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Abstract

Background: The built environment is a structural determinant of health and has been shown to influence health
expenditures, behaviors, and outcomes. Traditional methods of assessing built environment characteristics are time-
consuming and difficult to combine or compare. Google Street View (GSV) images represent a large, publicly
available data source that can be used to create indicators of characteristics of the physical environment with
machine learning techniques. The aim of this study is to use GSV images to measure the association of built
environment features with health-related behaviors and outcomes at the census tract level.

Methods: We used computer vision techniques to derive built environment indicators from approximately 31
million GSV images at 7.8 million intersections. Associations between derived indicators and health-related
behaviors and outcomes on the census-tract level were assessed using multivariate regression models, controlling
for demographic factors and socioeconomic position. Statistical significance was assessed at the α = 0.05 level.

Results: Single lane roads were associated with increased diabetes and obesity, while non-single-family home
buildings were associated with decreased obesity, diabetes and inactivity. Street greenness was associated with
decreased prevalence of physical and mental distress, as well as decreased binge drinking, but with increased
obesity. Socioeconomic disadvantage was negatively associated with binge drinking prevalence and positively
associated with all other health-related behaviors and outcomes.

Conclusions: Structural determinants of health such as the built environment can influence population health. Our
study suggests that higher levels of urban development have mixed effects on health and adds further evidence
that socioeconomic distress has adverse impacts on multiple physical and mental health outcomes.
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Background
The built environment has long been viewed as a struc-
tural determinant of health by social epidemiologists [1].
A substantial body of research has documented the asso-
ciation of built environment characteristics – such as
accessibility, physical disorder, access to public transit
and recreational spaces, and greenery – with health-

related behaviors [2], health outcomes [3–7], and health
care expenditures [8]. Features of the built environment
may influence health-related behaviors and outcomes
through several pathways, including encouraging (or dis-
couraging) exercise and recreational activities, determin-
ing whether residents have easy access to healthy foods
and preventive health resources, and affecting stress and
other psychosocial factors.
Methods to assess the built environment have evolved

alongside analyses to measure its association with health.
These methods include cross-sectional surveys on residents’
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perceptions and observational methods [9]; tax records,
land use inventories, and other administrative data sources
[4]; and large geospatial data sets developed through
satellite imagery, such as the National Land Cover Database
[5, 8]. While these have served as valuable resources for
creating built environment indicators, it has nonetheless
proven challenging to compare or combine analyses
because many neighborhood-level data collection initiatives
have been specific to the area being studied and thus
limited in focus.
Launched in 2007, Google Street View (GSV) is an

increasingly popular source of images of the built envir-
onment that has the potential to address this gap. GSV
is a publicly available source of image data on built
environment features which is collected with uniform
methodology. It represents a massive volume of detailed
data that can be used to create indicators of characteris-
tics of the physical environment with machine learning
techniques. This reduces the significant time and
resources previously spent on more traditional methods
of neighborhood feature data collection, such as in-
person audits [10]. Researchers have demonstrated the
reliability of using GSV to derive data on physical fea-
tures, finding high-level agreement with field assess-
ments [11–13]. GSV images have been used to
determine the presence of features such as crosswalks,
commercial buildings, highways, and grasslands, which
were in turn used to assess their association with
chronic health outcomes at the county [14] and zip code
level [15]. Globally, GSV image coverage is more
complete for some regions than others, with cities in
developed nations having near-complete coverage while
many low- and middle-income countries in Africa,
Southeast Asia, and South America have no GSV im-
agery at all [10]. While precise coverage metrics are not
available, the U.S. has near-complete coverage [16, 17].
The aim of this study is to use GSV images, in con-

junction with data on demographic and socioeconomic
covariates, to measure the association of built environ-
ment features with health-related behaviors and out-
comes at the census tract level.

Methods
Data sources
Google street view data for built environment indicators
Indicators for building type (the presence of any building
that was not a single-family detached house), single-lane
road (yes/no), presence of a crosswalk (yes/no), street
greenness (street trees and street landscaping comprised
at least 30% of the image - yes/no), and visible utility
wires overhead (yes/no) were derived from approxi-
mately 31 million GSV images at 7.8 million intersec-
tions. The indicators were selected through an iterative
process of considering what the literature has found to

be important built environment characteristics and what
is feasible for computer vision models. Neighborhood
walkability [18–20], neighborhood disorder [21–23], and
mixed land use [24–26] have been identified in the
literature as being important for health outcomes.
The presence of crosswalks is a classic indicator of

walkability and was included to measure its influence on
health behaviors and related health outcomes. While we
also examined sidewalks, in urban areas, the prevalence
of sidewalks is high and thus there is less variability with
this indicator.
The impact of mixed land use on travel behavior is

well-studied. Areas that are single-use residential often
lead individuals to use motorized transport to get to des-
tinations. Conversely, areas that blend a mixture of resi-
dential, commercial and leisure destinations might allow
individuals to walk or bike [27] and be related to greater
access to resources, physical activity and better health.
We operationalized mixed land use such that labeling
images was feasible for both humans (human coders
manually labeled images to provide training data to the
computer vision models) and machines. Computer
vision models struggle with indicators that are too
common or too rare (e.g., prevalence of 90% or con-
versely 10%) because models can merely label all images
as having the absence or presence of an indicator and be
right most of the time. While looking through images,
we noticed that an image could be classified as having
only homes or a blend of homes and other building
types. Thus, non-single-family home was created to dis-
tinguish between purely residential places and places
with different building types. The prevalence of this indi-
cator with a median value of around 30% nationally
suited the capacity of computer vision models.
We operationalized street greenness as street trees and

street landscaping comprising at least 30% of the image.
A cut-point of approximately 30% was utilized to assist
with inter-rater reliability in manual annotations of
street greenness. Moreover, we found that most images
had some street landscaping and aimed to create a
neighborhood indicator to distinguish between ample
versus sparse street landscaping.
From images, we also extracted the presence of visible

wires. The literature on visible wires is nascent and more
of this work has been done abroad, for instance in Rio
de Janeiro, where the wires represent both an unsightly
presence and a possible electrocution/electrical fire risk
[28]. In the United States, visible wires have mainly a
visual impact on the landscape. We chose this indicator
to further the literature and to investigate whether
visible wires as an indicator of physical disorder might
have links to important health outcomes. Other neigh-
borhood indicators of physical disorder were considered,
such as litter or trash. However, we found that computer
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vision models struggled with small objects. In addition,
these objects were also difficult to label by humans as
well (low inter-rater reliability). Thus, while litter is a
classic built environment feature for neighborhood dis-
order, we could not include this indicator.
Methods for identifying street intersections and

retrieving and labeling GSV images have been published
previously [14, 15]. Briefly, latitude and longitude data
coordinates for all U.S. street intersections were
obtained from the 2017 Census Topologically Integrated
Geographic Encoding and Referencing (TIGER) data.
Intersections were identified with the PostgreSQL (an
open-sourceobject-relational database system) with the
PostGIS plugin [29]. GSV images of the intersections
were then retrieved via Google’s Street View Image
Application Programming Interface (API) using these
coordinates. For each pair of coordinates corresponding
with an intersection, four images (with the camera facing
north, east, south, and west) were obtained to capture a
360-degree view of the environment. Image resolution
was 640 × 640 pixels. Images were processed using
trained Visual Geometry Group (VGG-16 model) deep
convolutional networks [30, 31] (previously detailed by
Nguyen et al. [15]) to identify the five built environment
features of interest (one network per feature). Accuracy
of the recognition tasks (comparing the images labeled
using this machine learning approach compared with
assessment by a human reviewer) ranged from 85 to
93%, and these figures were consistent with a separate,
semi-supervised learning approach.
Census tracts are small, relatively permanent statistical

subdivisions of a county or equivalent entity, roughly
equivalent to a neighborhood. They are established by
the U.S. Census Bureau to provide a stable set of geo-
graphic units for the presentation of statistical data. Cen-
sus tracts generally have a population size between 1200
and 8000 people, with an optimum size of 4000 people
[32]. The image values of built environment indicators
were then aggregated to produce small-area summaries
at the census tract level. Each census tract was given an
aggregate score ranging from 0 to 1, representing the
percentage of GSV images in which the feature was
detected. For example, if 50% of the GSV images for a
given census tract contained visible wires, that tract was
assigned a score of 0.5 for the visible wire indicator.

500 Cities data for health outcomes
Data on census tract-level health outcomes were obtained
from the 500 Cities Project, a partnership between the
Centers for Disease Control and Prevention (CDC), the
Robert Wood Johnson Foundation, and the CDC Founda-
tion [33]. The data contain information on chronic disease
measures, including health outcomes, public health pre-
vention metrics, and health-related behaviors, on 500

cities and approximately 28,000 census tracts. Estimates
are derived from the Behavioral Risk Factor Surveillance
System (BRFSS), Census Bureau 2010 census population
data, and American Community Survey (ACS) five-year
estimates, and are calculated using small-area estimation
methods. Behaviors and outcomes assessed include obes-
ity, diabetes, frequent physical distress, frequent mental
distress, physical inactivity and binge drinking. We
hypothesized that non-single-family homes, crosswalks,
and street greenness would be associated with decreased
prevalence of all outcomes. Conversely, single-lane roads
and visible wires would be associated with increased
prevalence of all health-related outcomes.

American Community Survey data for demographic and
socioeconomic characteristics
Census tract-level information on demographics and
socioeconomic position were included in the analysis to
adjust for potential confounding of the relationship
between the built environment and health-related behav-
iors and outcomes. Data on covariates were derived from
ACS 2013 5-year estimates. Demographic covariates
included median age, percent under age 18 and over age
65, percent white, percent of Hispanic ethnicity, and per-
cent female. To control for socioeconomic position, we
used a composite economic factor for socioeconomic
disadvantage derived from percent single-parent house-
holds, unemployment level, percentage of families living
in poverty, high school graduation rate, and percent of
residents with some college education. The composite
factor was created by conducting a factor analysis of
these five variables, using varimax rotation, and taking
the first factor. We used a similar approach in previous
GSV analyses [14, 15]. We hypothesized that socioeco-
nomic disadvantage would be associated with increased
prevalence in these outcomes.

Analytic approach
To allow for nonlinearities in the association between
built environment characteristics and health and to ease
presentation of study results, built environment indica-
tors were grouped into high, moderate, and low tertiles,
with one third of the census tracts grouped into each
tertile for each indicator. Health outcomes were mod-
eled as continuous variables. Adjusted linear regression
models were used to estimate differences in the preva-
lence of the selected health outcomes by tertile of each
built environment indicator, using the lowest tertile as
the reference group. Models were fit for outcomes and
built environment indicators first, then adding for demo-
graphic characteristics, and finally including both demo-
graphics, median income, and the composite economic
factor for socioeconomic disadvantage. Each health out-
come was modeled separately. Statistical significance for
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differences between tertiles was assessed at the α = 0.05
level. Analyses were conducted using Stata IC15 (Stata-
Corp LP, College Station, TX).

Results
Health outcomes were modeled for 20,121 census tracts
with complete data on health outcomes and GSV-
derived built environment indicators, representing 416
cities in all 50 states and the District of Columbia.
Approximately half of the census tracts were in 40 cities,
and two-thirds were in 95 cities. The cities and states
with the largest number of census tracts can be seen in
Table 1.
Table 2 shows summary statistics for the median

scores for GSV-derived built environment indicators
(the percentage of images in a given census tract with
the indicator of interest) by city, for those cities with
ten or more census tracts. Street greenness scores
ranged from 0.23 to 0.97, crosswalk scores from < 0.01
to 0.53, building type (not a single-family home) scores
from 0.08 to 0.98, single-lane road scores from 0.09 to
0.80, and visible wire scores from 0.29 to 0.96. The
states with the highest median census tract scores for
street greenness were South Carolina, North Carolina,
and Georgia. For crosswalks, the top states (after the
District of Columbia, which had the highest median
census tract score for this indicator) were New York,
New Jersey, and California.
We modeled associations between GSV-derived built

environment indicators, demographic and socioeco-
nomic covariates, and health outcomes and behaviors
from the 500 cities data set. Table 3 displays the analysis
results. Street greenness was associated with decreased

prevalence of physical distress (for the third tertile only),
mental distress, and binge drinking, but increased preva-
lence of obesity. Visible wires (a possible indicator of
physical disorder) were associated with increased preva-
lence of all health-related behaviors and outcomes
except for obesity, which showed a negative association
(for the third tertile only). Building types other than
single-family homes (an indicator of mixed land use)
were associated with decreased prevalence of obesity,
diabetes, and inactivity, but with increased levels of men-
tal distress (for the second tertile only) and binge drink-
ing (for the third tertile only). More single-lane roads
(an indicator of less urban development) were associated
with higher prevalence of obesity, diabetes, physical dis-
tress (for the third tertile only) and decreased prevalence
of mental distress (for the second tertile only) and binge
drinking.
Relationships with crosswalks were complex. Cross-

walks (an indicator of walkability) exhibited a U-shaped
relationship for obesity, diabetes and physical inactivity.
Areas with the most crosswalks (third tertile) experi-
enced a reduction in obesity, diabetes and physical activ-
ity. However, the second tertile experienced higher rates
of obesity, diabetes and physical activity compared to the
first (lowest) tertile. Additionally, crosswalks were associ-
ated with higher prevalence of both physical and mental
distress, as well as binge drinking.
Socioeconomic disadvantage was negatively associated

with binge drinking prevalence and positively associated
with all other health-related behaviors and outcomes.
When examining demographic characteristics (data
shown in Additional file 1: Table S1), census tracts with
a higher proportion of women was associated with

Table 1 States and cities with the largest number of census tracts

State Census tracts Percent State City Census tracts Percent

California 4162 20.68% New York New York 1808 8.99%

Texas 2269 11.28% California Los Angeles 933 4.64%

New York 1996 9.92% Illinois Chicago 718 3.57%

Illinois 1073 5.33% Texas Houston 584 2.90%

Florida 1010 5.02% Pennsylvania Philadelphia 381 1.89%

Michigan 651 3.24% Texas San Antonio 326 1.62%

Pennsylvania 614 3.05% California San Diego 290 1.44%

North Carolina 557 2.77% Texas Dallas 279 1.39%

Colorado 556 2.76% Michigan Detroit 268 1.33%

Washington 506 2.51% Hawai’i Honolulu 236 1.17%

Ohio 426 2.12% Wisconsin Milwaukee 208 1.03%

Georgia 395 1.96% California San Jose 206 1.02%

Massachusetts 394 1.96% Texas Austin 204 1.01%

Tennessee 356 1.77% Maryland Baltimore 200 0.99%

Indiana 355 1.76% North Carolina Charlotte 200 0.99%
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decreased prevalence of all behaviors and outcomes
except for binge drinking, with which there was no asso-
ciation. A higher proportion of African American resi-
dents was associated with increased prevalence of
obesity, diabetes, and inactivity, and with decreased
prevalence of mental distress and binge drinking.

Discussion
Structural determinants, including the built environ-
ment, can influence the health outcomes and behaviors
of the populations that live among them. This analysis
modeled the association between health outcomes and
built environment indicators derived from Google Street
View images for urban and suburban neighborhoods,
given the composition of the 500 Cities Project data.
Our use of GSV-derived indicators of built environment
features contributes to a growing body of work that has
focused on developing a wide variety of methods to
measure these associations, particularly in urban areas
[34–38]. These include GIS-measured street intersection
density [34, 36, 38], residential density, land-use mix
[38], and counts, population ratios, and densities of fea-
tures of interest, including parks, intersections, subway
stations, and green spaces [35, 37]. These analyses have
found similar results to ours regarding both poverty and
built environment features and health-related behaviors
that affect obesity. For example, previous analyses have
found inverse associations between neighborhood walk-
ability and sedentary behavior [34, 38], obesity [35], dia-
betes, and hypertension [36]. Associations have also
been observed between socioeconomic disadvantage and
increases in adverse health outcomes such as sedentary
behavior [38] and poor hypertension control [36].
We found that single lane roads, which may indicate

lower levels of urban development (suburban areas)
which structures fewer amenities where people live, were
associated with increased diabetes and obesity. This is
consistent with some of our prior work utilizing GSV
images, where we found that indicators of greater urban
development, such as crosswalks and mixed residential
use, are associated with decreases in many adverse
health outcomes, but slight increases in distress and
binge drinking. For example, previous work using Goo-
gle’s computer vision API to automatically label Google
Street View images found that areas characterized as

rural (limited infrastructure) had higher obesity, dia-
betes, fair/poor self-rated health, premature mortality,
physical distress, physical inactivity and teen birth rates
but lower rates of excessive drinking [14]. Similarly, we
also found that non-single-family home buildings (an
indicator of having a mixture of residential and commer-
cial buildings nearby and thus dense offerings of services
and amenities) were associated with decreased obesity,
diabetes and inactivity.
We observed a complex relationship between cross-

walk score tertiles and obesity, diabetes, and inactivity,
with the second tertile associated with an increased
prevalence of these outcomes while the third tertile was
associated with decreased prevalence. This relationship
was observed in the univariate model (which were fit
with only the crosswalk indicator and the outcome; data
not shown) and persisted after adding covariates for
demographic factors (data not shown) and socioeco-
nomic disadvantage (Table 3) for all three outcomes.
However, when we fit the same models using the cross-
walk indicator as a linear variable, the indicator was
negatively associated with all three outcomes (obesity −
7.37, 95% CI − 7.75 to − 7.00; diabetes − 0.91, 95% CI −
1.08 to − 0.73; inactivity − 0.92, 95% CI − 1.36 to − 0.49).
The crosswalk indicator was substantially more right-
skewed than any of the other GSV-derived indicators, so
this relationship observed between tertiles may be a
function of the unique distribution of this variable
(Fig. 1).
The presence of plants has been tied to lower per-

ceived stress and mental health [25]. We saw similar
trends in our analysis, with street greenness associated
with decreased prevalence of physical and mental dis-
tress, as well as decreased binge drinking. However, it
was also associated with increased obesity. This may be
due to the living situations and family structures of those
living in greener areas. For example, if these are more
suburban areas with larger proportions of families with
children, the residents may be more sedentary than
those who live in denser areas with more single people
and greater levels of mixed land use. This could be sup-
ported by other associations observed, such as the asso-
ciations seen between non-single-family home building
types and decreased prevalence of obesity, diabetes, and
inactivity; the relationship between single-lane roads,

Table 2 Summary statistics for GSV-derived built environment indicator median scores by city

GSV-Derived Indicator Minimum Lower Quartile Median Upper Quartile Maximum

Street Greenness 0.227 0.722 0.821 0.887 0.974

Crosswalk 0.002 0.072 0.111 0.196 0.528

Not Single-Family Home 0.076 0.224 0.318 0.455 0.984

Single-Lane Road 0.033 0.389 0.532 0.618 0.804

Visible Wires 0.287 0.574 0.668 0.777 0.961
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Table 3 Built environment predictors of health-related behaviors and outcomes

Street Greenness Crosswalk

Coef. SE p 95% CI Coef. SE p 95% CI

Obesity

Tertile 2 0.797 0.095 < 0.001 0.611 0.983 * 1.318 0.225 < 0.001 0.876 1.760 *

Tertile 3 0.929 0.117 < 0.001 0.700 1.157 * −0.813 0.219 < 0.001 −1.242 − 0.384 *

SEP 2.345 0.081 < 0.001 2.187 2.503 2.469 0.079 < 0.001 2.313 2.624

Diabetes

Tertile 2 0.002 0.038 0.961 −0.073 0.077 0.354 0.087 < 0.001 0.184 0.524 *

Tertile 3 0.009 0.046 0.852 −0.082 0.099 −0.174 0.085 0.040 −0.340 −0.008 *

SEP 1.665 0.036 < 0.001 1.594 1.736 1.705 0.036 < 0.001 1.634 1.776

Physical Distress

Tertile 2 −0.062 0.041 0.128 −0.142 0.018 0.507 0.096 < 0.001 0.320 0.695 *

Tertile 3 −0.143 0.049 0.004 −0.239 − 0.047 * 0.438 0.093 < 0.001 0.256 0.621 *

SEP 2.535 0.038 < 0.001 2.461 2.608 2.540 0.038 < 0.001 2.466 2.614

Mental Distress

Tertile 2 −0.075 0.038 0.047 − 0.149 − 0.001 * 0.499 0.090 < 0.001 0.323 0.676 *

Tertile 3 −0.124 0.046 0.007 −0.214 − 0.034 * 0.559 0.087 < 0.001 0.388 0.730 *

SEP 2.230 0.033 < 0.001 2.165 2.294 2.224 0.033 < 0.001 2.159 2.289

Physical Inactivity

Tertile 2 0.001 0.090 0.995 −0.177 0.178 0.502 0.191 0.009 0.127 0.877 *

Tertile 3 −0.019 0.106 0.860 −0.227 0.189 −1.124 0.188 < 0.001 −1.494 − 0.755 *

SEP 4.499 0.078 < 0.001 4.346 4.652 4.630 0.078 < 0.001 4.478 4.782

Binge Drinking

Tertile 2 −0.721 0.064 < 0.001 − 0.847 − 0.594 * 1.577 0.138 < 0.001 1.307 1.848 *

Tertile 3 −0.912 0.083 < 0.001 −1.074 − 0.749 * 3.005 0.133 < 0.001 2.743 3.266 *

SEP −0.873 0.055 < 0.001 − 0.980 − 0.765 − 0.968 0.053 < 0.001 −1.073 − 0.864

Not Single-Family Home Single Lane Road

Coef. SE p 95% CI Coef. SE p 95% CI

Obesity

Tertile 2 −0.753 0.125 < 0.001 −0.999 − 0.508 * 2.202 0.096 < 0.001 2.014 2.389 *

Tertile 3 −2.535 0.127 < 0.001 −2.783 −2.286 * 3.378 0.110 < 0.001 3.162 3.594 *

SEP 2.489 0.080 < 0.001 2.333 2.645 2.501 0.078 < 0.001 2.348 2.654

Diabetes

Tertile 2 −0.199 0.049 < 0.001 −0.295 −0.104 * 0.308 0.040 < 0.001 0.231 0.386 *

Tertile 3 −0.437 0.051 < 0.001 −0.537 − 0.338 * 0.722 0.045 < 0.001 0.634 0.810 *

SEP 1.694 0.036 < 0.001 1.623 1.766 1.703 0.036 < 0.001 1.632 1.774

Physical Distress

Tertile 2 0.001 0.052 0.979 −0.101 0.103 0.048 0.042 0.257 −0.035 0.131

Tertile 3 −0.086 0.054 0.109 −0.191 0.019 0.269 0.048 < 0.001 0.175 0.362 *

SEP 2.546 0.037 < 0.001 2.473 2.620 2.552 0.037 < 0.001 2.479 2.625

Mental Distress

Tertile 2 0.110 0.049 0.026 0.013 0.206 * −0.129 0.039 0.001 −0.206 −0.052

Tertile 3 0.096 0.050 0.057 −0.003 0.195 § −0.079 0.044 0.076 −0.165 0.008 §

SEP 2.229 0.033 < 0.001 2.165 2.294 2.228 0.033 < 0.001 2.163 2.292
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which are more prevalent in suburban areas, with
increased prevalence of diabetes and obesity; and the
association between crosswalks and increased binge
drinking prevalence (and, similarly, the association
between single-lane roads and decreased prevalence of
binge drinking).

Study strengths and limitations
Characterizing features of the built environment in the
past has been time-consuming and cumbersome,

typically requiring researchers to rely on self-report data
from residents in neighborhood surveys or to conduct
in-person audits that require auditors to physically rec-
ord and detail the locations and features of indicators of
interest for the desired geographic area. Our analysis
expands on recent technological advances in computer
vision and deep learning tools to create indicators for a
high volume of images, allowing us to expand on previ-
ous work assessing health outcomes in relation to the
built environment [14, 15]. To our knowledge, this is the

Table 3 Built environment predictors of health-related behaviors and outcomes (Continued)

Physical Inactivity

Tertile 2 −0.637 0.110 < 0.001 −0.853 − 0.421 * 0.767 0.095 < 0.001 0.581 0.953

Tertile 3 −0.950 0.115 < 0.001 −1.175 −0.726 * 1.896 0.104 < 0.001 1.693 2.100

SEP 4.558 0.078 < 0.001 4.405 4.711 4.599 0.078 < 0.001 4.447 4.751

Binge Drinking

Tertile 2 0.140 0.087 0.107 −0.030 0.311 −0.720 0.066 < 0.001 −0.850 − 0.590 *

Tertile 3 1.189 0.087 < 0.001 1.019 1.359 * −0.901 0.075 < 0.001 −1.048 −0.754 *

SEP −0.928 0.054 < 0.001 −1.034 −0.821 −0.890 0.054 < 0.001 −0.997 −0.784

Visible Wires

Coef. SE p 95% CI

Obesity

Tertile 2 0.191 0.125 0.127 −0.054 0.436

Tertile 3 −0.415 0.120 0.001 −0.651 −0.180 *

SEP 2.385 0.082 < 0.001 2.226 2.545

Diabetes

Tertile 2 0.218 0.047 < 0.001 0.127 0.309 *

Tertile 3 0.514 0.046 < 0.001 0.423 0.605 *

SEP 1.585 0.037 < 0.001 1.512 1.657

Physical Distress

Tertile 2 0.272 0.051 < 0.001 0.173 0.371 *

Tertile 3 0.738 0.050 < 0.001 0.641 0.836 *

SEP 2.423 0.038 < 0.001 2.349 2.496

Mental Distress

Tertile 2 0.171 0.049 0.001 0.074 0.267 *

Tertile 3 0.471 0.047 < 0.001 0.379 0.564 *

SEP 2.159 0.033 < 0.001 2.094 2.224

Physical Inactivity

Tertile 2 0.688 0.108 < 0.001 0.478 0.899 *

Tertile 3 1.001 0.109 < 0.001 0.788 1.214 *

SEP 4.356 0.079 < 0.001 4.201 4.510

Binge Drinking

Tertile 2 0.487 0.090 < 0.001 0.310 0.664 *

Tertile 3 0.732 0.084 < 0.001 0.567 0.896 *

SEP −0.941 0.056 < 0.001 −1.050 −0.831

*p < 0.05
§p < 0.10
SEP Composite economic factor for socioeconomic position
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first study examining these associations at the census
tract level for a large number of U.S. cities.
This study is subject to several limitations. First, the

analysis is an ecological one, as all of the data used to
measure associations were aggregated. Thus, while the
results may be used to inform policies or programs de-
signed to address health-related outcomes at the popula-
tion level (since that is the level at which the outcomes
were measured), they should not be applied to programs
to address individual behaviors or health outcomes. This
gap can be addressed by work linking built environment
indicators to individual health data, such as the work
done by Le-Scherban et al. [36], which will allow associ-
ations to be measured while controlling for individual-
level covariates. Second, the census tracts included in
the analysis were limited to those with health-related be-
havior and outcome data from the 500 Cities Project,
and so can only be generalized to urban areas in the U.S.
Previous studies have shown major disparities in health
outcomes between residents of urban versus rural areas
[39]. Additional work is needed to better understand
how built environment indicators may impact the health
of residents of rural neighborhoods.
Third, there are also limitations inherent with the

methods used to construct the built environment indica-
tors. Because GSV images are taken at intersections, they
cannot capture all information on the indicators of inter-
est. Finally, images do not capture all of the features of
the neighborhood environment that may impact health
outcomes, such as traffic congestion and perceived
safety, nor do they allow us to assess how the built
environment changes over time. Additional sources of
data should be identified that provide this information.

Conclusions
The impact of the neighborhood’s built environment
features on the people who live in it has been a focus of
both neighborhood residents and social epidemiologists
and, more recently, policy makers and advocates.
Accompanying this interest is a growing interest in novel
technological methods to characterize and measure
these associations. Our analysis of the impact of built
environment indicators on health outcomes and behav-
iors in cities, where 81% of Americans live [40], suggests
that higher levels of urban development, such as mixed
land use, multi-lane roads, crosswalks, and less greenery,
have mixed effects on health, showing decreases in some
adverse outcomes such as obesity, diabetes, and physical
inactivity, with increases in others such as physical and
mental distress and binge drinking. Visible wires were
used as an indicator of physical disorder and were con-
nected with higher prevalence of diabetes, physical and
mental distress, physical inactivity, and binge drinking.
Additionally, our results add further evidence that

Fig. 1 Distribution of built environment indicators
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socioeconomic distress has adverse impacts on multiple
physical and mental health outcomes. These insights on
economic inequality and the built environment can be
used by public health officials, advocates, and policy
makers to inform work to address these structural
factors that impact public health.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12889-020-8300-1.

Additional file 1. Built environment predictors of health-related behav-
iors and outcomes, with full regression results for demographic
covariates.
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