Guo et al. BMC Public Health (2020) 20:135
https://doi.org/10.1186/512889-020-8243-6

BMC Public Health

RESEARCH ARTICLE Open Access

An artificially simulated outbreak of a
respiratory infectious disease

Check for
updates

Zuiyuan Guo', Shuang Xu', Libo Tong', Botao Dai?, Yuandong Liu' and Dan Xiao®

Abstract

the epidemic were quantitatively analysed.

respectively.

Background: Outbreaks of respiratory infectious diseases often occur in crowded places. To understand the pattern
of spread of an outbreak of a respiratory infectious disease and provide a theoretical basis for targeted
implementation of scientific prevention and control, we attempted to establish a stochastic model to simulate an
outbreak of a respiratory infectious disease at a military camp. This model fits the general pattern of disease
transmission and further enriches theories on the transmission dynamics of infectious diseases.

Methods: We established an enclosed system of 500 people exposed to adenovirus type 7 (ADV 7) in a military
camp. During the infection period, the patients transmitted the virus randomly to susceptible people. The spread of
the epidemic under militarized management mode was simulated using a computer model named “the random
collision model”, and the effects of factors such as the basic reproductive number (Ry), time of isolation of the
patients (TOI), interval between onset and isolation (I0l), and immunization rates (IR) on the developmental trend of

Results: Once the Ry exceeded 1.5, the median attack rate increased sharply; when Ry = 3, with a delay in the TO|,
the attack rate increased gradually and eventually remained stable. When the IOl exceeded 2.3 days, the median
attack rate also increased dramatically. When the IR exceeded 0.5, the median attack rate approached zero. The
median generation time was 8.26 days, (95% confidence interval [Cl]: 7.84-8.69 days). The partial rank correlation
coefficients between the attack rate of the epidemic and Ry, TOI, IO, and IR were 0.61, 0.17, 045, and — 0.27,

Conclusions: The random collision model not only simulates how an epidemic spreads with superior precision but
also allows greater flexibility in setting the activities of the exposure population and different types of infectious
diseases, which is conducive to furthering exploration of the epidemiological characteristics of epidemic outbreaks.
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Background

Respiratory infectious diseases, especially strains of influ-
enza A and ADV such as HIN1, H7N9, ADV 7, and ADV
55, often lead to worldwide outbreaks and seriously en-
danger human health. For example, from late April to the
end of 2009, the local HINT1 flu epidemic peaked in most
countries, and approximately 70,000 laboratory-confirmed
hospitalized patients and 2500 fatal cases were observed
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across 19 countries or administrative regions [1, 2]. Epi-
demics of ADV infection often occur in healthy children
or adults in closed or crowded settings (particularly in
communities, military recruit training centres, hospitals,
and chronic care facilities) worldwide [3—6]. Fatality rates
for untreated severe adenovirus-associated pneumonia or
disseminated disease may exceed 50% [7].

ADV 7 outbreaks are very common among military
trainees in many countries [8—13], most likely due to the
close living quarters of trainees, the persistence of ade-
noviruses in the environment when infectious agents
from epidemic areas enter the camp, the susceptibility of
the general population to some variants [14], and low
vaccine coverage [15]. These diseases can spread to
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create a large-scale outbreak in a very short period of
time. Some viral strains can cause serious intrapulmon-
ary infection and even lead to death. Therefore, deter-
mining the precise timing for disease control and
adopting comprehensive scientific measures to control
the spread of an epidemic are demanding challenges fa-
cing the public health systems of every country. To
achieve the objectives discussed above, theoretical re-
search on the dynamics of epidemic transmission is
needed, and the time of control and the impact of mea-
sures on the attack rate must be quantitatively analysed.

Mathematical models of infectious diseases can help
deepen our understanding of the epidemiological distribu-
tion of infectious diseases. Currently, the most commonly
used model is the Susceptible-Exposed-Infectious-Recov-
ered (SEIR) model, from which many models have been
derived and widely adopted to analyse infectious out-
breaks of Ebola, tuberculosis, and influenza, among other
diseases [16—-18]. Indeed, the SEIR model has proven to be
critical for revealing the epidemiological characteristics of
infectious diseases. However, this model has some limita-
tions in the analysis of outbreaks of respiratory infectious
diseases. For example, SEIR-based models frequently as-
sume that the effective contact rate (the number of people
infected by one infector within the time unit when all ex-
posed persons are susceptible) is a constant or a continu-
ous function [16—18], i.e., that infectors transmit the virus
continuously. In reality, these contacts occur randomly,
and time intervals exist between infection events. Further-
more, according to the SEIR model, as long as someone
within the population is infected and the effective contact
rate is greater than 0, an outbreak will be triggered, and
the disease will spread continuously. However, again, in
reality, even if someone in the population becomes in-
fected, an epidemic outbreak may not occur, and even
without human intervention, outbreaks typically end be-
fore all susceptible people become infected. For example,
Justin L reported that 35% of students had an influenza-
like illness during an HIN1 influenza outbreak in a middle
school [19]. Additionally, the SEIR model assumes that all
infectors display the same epidemiological characteristics
in their effective contact rates, incubation periods, symp-
tom duration, and treatment duration, but these factors
vary across patients. For example, Justin L reported that
the 95% confidence interval was between 1.0 and 1.8 for
the median incubation period for confirmed HIN1 influ-
enza and between 1.7 and 2.6 for the development of
symptoms [19]. Another factor to consider is that the
activities of the exposure population are not constant.
For example, soldiers in military camps train together
during the day, and at night, they rest in the dormi-
tory with their squad unit. Thus, the close contacts of
the infectors change over time, but the SEIR model
fails to reflect this element.
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To overcome the limitations of the SEIR model, we
sought to establish an individual-level stochastic research
model to simulate the spread dynamics of epidemic out-
breaks in the real environment. Such models have been used
in teaching and research related to the epidemiology of in-
fectious diseases. For example, Eichner M used stochastic
computer simulations to examine whether case isolation,
contact tracing, and surveillance can extinguish smallpox
outbreaks in highly susceptible populations within less than
half a year without causing more than 550 secondary cases
per 100 index cases [20]. Salathe M modelled the spread of
an infection in a “small-world” network based on computer
simulations to assess how a personal opinion about vaccin-
ation affects the probability of disease outbreak. The study
found that the inclusion of opinion formation led to fre-
quent outbreaks in a homogeneously vaccinated population
with vaccination coverage of less than 70% [21]. Williams A
employed a discrete time simulation environment to model
a virtual town that experienced a bioterrorist attack of pneu-
monic plague and assessed the attack rate under the influ-
ence of a mass treatment centre and home isolation. They
found that an attack rate of 93% was approximately equal to
the expected theoretical attack rate if Ry=2.85 [22]. In
addition, Cremin I presented a teaching exercise in which
an infectious disease outbreak was simulated over a five-day
period and found substantial variation in the cumulative at-
tack rate, with between 26 and 83% of the students unin-
fected at the end of each outbreak [23]. Although these
studies employed the concept of individual-level and ran-
dom contact among people, they did not fully account for
certain factors, such as differences in patient contact behav-
iour during day and night, the time of isolation, and the dur-
ation from onset to isolation, which influences morbidity.
Therefore, a stochastic model for the prevention and control
of outbreaks of respiratory infectious diseases in a military
camp is still lacking.

We chose to use ADV 7, which has high incidence
and poses serious health threats in the army, to establish
a random collision model that simulates the complete
occurrence and development of an ADV 7 outbreak with
effective intervention measures. This model not only
provided greater flexibility in setting the scope of the
population’s activities and enabled the depiction of the
transmission network of the outbreak but also permitted
quantitative analysis of the impact of intervention mea-
sures, thereby providing a scientific basis for targeted
prevention and control of the outbreak.

Methods

Data sources

First, to construct the model, we needed to acquire the
necessary parameters, which were derived from a real
outbreak in a boot camp. In November 2018, we con-
ducted an epidemiological investigation and analysed
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prevention and control management of an ADV 7 out-
break in northeastern China. Northern Theater CDC is
responsible for investigating and controlling public
health emergencies.

The probability distributions and the parameters of
the incubation period (the interval from infection to on-
set of disease), the generation period (the interval be-
tween successive onsets of symptoms in a chain of
transmission), the symptom duration (the duration of a
patient’s clinical symptoms), and the isolation treatment
duration (the duration of isolation treatment for a pa-
tient) were calculated (Table 1). These parameters were
applied directly to the model, and the method of calcula-
tion and all data generated or analysed during this study
are provided in the Additional file 1.

Model establishment

Second, we established the model according to the fol-
lowing disposal method of respiratory infectious disease
outbreaks in Chinese military camps. At the early stage
of an outbreak, patients are often treated for the com-
mon cold at a clinic in the camp and are still in normal
contact with other exposed individuals during treatment,
which delays the opportunity for timely isolation and
control of the epidemic. When the outbreak reaches a
certain level, the CDC will participate in disease control.
Patients whose symptoms appeared before the TOI but
are still exhibiting symptoms are quickly sent to the hos-
pital. The body temperatures of the exposed individuals
are monitored several times daily, and those who de-
velop fevers are quickly sent to the hospital. Patients re-
turn to the camp once they recover. The relationships
among the time of attack, time of recovery, and TOI of
the patients are shown in Fig. 1.

Based on the above description, two enclosed and in-
terconnected systems were simulated in the outbreaks.
The first was the military camp where disease transmis-
sion originated. Each patient in the model is considered
a mass point that walks randomly during the infection
period. When patients have contact with other suscep-
tible people, these people become infected. After an in-
cubation period, the infected individuals become
patients and transform into new mass points. The colli-
sions continue until no new mass points are generated.
Patients are considered infectious only when clinical

Table 1 Parameters related to the outbreak characteristics of ADV 7
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symptoms begin to appear, and thus the infection period
is equivalent to the symptom duration. Each patient
transmits the virus at a certain rate through close con-
tact with susceptible people, and the time intervals be-
tween infected individuals successively infected by one
patient are independent of each other and exponentially
distributed.

The second system was the hospital where the isola-
tion treatments were performed. Since medical
personnel at the hospital take strict protective measures
to prevent nosocomial infections, patients should not
transmit the disease to other susceptible people during
the treatment duration. Once patients have recovered,
they are sent back to the camp to continue their activ-
ities with other exposed people. Since recovered individ-
uals have already produced specific antibodies, they will
not become infected again.

Disease transmission network

In addition, we analysed the transmission network of
ADV 7 and mapped it using Gephi 0.9.2 under the as-
sumption that the entire exposed population was suscep-
tible and that patients could transmit viruses to
susceptible individuals without isolation treatment.

Factors affecting the outbreak

The model we envisaged was simulated on a computer
and was based on a description of the epidemic. In our
model, we set up a total of 50 squad units with 10
people in each unit. Military drills are from 06:00 to 18:
00 h daily; during these times, all subjects gather to par-
ticipate in training or learning, and the virus is freely
spread among the crowd. By contrast, during non-
military drill periods, the subjects rest in the dormitory
with their squad unit, and the virus will spread only
within the dormitory. Since all soldiers are male, are ap-
proximately 20 years old, and meet a unified standard of
physical fitness, we considered the population character-
istics to be homogeneous. The effective contact rate, in-
cubation period, symptom duration, and treatment
duration for each patient were randomly sampled ac-
cording to the probability distributions presented in
Table 1. In addition, immunization of the exposed popu-
lation can have an impact on development of the out-
break. We preestablished that a portion of the exposed

Types

Probability distribution

Parameters

Incubation period
Generation period
Symptom duration
Isolation treatment duration

Basic reproductive number

Log-normal distribution
Weibull distribution

Log-logistic distribution
Log-logistic distribution

Normal distribution

mean =525, sd =0.94
mean =7.36, sd =247
mean =6.88, sd =1.83
mean=11.01, sd =250
mean =5.09, sd =0.26
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population gained immunity to the virus through vaccin-
ation and that these individuals are randomly distributed
among the population.

Generation period

The generation period was also calculated. According to
the literature, the generation period is consistent with a
Weibull distribution [19]. Therefore, we estimated this
index directly on the basis of the probabilistic character-
istic using a bootstrap method (1000 iterations of ran-
dom sampling). The specific calculation methods are
described in the Additional file 1.

Sensitivity analyses

Finally, we performed sensitivity analyses of four signifi-
cant parameters to assess the impact on the attack rate.
Partial rank correlation coefficients (PRCCs) and Latin
hypercube sampling (LHS) were used to conduct sensi-
tivity analyses. PRCC-LHS is an efficient and reliable
sampling-based sensitivity analysis method that provides
a measure of monotonicity between a set of parameters
and the model output after removal of the linear effects
of all parameters except the parameter of interest [24,
25]. Each parameter interval (from 0.5 to 1.5 times the
average value of the parameters) was divided into N
smaller and equal intervals, and one sample was selected
randomly from each interval [24, 25]. A standard coeffi-
cient denoting the correlation between the parameter

and the model output was calculated. All analyses were
conducted using MATLAB R2019a software (Math-
Works, USA, 2019).

Results

Disease transmission network

The transmission network is shown in Fig. 2. The black
dots with connecting lines represent patients with infec-
tious connections (as either an infector or an infected in-
dividual), totalling 328 people; the dispersed dots around
the edge of the graph represent individuals who were ex-
posed but uninfected. The first patient is marked in red;
he infected a total of three susceptible people during the
infection period.

Factors affecting the outbreak

Ry As demonstrated in Fig. 3a, when R, increased, the
attack rate increased correspondingly. The maximum at-
tack rate increased continuously from 0.3 to 0.96. The
median attack rate remained close to 0 when R, was be-
tween 1 and 1.5 but then increased sharply as R, in-
creased, reaching a maximum value of 0.93 when R, was
3. When the number of patients reaches three or more,
the disease is considered an outbreak. We calculated the
probability of an outbreak under different R, values and
found that it rose from close to 0.5 to 0.93. Figure 4a
shows that when R, was equal to 3, 3.5, and 4, the peak
values of the median growth rate (the number of new
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Fig. 2 The transmission network of the epidemic outbreak. Legend: Black dots indicate exposed individuals; the red dot indicates the first
infector; and lines represent connections between the infector-infected pairs
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patients per day) were achieved on the 50th day (13 pa-
tients), the 46th day (16 patients), and the 41st day (19
patients), respectively, while the median cumulative
number of patients on the 120th day at those R, values
was 464, 479, and 488 people, respectively. We defined
the day that the first patient was detected as the 1st day.

TOI Fig. 3b shows that under the condition of Ry =3,
the probability of an outbreak increased slightly, from
0.85 to 0.9, and consistently stayed near 0.9. When the
TOI was on the 10th day, the probability of having more
than 10 patients was only 0.2, indicating that the out-
break was well under control. With a delay in the TOI,
the probability of having more than 10, 20, 40, or 80 pa-
tients increased. When the TOI was later than the 25th
day, an outbreak scenario in which more than 80 people
were infected began to emerge, indicating that a later
TOI leads to infection of more patients and conse-
quently to greater outbreaks. From the 50th day on-
wards, the attack rate of the epidemic stabilized and
remained at a high level. As demonstrated in Fig. 4b,
when the TOI was the 40th day and the 50th day, the
median growth rate peaked after 4 days (11 patients and

15 patients, respectively) and then dropped rapidly, with
corresponding median cumulative numbers of patients of
157 and 300, respectively. When the TOI was on the 60th
day, the median cumulative number of patients was 418.

101 Fig. 3c shows that when Ry was 3, the probability
of an outbreak rose from 0.32 to 0.92. The maximum at-
tack rate increased from 0.16 to approximately 0.95, and
the 75% quantile, median, and 25% quantile of the attack
rate began to increase drastically at days 1.5, 2.3, and
3.8, respectively, with all three approaching 0.9 on the
6th day. This result suggests that when the IOI is below
a certain threshold, the attack rate of the disease can be
controlled at a low level; however, once the 101 exceeds
the threshold, the attack rate will increase very quickly.
Figure 4c shows that when the TOI was on day 3, 3.5,
and 4, the growth rate of patients peaked on the 63rd
day (five patients), 58th day (seven patients), and 57th
day (nine patients), respectively, while the median cumu-
lative patient numbers were 357, 400, and 423,
respectively.

IR Again, at Ry=3, the probability of an outbreak
showed a continuous reduction from 0.92 to 0.56, as
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shown in Fig. 3d. At the same time, the maximum attack
rate was reduced from 0.96 to 0.2, and the 75% quantile,
median, and 25% quantile of the attack rate all dropped
from the original value of 0.92. When the IR exceeded
0.5, the median attack rate approached zero. As shown
in Fig. 4d, when the IR was 0.1, 0.15, and 0.2, the growth
rates for patient numbers peaked at the 56th day (10 pa-
tients), the 57th day (eight patients), and the 60th day
(seven patients), and the cumulative patient numbers
were 402, 370, and 336 patients, respectively.

Generation period
We obtained an average generation period of 8.28 days,

with a standard deviation of 2.78 days. Figure 5 shows
that the median was estimated to be 8.26 days (95% CI:

7.84—8.69 days).

Sensitivity analyses
Sensitivity analyses were performed to assess the rela-
tionships between the four indexes (Ry, TOI, IOI, IR)

and one output (attack rate). We obtained 500 samples
from a uniform distribution for each parameter range,
and the PRCCs for the four indexes were 0.61, 0.17,
0.45, and - 0.27, respectively. A value greater than 0 in-
dicates a positive correlation, and a value less than 0 in-
dicates a negative correlation. Values near -1 or+1
indicate that the parameter has a strong impact on the
output, whereas values closer to 0 indicate less effect on

the output result.

Discussion
In our study, we used an idea completely different from

the SEIR model. The random collision model has the
following specific advantages: 1. The model can more
precisely describe the process of epidemic transmission.
We used the individual subject as the study unit, and in
the programme, each patient’s file contains a record of
the times of infection, attack, isolation, and rehabilita-
tion; susceptible persons he might have infected; and
whether his range of activities was restricted during the
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Time (Days)

day and night. Not only is this approach conducive to in-  greater agreement with the transmission characteristics of
quiring about the disease development process in each pa-  an infectious disease. Contact between patients and sus-
tient, but the transmission chain of the infection can be ceptible persons is random rather than continuous. The
drawn, enabling in-depth analysis of the transmission path  effective contact rate, incubation period, treatment dur-
of an infectious disease in a crowd. 2. Randomization is in  ation, and immunity of the patients are also in accordance
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with a random distribution. We randomly sampled from
the probability distributions, shown in Table 1, that were
obtained from the actual epidemic situation and distrib-
uted to each patient. This sampling can ensure the au-
thenticity and scientific integrity of the research. 3. This
method can be extended to other infectious diseases and
their occurrence scenarios, e.g., tuberculosis outbreaks in
schools or the spread of HIV among gay men; we can also
set patient activities in programmes, such as in a school
where students attend classes during the day and return
home at night or board at the school. Furthermore, more
complex factors affecting epidemic transmission can be
integrated into the programme, providing flexibility and
diversity that the SEIR and other traditional models can-
not achieve.

Additionally, in the following four paragraphs, we dis-
cuss the impact of the four indicators, Ry, TOI, 101, and
IR, on the attack rate in the outbreak.

Overall, Ry, was positively correlated with the attack
rate at a PRCC of 0.61, which was the highest absolute
value among the four parameters included in the com-
parison, indicating that R, has the strongest influence on
the attack rate. Notably, the median attack rate did not
continue to increase with an increase in R,, which differs
from the SEIR theory that an epidemic will be triggered
once Ry > 1 [26]; rather, it began to increase dramatically
at a certain critical point. The reason for this dramatic

increase is that when the value of R, is small, even when
a source of infection is present within the crowd, a pa-
tient’s ability to spread the disease is weak, and he will
recover before the disease is transmitted to other suscep-
tible people. As R, increases, the speed of disease trans-
mission increases, and the cumulative effect is amplified
in a manner that corresponds to the increase in the
number of disease generations. This phenomenon re-
minds us that as long as appropriate preventive mea-
sures (such as health education and active circulation of
indoor air) are taken to keep R, at a low level, serious
disease outbreaks can be prevented.

Timely isolation of patients after an outbreak can very
effectively control further outbreaks of an epidemic. Our
results showed that when the R, stays constant, with a
delay in the TOI, the probability of a total patient num-
ber exceeding 80 people initially remains very low, then
rises sharply, and finally reaches a high level and remains
there. By contrast, SEIR theory posits that the attack rate
will continue to rise as the TOI is delayed. This pattern
reveals that when isolation treatment is carried out at
the early/beginning stage of an outbreak, the attack rate
can be controlled at a lower level; however, with post-
ponement of isolation measures, the total number of pa-
tients will increase very quickly, and if isolation is
initiated too late, outbreaks of the epidemic become ex-
tremely difficult to control. When the TOI occurred
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before the growth rate peaked, the growth rate displayed
a phased trend of an initial increase, followed by a rapid
decrease and a final slow decrease. This trend was ob-
served because many people became infected before be-
ing isolated; although those who became sick after the
TOI were isolated within 1day of the onset of illness,
those patients may have had contact with others and
thus could have transmitted the virus. A small number
of the individuals infected during this period will be-
come new patients after the incubation period, which av-
erages approximately 5 days.

Timely diagnosis and treatment of patients following
early onset of the disease can reduce the number of sus-
ceptible people who are infected. The PRCC for the 101
was 0.45, indicating a strong positive correlation. Under
a constant Ry, the probability of an outbreak gradually
increased as the IOI was extended. The median attack
rate remained very low at first, but when the IOI
reached a threshold, the attack rate increased rapidly
and then slowed. However, according to SEIR theory, no
such threshold exists. This trend suggests that we can ef-
fectively reduce the risk of an outbreak by taking isola-
tion measures within a certain time frame. The earlier
that detection, diagnosis, and isolation are performed,
the greater the possibility that the disease attack rate will
remain low.

Immunization is an effective approach for preventing
infectious diseases. The PRCC between the IR and attack
rate was — 0.27, indicating that the higher the IR among
the population, the lower the attack rate will be. The re-
sults section shows that as the IR increased gradually
from 0O, the probability of outbreaks decreased steadily.
In addition, the median attack rate continued to de-
crease rapidly until it reached a critical point, after
which it remained at an extremely low level; this out-
come diverges from the SEIR model, which posits that
an epidemic will not occur once the IR increases to Ry <
1. This outcome occurs because when the IR increases
to a certain extent, patients will not be able to continue
to infect more susceptible people. This trend indicates
that the outbreak of an epidemic can be efficiently re-
stricted if the IR reaches a critical point. However, if it
does not reach that critical point, disease prevention will
be limited. In general, the relationships between the at-
tack rate and the above four parameters were similar: all
displayed a sharp rise in the attack rate after the param-
eter reached a certain critical value, indicating that the
risk of an epidemic outbreak is manageable. Nonethe-
less, if the measures taken are not effective, the difficulty
of controlling the outbreak will increase rapidly.

Although we present some original findings, our study
has some limitations. For example, the suitability of the
random collision model for diseases that have a more
chronic prevalence among the population (such as
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tuberculosis and AIDS, among others) still requires fur-
ther discussion, although the value of the SEIR model
for these diseases has been confirmed. Because cluster
outbreaks have fewer influencing factors and shorter du-
rations, it is relatively easy to establish a random colli-
sion model. However, for certain other chronic diseases,
modelling requires the consideration of various add-
itional factors, including population migration, age
structures, and government interventions. In addition,
we calculated only the PRCCs between the attack rate
and each parameter in the sensitivity analyses; we did
not investigate the compounding effects of multiple pa-
rameters acting together on the attack rate, a topic that
needs to be addressed in future studies.

Conclusions

In summary, when the Ry, TOI, and IOI exceed certain
thresholds, the disease attack rate increases very quickly,
whereas when the immunization rate of the population
exceeds the threshold, the disease attack rate declines
rapidly. The random collision model is suitable for simu-
lation and epidemiological analysis of outbreaks of re-
spiratory infectious diseases. This model is an extension
of the dynamics model of infectious diseases and pro-
vides a theoretical basis for individuals to identify oppor-
tunities to control an outbreak more precisely and to
allocate public health resources in a more rational
manner.
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