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Abstract

Background: Applying heavy nationwide restrictions is a powerful method to curtail COVID-19 transmission but
poses a significant humanitarian and economic crisis. Thus, it is essential to improve our understanding of COVID-19
transmission, and develop more focused and effective strategies. As human mobility drives transmission, data from
cellphone devices can be utilized to achieve these goals.

Methods: We analyzed aggregated and anonymized mobility data from the cell phone devices of> 3 million users
between February 1, 2020, to May 16, 2020 — in which several movement restrictions were applied and lifted in
Israel. We integrated these mobility patterns into age-, risk- and region-structured transmission model. Calibrated to
coronavirus incidence in 250 regions covering Israel, we evaluated the efficacy and effectiveness in decreasing
morbidity and mortality of applying localized and temporal lockdowns (stay-at-home order).

Results: Poorer regions exhibited lower and slower compliance with the restrictions. Our transmission model
further indicated that individuals from impoverished areas were associated with high transmission rates.
Considering a horizon of 1–3 years, we found that to reduce COVID-19 mortality, school closure has an adverse
effect, while interventions focusing on the elderly are the most efficient. We also found that applying localized and
temporal lockdowns during regional outbreaks reduces the overall mortality and morbidity compared to
nationwide lockdowns. These trends were consistent across vast ranges of epidemiological parameters, and
potential seasonal forcing.

Conclusions: More resources should be devoted to helping impoverished regions. Utilizing cellphone data despite
being anonymized and aggregated can help policymakers worldwide identify hotspots and apply designated
strategies against future COVID-19 outbreaks.
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Background
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) was identified in Wuhan, China, in December
2019. It has since developed into a pandemic wave af-
fecting over 200 countries, causing over 6.9 million cases

and claiming over 390 thousand lives, as of June 8,
2020 [1]. The rapid growth of the SARS-CoV-2 pan-
demic led to unprecedented control measures on a
global scale. Travel bans, restrictions on mobility of
varying degrees, and nationwide lockdowns have
emerged sharply in over 200 countries [2]. In Israel,
since March 9, 2020, travelers from any country are
being denied entry unless they can prove their ability
to remain under home isolation for 14 days. From
March 16 onward, daycare and schools were shut,
and work was limited to less than a third of the cap-
acity. On March 26, inessential travel was limited to
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100 m away from home, and three separate lockdowns
were applied in most regions in Israel to prevent
crowding due to holiday celebrations [3].
These massive measures have led to a sharp decline in

transmission but pose a significant humanitarian and
economic crisis [4–7]. Recent estimates have suggested
that 1.5–3 month lockdowns will lead to an enormous
economic loss, with high variability across countries ran-
ging between 1.7–13.1% decline in the gross domestic
product [4]. Restrictions to mitigate the outbreak also
led to various types of psychological distress, including
anxiety, helplessness, and depression [5–7]. Further-
more, social isolation is a primary public health concern
in the elderly, as it also amplifies the burden of neuro-
cognitive, mental, cardiovascular, and autoimmune prob-
lems [7]. Thus, given that pandemics rarely affect all
people in a uniform manner [8], it is essential to im-
prove our understanding of the COVID-19 transmission
dynamics to customize control efforts.
As human mobility is an intrinsic property of human

behavior, it serves as a key component of the transmis-
sion of respiratory infections, including COVID-19 [9–
13]. The four billion mobile phones in use worldwide
are ubiquitous sensors of individuals’ locations and can
be utilized not only to track mobility patterns, but also
to understand compliance with ongoing restrictions [12].
The importance of human mobility is further intensified
by the 2.2–11.5 days of incubation, and the observation
that as many as 95% of cases are unreported [14]. Thus,
utilizing real-time data on human mobility is instrumen-
tal for early detection and prompt isolation of COVID-
19 infection.
A variety of factors besides human mobility affect

the risk of infection and manifestations, including
demographics, education, underlying conditions, and
epidemiological characteristics [15]. The high variance
in the severity of the disease for different age groups
suggests that age-based strategies might be useful in
reducing mortality [16]. Age-stratified modeling stud-
ies show that interventions such as school closure can
help delay the outbreak peak [11]. However, this will
not necessarily result in a reduction in the total num-
ber of deaths, particularly in light of the estimated
time for vaccine availability being > 1 year [17]. In
addition to age, individuals with comorbidities are
2.8–21.4 times more likely to become hospitalized fol-
lowing COVID-19 infection [18]. Another factor may
be socioeconomic status (SES). Impoverished popula-
tions often live in denser regions and have reduced
access to health services, thereby being most vulner-
able during a crisis [8]. The considerably high rate of
household transmission for respiratory infections [19]
may also suggest a higher risk for larger families, re-
gardless of lockdowns.

We analyzed a large-scale data of location records
from mobile phones to explore the spatiotemporal effect
of human mobility and population behavior on transmis-
sion. We integrated these mobility data into regional
age- and risk-structured transmission model and used
our model to identify efficient and effective strategies for
reducing COVID-19 mortality. Our methodology can
help policymakers worldwide utilize aggregate and anon-
ymized cellphone data to develop designated strategies
against future outbreaks.

Methods
Human mobility
Our data include mobility records based on cellular data
of > 3 million users from one of the largest telecommu-
nication companies in Israel. With the exception of chil-
dren < 10 years of age, the users are well representative
of Israel demographically, ethnically, and socioeconomi-
cally. In accordance with the General Data Protection
Regulation (GDPR), the data include aggregated and
anonymized information. The data specifies movement
patterns within and between 2630 zones covering Israel,
on an hourly basis, from February 1, 2020, until May 16,
2020. To ensure privacy, if less than 50 individuals were
identified in the zone in a given hour, the number of re-
ported individuals was set to zero.
We determined the location of individuals based on

the triangulation of cell towers, which was found to be
accurate to 300 m in most cases but varied by up to 1
km in less populated areas. To prevent signal noise and
identify stay points, we tracked only locations where
users stayed for at least 15 min within a distance thresh-
old of 1.5 km. We defined users as residents of a zone
based on the location at which they had the highest
number of signals on most nights during February 2020.
We define a mobility index (MI) as the daily proportion
of individuals who traveled > 1.5 km away from their
home. To calculate the MI for each zone, we counted
the daily number of individuals in each group that
showed a signal away from their home location.
Next, we integrated data from the Central Bureau of

Statistics (CBS) that specifies several socioeconomic
characteristics, including population size, household size,
age distribution, socioeconomic score, and dominant re-
ligion, for each zone. Each zone includes ~ 3500 resi-
dents. For each zone, we scaled the number of resident
users of the telecommunication company to match the
actual number of residents in the zone, as reported by
the Israeli CBS. The CBS specifies for each zone a socio-
economic cluster from 1 to 10. Based on these clusters,
we defined three SES groups that were nearly equal in
size: low (clusters 1–3), middle (clusters 4–7), and high
(clusters 8–10). We aggregated the MI according to SES
to test the mobility trends on a national level (Fig. 1a).
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To evaluate the travel patterns based on an individual’s
SES (Fig. 1b and c), we counted the mean daily number
of travels between the 2630 zones, including for those
individuals who stayed in their origin zone. Grouping by
SES and scaling the daily number of travels to one for
each zone, we created an origin-destination travel prob-
ability matrix.
To analyze the relationship among poverty, mobility,

and transmission (Fig. 2), we divided the data into three
periods: 13 Feb-26 Mar, 27 Mar-19 Apr, and 20 Apr-15
May, corresponding to 1) the early phase before restric-
tions started, 2) the time from restrictions until they
were first lifted, and 3) after the restrictions were lifted.
For each period, we ranked municipalities with a popula-
tion of > 10,000 residents based on the number of new
cases per person observed in each period. For improved
clarity of Fig. 2, we present the 50 most prevalent muni-
cipalities. We calculated for each city the number of

newly reported cases, the SES, and the distribution of
travels to the other 49 municipalities.

Transmission model
We developed a dynamic model for age-, risk- and
region-stratified SARS-CoV-2 infection progression and
transmission in Israel. Our model is a modified suscep-
tible exposed infected recovered (SEIR) compartmental
framework [20], whereby the population is stratified into
health-related compartments, and transitions between
the compartments change over time (Fig. 3a). To model
age-dependent transmission, we stratified the population
into age groups: 0–4 years, 5–9 years, 10–19 years, 20–
29 years, 30–39 years, 40–49 years, 50–59 years, 60–69
years and ≥ 70 years. We distinguished high-risk and
low-risk individuals in each age group based on the
ACIP case definition [21, 22]. We also distinguished the
250 regions covering Israel in the model.

Fig. 1 Mobility patterns with and without restrictions. a Percentage of individuals who traveled > 1.5 km, stratified by socioeconomic groups,
during routine and when mobility restrictions were applied and lifted: (1) closing schools and stores and limiting workplaces to 30% activity; (2)
limiting nonessential travels to 100 m away from home; (3, 4) national daily lockdowns due to Passover; (5) opening stores; (6) lockdown due to
Independence Day; (7) lifting the 100m limit for nonessential travels. b and (c) Travel patterns based on individuals’ SES during February 2–29 (b)
and March 26–April 18 (c)
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The mean incubation period of SARS-CoV-2 is 6.4 days
(95% CI, 5.6 to 7.7 days) [23, 24], but early evidence shows
that viral shedding occurs during a presymptomatic stage
[25, 26]. Thus, we considered an exposure period E and
an early infectious period Iexposed. Underreporting arises
from asymptomatic cases or mild cases in individuals who
do not seek care. Thus, following the early infectious
phase, individuals in the model transition either to an in-
fectious and reported compartment Ireported or to an infec-
tious and unreported compartment Iunreported [27, 28].
Multiple infections with SARS-CoV-2 are not yet fully

understood. A recent study indicated that there is protect-
ive immunity following infection [29]. This result is con-
sistent with a previous study indicating that for SARS-
CoV-1, memory T cells persist for up to 11 years [30]. In
addition, similar to other respiratory infections, it is likely

that if reinfection occurs, it is less severe and less transmis-
sive [31]. Thus, we assumed that upon recovery, individuals
are fully protected, which is consistent with other SARS-
CoV-2 transmission models [32] (Additional file 1: Supple-
mentary information). Altogether, our model includes 5 ∗ 9
∗ 2 ∗ 250 = 22,500 compartments (health − compartments ∗
age − groups ∗ risk − groups ∗ regions).

Force of infection and seasonality
The rate at which individuals transmit depends on (i)
contact mixing patterns between the infected individual
and his or her contact, (ii) age-specific susceptibility to
infection, (iii) region-based behavioral susceptibility, and
(iv) potential seasonal forcing.
Age-specific contact rates were parameterized using

data from an extensive survey of daily contacts [33] and

Fig. 2 Association between mobility and poverty in COVID-19 transmission. Spatiotemporal transmission by socioeconomic status. We present the 50
municipalities with the highest incidence. Each circle represents one municipality. The radius (presented on a logarithmic scale for clarity) reflects the
total number of new cases reported during the corresponding period. The colors reflect socioeconomic status. The lines between the municipalities
represent the traffic of each municipality, wherein the line thickness represents the relative traffic intensity and the color matches the color of the SES
of origin. We present below each map the number of reported cases among different SEGs for three periods corresponding to (a) the early phase
before restrictions started, (b) from the time of restrictions and until the restrictions were lifted, and (c) after restrictions were lifted
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retrospective study, that suggested a value of 0.16 for the
household attack rate [19]. The age-specific susceptibil-
ity rate for out-of-home individuals βj was parameterized
by calibrating our model with daily COVID-19 records.
To account for behavioral susceptibility, we explicitly

considered in our model a parameter reflecting the order
to maintain physical distancing, κp. The high regional
variations in susceptibility were parameterized based on
fertility rates and socioeconomic characteristics. The fer-
tility rate in Israel correlates with population density,
household size, and SES. Specifically, we computed for
each region the relative change in mobility compared to
routine. Our analysis indicated that for regions of low
SES, the change was lower, which was reflected in our
model by higher susceptibility (Additional file 1: Supple-
mentary information). The use of regional fertility and
relative change in mobility allowed us to refrain from
calibrating the model to an excessive number of un-
known parameters and avoid overfitting.
Seasonal patterns have been observed in common cir-

culating human coronaviruses (HCoVs), mostly causing
infections in humans between December and May in the
Northern Hemisphere [34]. The two HCoVs 229 E and
OC43 show distinct winter seasonality. In addition,
many coronaviruses in animals exhibit a distinct sea-
sonal pattern of incidence in their natural hosts [35].
There is growing evidence that SARS-CoV-2 is also sea-
sonal, with the optimal setting for transmission in Israel
occurring during winter [36]. Thus, we considered in
our base-case seasonal forcing by including general sea-
sonal variation in the susceptibility rate of the model as

T tð Þ ¼ 1þ cos
2π t þ φð Þ

365

� �� �
;

in which φ is the seasonal offset. This formulation was
previously shown to capture the seasonal variations in
several respiratory infections, including RSV and influ-
enza [31, 37]. We incorporated the possible values of φ
to reflect peaks from December through February (Add-
itional file 1: Supplementary information).

Model calibration
To empirically estimate unknown epidemiological pa-
rameters (Additional file 1: Table S5), we calibrated our
model to daily age-stratified cases of COVID-19 con-
firmed by PCR tests in 30 subdistricts covering Israel.
The calibration was conducted on a 30-subdistrict level
rather than in the 250 regions to ensure that there were
sufficient time-series data points in each location for
each age-group. The data were reported by the Israeli
Ministry of Health between February and May and in-
cluded daily information for the patients, including age,
residential zone, underlying conditions, and clinical

outcomes, including hospitalizations and death. To cali-
brate the model, we minimized the mean squared error
(which is also the maximum likelihood estimation as-
suming the error is normally distributed) between the
model projections of reported cases and the daily
COVID-19-confirmed cases data.
Due to the uncertainty regarding the proportion of un-

reported cases, we calibrated our model to different sce-
narios. Specifically, underreporting is affected by testing
policy and testing capabilities for each country, as well
as individuals’ tendency to seek care once clinical symp-
toms appear. Additionally, underreporting is affected by
the severity of the infection, which is associated with age
[18]. Thus, we chose different age-specific estimates for
the proportion of underreporting, ranging from 5.5–14
unreported cases for a single reported case. These
estimates are based on observations from screenings
conducted in unpublished data from Israel and are con-
sistent with data from Denmark, Czechia, Netherlands;
Santa Clara, California [14, 18, 38] (Additional file 1:
Table S1). Due to the uncertainty related to positive pre-
dictive values of serological screenings, we also tested a
scenario of two unreported cases for a single reported
case to confirm the robustness of our findings.
To account for the age variation, we considered the

detailed serological data from Santa Clara [14]. We also
calibrated our model with scenarios assuming different
phases of seasonal peaking between December 21 and
February 21, as well as scenarios with no seasonality.
The final transmission model included five parameters
without constraints imposed from previous data: re-
duced susceptibility due to physical distancing κp and
susceptibility rate based on age groups j: 0–19, 20–39,
40–59, and > 60 (Additional file 1: Supplementary
information).

Model simulations
We evaluated the effectiveness of temporal lockdown
strategies in reducing morbidity and mortality by simu-
lating the model for 1 year and 3 years or until disease
elimination. Each strategy considered includes a thresh-
old for activation of a lockdown, and the groups consid-
ered for lockdown were as follows: 1) the entire
population in the region, 2) daycare- and school-age
children between 0 and 19 years of age (children), 3)
high-risk groups and individuals > 65 years of age (eld-
erly). Specifically, to model the lockdown strategies, we
defined an indicator for each region as the weekly num-
ber of new-reported cases per 10,000 people. Each week,
we examined whether the indicator exceeds a certain
threshold for each region. If so, a lockdown was acti-
vated for the following week. This process was contin-
ued for 1–3 years.
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