fig. 1 Prevalence accuracy as a function of percent of the population infected. Accuracy (relative root mean square error) of prevalence (Ψ) as a
function of true prevalence, or percent of the population infected, from simulation scenarios of 100% of the initial sample with 5 repeat tests. The
inset a) is for simulation scenarios with 10% of the population infected (true prevalence)

Fig. 2 Prevalence accuracy as a function of total tests. Accuracy (relative root mean square error) of prevalence (Ψ) as a function of total tests
from simulation scenarios of 1% infection rate and test sensitivity of 0.3. Note that the percent of the population initially sampled is not the same
with one test (no repeat) versus 5 tests (4 repeats)

Sanderlin et al. BMC Public Health          (2021) 21:577 Page 5 of 10



Occupancy modeling overcomes lower test sensitivity of
rapid tests
Occupancy modeling overcame the lower test sensitivity of
rapid tests compared with high-accuracy tests, i.e., SARS-
CoV-2 prevalence accuracy was similar for low-sensitivity
rapid and higher-sensitivity, slower tests for all SARS-CoV-
2 prevalence levels and sampling strategies when occupancy
models were applied (Fig. 3, Additional file 2). For example,
with 5% of the population initially sampled and 100% of
that sample with 5 repeat tests, we found prevalence
RRMSE was similar for prevalence of 0.1% (RRMSE =
100.29 for ptest = 0.3, RRMSE = 100.30 for ptest = 0.78; Fig.
3a). However, rapid tests (ptest = 0.3) provide similar accur-
acy at reduced costs with occupancy models (Fig. 3b).

Evaluating simulations for optimal sampling strategies
(question 2)
Across all disease prevalence levels, the optimal (lowest
RRMSE relative to cost constraints) sampling strategy
for a fixed proportion of the initially sampled population
with repeat tests was: i) with 1% of population initially
sampled, and ii) sampling occurring five times per indi-
vidual with repeat tests (1 initial test and 4 repeat tests)
(Fig. 4, Supplementary Figs. 10 and 11 in Additional file
2). Our simulation scenarios considered resampling a
subset of the initial group sampled, in addition to 100%
of the initial group sampled. Similar accuracy can be
achieved with only a subset of the initial group sampled,
for reduced overall costs (Fig. 4, Additional file 2).

Fig. 3 Prevalence accuracy as a function of true test sensitivity and costs. Accuracy (relative root mean square error) of prevalence (Ψ) as a
function of a) true test sensitivity from simulation scenarios of 5% of the population initially sampled and 100% of that sample with 5 repeat
tests, and b) costs associated with the two test types
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Discussion
Mitigating the impacts of emerging infectious disease
like SARS-CoV-2 requires rapid testing to generate real-

time data for informed disease management. We dem-
onstrate how occupancy modeling can overcome low
test sensitivity with rapid COVID-19 surveillance

Fig. 4 Optimal sampling designs with prevalence accuracy as a function of costs. Accuracy (relative root mean square error) of prevalence (Ψ) as
a function of costs (USD) using arbitrary cost constraint (dotted vertical line) of $7500 USD for a) a subset of the simulation scenarios with the
true test sensitivity of 0.3 and 50% of the initially sampled population with repeat tests; b) a subset of the simulation scenarios with the true test
sensitivity of 0.3, true population infection rate (true prevalence) of 1, and 100% of the initially sampled population with repeat tests. Optimal
designs are indicated within the figures with arrows
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schemes to generate accurate (high-precision, low-bias)
SARS-CoV-2 prevalence estimates. Moreover, the ability
of this approach to offset test sensitivity with rapid tests
at low disease prevalence is crucial because decisive dis-
ease management actions are most critical at low preva-
lence levels such as during disease onset and resurgence
following control. Rapid tests are also inexpensive and
logistically easy to administer, enabling the additional
sampling effort requisite for resampling designs [10]
with quick turn-around times. While our modeling ef-
forts targeted the challenge associated with low sensitiv-
ity tests, occupancy modeling holds potential to address
other rapid testing limitations for improved disease
management.
To further advance rapid testing designs for disease

monitoring, other shortfalls will also need to be ad-
dressed. In addition to low test sensitivity or false nega-
tive results, rapid tests also produce false positive results,
or low specificity [29]. False positive results can impact
patient risk and costs with unnecessary sequestration or
even worse – uninfected individuals being assigned to
COVID-19 hospital wards where they may become in-
fected [29]. We did not account for false positives. How-
ever, similar methods exist to account for false positive
detections [30, 31]. Moreover, more sophisticated ap-
proaches can be applied to refine estimates under com-
plex, real-world conditions that account for symptoms at
the time of testing and incorporate more underlying bio-
logical processes, including an instantaneous model
using stratified sampling of states (symptomatic vs.
asymptomatic) with no transitions among states using
single-season, multi-state occupancy models with state
uncertainty [32, 33], and Hidden Markov models with
SIR (susceptible infected recovered) models using state
transitions both in discrete and continuous time [34].
An alternative to stratified sampling could include col-
lection of site-level covariates to improve detection at
sample collection time (i.e., symptomatic status, symp-
tom start date) an approach common in occupancy
models in the wildlife literature [18, 19]. We stress that
the approach we present is designed to assess disease
prevalence across a population. It is not intended for de-
termining infection status of individuals (although see
Additional file 5). Nor is it appropriate for circumstances
where institutions seek to create an infection-free group.
Such objectives require high test sensitivity at the indi-
vidual level. Nonetheless, information from such
individual-oriented testing could be incorporated into
prevalence estimates in models like the one we
introduced.

Conclusions
For emerging infectious diseases like COVID-19, rapid
testing is essential for generating the real-time disease

monitoring data that is required to inform disease man-
agement actions and minimize human health impacts [2,
6]. Resolving this sampling challenge is essential, espe-
cially as winter arrives in the northern hemisphere where
onset of additional respiratory diseases with similar
symptomology (e.g., rhinoviruses, seasonal corona-
viruses, influenza) will confound SARS-CoV-2 detection.
We demonstrate how occupancy modeling can help to
overcome low test sensitivity to produce accurate disease
prevalence estimates for real-time, informed decision
making, even at low disease prevalence levels when de-
cisive action is most meaningful. We also show the opti-
mal sampling strategy in combination with occupancy
modeling will be equally effective for community-level
inference at different points in the course of an epi-
demic. Finally, we demonstrate that additional testing
beyond the optimal sampling strategy in combination
with occupancy modeling will not substantively improve
prevalence estimates, allowing funds to be directed to
the most pertinent disease mitigation measures.
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