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Co-occurrence across time and space of
drug- and cannabinoid- exposure and
adverse mental health outcomes in the
National Survey of Drug Use and Health:
combined geotemporospatial and causal
inference analysis
Albert Stuart Reece1,2* and Gary Kenneth Hulse1,2

Abstract: Background: Whilst many studies have linked increased drug and cannabis exposure to adverse mental
health (MH) outcomes their effects on whole populations and geotemporospatial relationships are not well
understood.

Methods: Ecological cohort study of National Survey of Drug Use and Health (NSDUH) geographically-linked
substate-shapefiles 2010–2012 and 2014–2016 supplemented by five-year US American Community Survey. Drugs:
cigarettes, alcohol abuse, last-month cannabis use and last-year cocaine use. MH: any mental illness, major
depressive illness, serious mental illness and suicidal thinking. Data analysis: two-stage, geotemporospatial, robust
generalized linear regression and causal inference methods in R.

Results: 410,138 NSDUH respondents. Average response rate 76.7%. When drug and sociodemographic variables were
combined in geospatial models significant terms including tobacco, alcohol, cannabis exposure and various ethnicities
remained in final models for all four major mental health outcomes. Interactive terms including cannabis were related to any
mental illness (β-estimate = 1.97 (95%C.I. 1.56–2.37), P< 2.2 × 10− 16), major depressive episode (β-estimate = 2.03 (1.54–2.52),
P= 3.6 × 10− 16), serious mental illness (SMI, β-estimate = 2.04 (1.48–2.60), P= 1.0 × 10− 12), suicidal ideation (β-estimate = 1.99
(1.52–2.47), P< 2.2 × 10− 16) and in each case cannabis alone was significantly associated (from β-estimate =− 3.43 (− 4.46 −
−2.42), P= 3.4 × 10− 11) with adverse MH outcomes on complex interactive regression surfaces. Geospatial modelling
showed a monotonic upward trajectory of SMI which doubled (3.62 to 7.06%) as cannabis use increased. Extrapolated to
whole populations cannabis decriminalization (4.26%, (4.18, 4.34%)), Prevalence Ratio (PR) = 1.035(1.034–1.036), attributable
fraction in the exposed (AFE) = 3.28%(3.18–3.37%), P< 10− 300) and legalization (4.75% (4.65, 4.84%), PR = 1.155 (1.153–1.158),
AFE = 12.91% (12.72–13.10%), P < 10− 300) were associated with increased SMI vs. illegal status (4.26, (4.18–4.33%)).
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Conclusions: Data show all four indices of mental ill-health track cannabis exposure across space and time and are robust
to multivariable adjustment for ethnicity, socioeconomics and other drug use. MH deteriorated with cannabis legalization.
Cannabis use-MH data are consistent with causal relationships in the forward direction and include dose-response and
temporal-sequential relationships. Together with similar international reports and numerous mechanistic studies preventative
action to reduce cannabis use is indicated.

Keywords: Cannabis, Cannabinoid, Δ9-tetrahydrocannabinol, Cannabigerol, Mental illness, Major depressive illness, Suicidal
ideation, Pathways and mechanisms

Background
It is widely understood that the use of addictive sub-
stances impacts mental health adversely. Cannabis use
has been linked with numerous adverse mental health
outcomes including reduced educational achievement
[1, 2], increased criminal involvement [3], reduced ac-
complishment of adult goals (education, employment,
stable long term relationships) [4], depression [5–7]
bipolar disorder [8–10], anxiety [7, 11–13], suicidality
[7, 10, 14, 15], schizophrenia, psychosis [16–23] and
other drug use [24].
Indeed one notes that the existence and mission of the

US Substance Abuse and Mental Health Services Ad-
ministration (SAMHSA) aims to minimize the incidence
of both substance abuse and mental ill-health in order to
advance the behavioural health of the nation [25] and
that of the National Institute of Drug Abuse is not dis-
similar [26]. As such it is widely perceived that substance
use may negatively impact major mental health out-
comes. This issue was clearly crystallized by the Director
of the SAMHSA, Dr. Elinore McCantz-Katz in her pres-
entation of the 2017 National Survey of Drug Use and
Health (NSDUH) results which showed in a nationally
representative sample of 18–25 year old young adults
from 2008 to 2017, a doubling of serious mental health
issues from 3.8 to 7.5% and of suicidal plans from 2.0 to
3.7% in the context of past month cannabis use rates ris-
ing from 17.3 to 22.1% but falling use of tobacco and al-
cohol products and low use rates of opioids and cocaine
use [27].
This implies that the unbridled adoption of the wide-

spread use of new addictive psychoactive substances
may potentially have far-reaching psychological implica-
tions with possible impacts at the public health level. It
would appear inevitable that in view of the known ad-
verse effects of cannabis on mental health at the molecu-
lar, cellular and epidemiological levels [28–33] its
widespread deployment in the community would neces-
sarily be causally linked with numerous indices of deteri-
orating mental health. This was of particular concern in
USA in view of the appalling deterioration in the mental
health of young adults described in detail by SAMHSA
(above paragraph).

In the present context this applies particularly to can-
nabis use which, since the takeover of various cannabis
operations by major tobacco corporations, seems poised
at the threshold of major commercialization and global
launch by utilizing the global reach and marketing plat-
form of what is popularly known as the “Big Tobacco”
industry. Notwithstanding its representation in popular
culture as a relatively harmless “soft” drug, cannabis use
has been shown to be linked with a variety of negative
mental health outcomes including cannabis dependency
and use disorder, an impaired lifetime trajectory and ful-
filment of adult goals, an amotivational state, an in-
creased incidence of graduation to use of other addictive
agents, depression, anxiety, bipolar disorder, schizophre-
nia and suicide [2, 4, 17, 24, 28, 34–40].
Such being the case one would expect patterns of

mental health to follow cannabis use across both time
and space. The NSDUH conducted annually by SAMH
SA is a globally unique drug dependency and mental
health research resource which allows investigation of
both substance use and mental health at relatively high
spatial and temporal resolution. Its availability publicly
together with the presence of high definition substate
shapefiles which link these parameters geospatially at de-
fined time points, and which can be matched with other
datasets such as those available through the US census,
presents a globally unique opportunity to conduct an
important public health investigation of these potentially
related trends.
The hypothesis driving the present ecological epi-

demiological investigation was firstly, that substance use
and mental health are linked in a formally demonstrable
manner, and secondly, that increasing rates of cannabis
use would be reflected at the level of population health
trends in a robust manner which persisted after adjust-
ment for other common sociodemographic variables.
These hypotheses was formulated prior to study com-
mencement. We considered that it was important to use
modern geospatiotemporal regression and the tools of
formal causal inference in investigating these questions
and associations, and in particular in assessing the po-
tentially causal nature of the relationship. A corollary of
this is that one might expect metrics of mental health to
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be worse in states where cannabis is legal. This hypoth-
esis was also tested.
Whilst a link between substance use and adverse men-

tal health is well described in various clinical contexts
what is not clear is the extent to which the mental
health of whole populations is impacted with particular
reference to trends across both space and time and con-
siderations of a putatively causal relationship. It was
these gaps that the present research aimed to fill.
It follows that such an enquiry is particularly timely at

the present juncture given what appears to be a clear
and present international threat to global mental health.
On the international scene cannabis is clearly enjoying a
modern renaissance under its falsely reassuring image as
a low toxicity compound. If concerning trends can be
identified and described in USA then it follows that such
concerns are likely to apply elsewhere, most particularly
if the causal nature of the relationship could be demon-
strated at the population health level. For these reasons
the present study was timely and important not only for
the health of Americans, but indeed to protect the global
community of nations.

Methods
Data
NSDUH Data on drug use by area was downloaded from
the publicly available NSDUH SAMHSA substate shape-
files for 2010–2012 and 2014–2016 [41, 42]. A NSDUH
shapefile for 2012–2014 exists but as it substantially
overlaps the other two its inclusion would significantly
complicate the analysis so this has not been used. This
implies that data for 2015 was not used in the present
analysis. On occasion the triennia were referred to by
their middle year, hence 2011 and 2015. Over 405,000
participants were surveyed across the 6 years. The
2014–2016 shapefile divides the USA into 395 substate
areas based either on county or congressional district
boundaries. The four drugs of interest were last month
cigarette use, past year alcohol abuse or dependence, last
month cannabis use, and last year cocaine use which are
abbreviated to cigmon, abodalc, mrjmon and cocyr in
the NSDUH documentation. These drugs were treated
as covariates for cannabis use. Unfortunately no consist-
ent nomenclature for opioid exposure could be identi-
fied across both shapefiles. The four mental illnesses
mentioned in the NSDUH shapefiles are any mental ill-
ness in the past year, major depressive episode, serious
mental illness in the past year and suicidal thinking
whose NSDUH abbreviations are amiyr, mde, smiyr and
suithyr. Serious mental illness is defined as a “mental,
behavioural or emotional disorder resulting in severe
functional impairment which substantially interferes
with one or more major life activities” and includes the
diagnoses of major depression, bipolar affective disorder

and schizophrenia [43].US Census Bureau County data
on ethnicity and median household income (MHY) was
downloaded from the via the tidycensus package in R
using shapefiles from the R package tigris. Sociodemo-
graphic data was derived from the 5 year American
Community Survey (ACS, “acs5”) conducted by US Cen-
sus. The two NSDUH shapefiles were centred on 2011
and 2015 so they were matched to the ACS 2009–2013
and ACS 2013–2017 respectively. Each respective ACS
shapefile was then interpolated into the substate area
definitions provided by SAMHSA. The two combined
NSDUH shapefiles were then combined together with
the 2014–2016 NSDUH shapefile as the standard (or
“target”) file. Data for Alaska and Hawaii was treated
separately and then added in to the final shapefile and
elided (moved) into their appropriate positions for illus-
tration purposes.
Data on the concentration of cannabinoids in federal

seizures of cannabis to 2011 has been published [44, 45].
In 2011 the concentration of tetrahydrocannabinol
(THC) was 11% and it has been increasing by about 1%
annually. Projected forwards this provides an estimate of
15% in 2015.

Statistics
The analysis was conducted in January 2020. Data was
processed in “R” from CRAN using several packages in-
cluding tidyverse, tidycensus, tigris, sp., sf, spdep and
splm. Graphs and maps were drawn in ggplot2. Hawaii
and Alaska were elided for illustration in sp. (spatial
modelling), converted back to sf (simple features) and
rendered in the USA contiguous Albers Equal Area Con-
ical projection EPSG:102003 as in the R package alber-
susa. Disparate geographical boundaries were conformed
using R::areal. Statistical model reduction from first to
final models was by the classical technique of sequential
elimination of the least significant term until only sig-
nificant terms remain.
The formal analysis of spatially distributed data is not

methodologically trivial but requires dedicated methods
in order to account for the spatial relationships by which
many variables interact and are dependent on each
other. In 1970 Waldo Tobler described the first law of
geography when he noted that things nearby interact
more than things far away [46]. It is important to take
this spatial autocorrelation into account when analyzing
spatially distributed variables. The package splm in the
“R” computing environment is purpose built for such ap-
plications. In particular it includes the spatial panel gen-
eralized method of moments (spgm) function which is
ideally suited to short panel datasets such as this one
and the spatial panel random error maximum likelihood
(spreml) function which includes sophisticated methods
to account for various spatial lag and error structures.
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Both techniques allow the use of instrumental variables.
Thus both techniques have been applied to this dataset.
Geospatiotemporal data processing was done using the

“R” package splm (spatial panel linear modelling) with
the spatial panel generalized method of moments (spgm)
function as it is ideally suited to short panel data such as
this and also with the recent spml refinement spreml
(spatial panel random error maximum likelihood) func-
tion which incorporates sophisticated modelling of error
and autocorrelation structures. The standard spgm
model was spatially lagged, used the full weights method,
a generalized two-step least squared estimation method,
spatial error and lagged the instrumental variables. In-
strumental variables were the local cannabis ethnic po-
tency index (LCEPI) defined below. For spreml models
the full model was used including spatial lagging, spatial
errors of Kapoor, Kelejian and Prucha [47], autocorrel-
ation order 1 errors and the same ethnic instrumental
variables as above. Spatial errors and spatial weights
were calculated using the spdep::poly2nb function and
these data were updated to include conceptual links
from the Hawaiian islands to south-eastern California
and from Alaska to Washington state and Oregon.
Modelling of fitted values was done by matrix multipli-

cation of mean, minimum and maximum values into
model coefficients as indicated. Analysis of the impact of
cannabis legal status at state level was undertaken from
the state-based NSDUH data table (“state_saes_final.-
sas7bdat”) supplemented by cannabis legal status defined
from an internet search. Data was manipulated with
dplyr and the resulting two-by-two tables were analyzed
in epiR.

Causal inference analysis
Inverse probability weighting was conducted for the
whole sample using the R package ipw. This transforms
our study from merely ecological and observational to a
pseudo-randomized design where causal inferential rela-
tionships can properly be assigned. These weights were
then entered into robust generalized linear regression
using the R package survey with substate region as the
identifying variable. In order to calculate a model stand-
ard deviation the weights were also utilized in mixed ef-
fects regression using the R package nlme again with
substate region as the grouping variable.
The e-Value is a new index which was recently defined

[48] which quantitates the degree of association with
both the exposure and the outcome which would be re-
quired of an unmeasured confounding variable to ex-
plain away the observed significant finding [48–53]. It is
presented on the risk ratio scale. Research literature
commonly contains e-Values of 1.25 and above [52]. e-
Values were computed from relative risks and regression

coefficients using the R package EValue. P < 0.05 was
considered significant throughout.

Data availability statement
Data including shapefiles and R programming script is
made publicly available on the Mendeley Data Archive
at this URL:
https://doi.org/10.17632/gyckst6rx8.1. The original

SAMHSA shapefiles may be found at https://www.
samhsa.gov/data/report/2014-2016-nsduh-substate-re-
gion-shapefile and https://www.samhsa.gov/data/re-
port/2012-2014-nsduh-substate-region-shapefile.

Ethics
Ethical approval for this study was provided by the Uni-
versity of Western Australia Human Research Ethics
Committee 08/01/2020 (No. RA/4/20/4724).

Results
Of 534,000 individuals approached 410,138 responded to
the six NSDUH surveys, a completion rate of 76.7%.
Data for the 2 years 2011 and 2015 are listed as median
and interquartile ranges and compared non-
parametrically in Supplementary Table 1.
Figure 1 shows the rates of mental illness for the four

NSDUH-defined mental health disorders included in the
SAMHSA substate shapefiles of any mental illness,
major depressive episode, serious mental illness and sui-
cidal thinking.
Figure 2 shows map-graphically the distribution of the

use of various drugs across USA in the two NSDUH
triennia.
Figure 3 shows the rates of the four mental illness syn-

dromes by drug use at state level. The slope (as β-
estimates) and significance of these regression lines is
shown in Supplementary Table 2. The slopes for three
of the lines is significant.
Supplementary Fig. 1 shows the ethnic composition of

USA for the two periods.
Supplementary Fig. 2 shows the rate of median house-

hold income in the USA in the two periods 2010–2012
and 2014–2016.
National level NSDUH data make it clear that there

are considerable differences between various ethnicities
in drug use and especially daily / near daily cannabis
use. These can be averaged out by ethnicity to derive a
cannabis use frequency index at the national level. It is
likely that regional data also impacts cannabis use by
ethnic populations so an index of this was derived by
multiplying the local monthly cannabis use by the na-
tional ethnic near daily cannabis use to derive a local
cannabis ethnic daily index (LCEDI) at state level. Since
the THC concentration of cannabis has also been in-
creasing the LCEDI can in turn be multiplied by the
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THC content to produce a local cannabis ethnic daily
potency index (LCEDPI) of local ethnic exposure to can-
nabinoids. This LCEDPI index may also be referred to as
an “Ethnic score” and it has been used as an important
instrumental variable controlling for environmental can-
nabinoid exposure arising from the sociocultural envir-
onment rather than any intrinsic ethnic risk propensity
(such as pharmacogenomic susceptibilities). The various
LCEDI and LCEDPI are listed in Supplementary Table 3
and illustrated in Supplementary Figs. 3 and 4.
Supplementary Fig. 5 shows the relative rise in these in-
dices from the 2010–2012 baseline and the relative rise
comparable to the mean rise by ethnicities.
First degree edge and corner (“queen”) spatial weights

were calculated between substate areas by R::spdsep::
poly2nb and updated for Alaska, Hawaii and Richmond
Island (in New York) as shown in Supplementary Fig. 6A,
with final results as shown in Supplementary Fig. 6B.
Supplementary Table 4 presents the spgm results

when serious mental illness is regressed against each of
drugs, median household income, and ethnicity variables
separately with the ethnic LCEPI included as instrumen-
tal variables. As noted, only the drug related variables
are significant. Terms including cannabis are significant

(from β-estimate = 0.08 (95%C.I. 0.02–0.13), P = 0.009).
Supplementary Table 5 performs the same task for ser-
ious mental illness using spreml regression. The signifi-
cance level of all terms is increased. Both income and
racial composition now become significant. Terms in-
cluding cannabis are significant (from β-estimate = 2.34
(1.71–2.97), P = 1.4 × 10− 13).
All the independent variables were then included in a

final spgm model shown in Table 1 for all four mental
illnesses listed by SAMHSA. All four described drugs
survive model reduction and appear in final models. The
table is notable for the high level of significance of many
drugs including terms involving cannabis (from β-
estimate = 1.74, (0.97, 2.51), P = 9.9 × 10− 6). Income and
ethnic factors do not survive model reduction. Hence
final models include drug related factors only.
Table 2 presents results from a similar exercise apply-

ing the advanced techniques of spreml spatial regression.
Again all four drugs are included at high level of signifi-
cance. Terms including cannabis appear (from β-
estimate = 1.84 (0.30, 2.39), P ≤ 3.0 × 10− 11) for all four
illness syndromes. Terms including cannabis appear
(from β-estimate = − 3.31 (2.58, 4.04), P ≤ 2.2 × 10− 16 for
any mental illness and (from β-estimate = 2.13 (1.63,

Fig. 1 Mental Illness across USA by substate area. Data from NSDUH Shapefiles

Fig. 2 Drug Use across USA by substate area. Data from NSDUH Shapefiles
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2.62), P ≤ 2.2 × 10− 16) for major depressive episode. Eth-
nic factors appear in all models. Median household in-
come only appears in the model for serious mental
illness.
As mentioned spreml models give advanced access to

the error structure of spatial models. It is therefore
mandatory to give careful attention to correct model
specification. Supplementary Table 6 shows a selection
of the principal error structures and their various specifi-
cations. The log maximal likelihood of the models is
listed at model optimization, together with the value of
the spatial Hausman test comparing each model to the
full model. In each case high levels of statistical signifi-
cance are demonstrated with all P < 2.2 × 10− 16. These
results confirm that the model specification which was
presented above, namely the full sem2srre + lag model, is
technically correct.
The rates of mental illness can be aggregated into state

areas to compare mental illness rates by the legal status
of cannabis.
The final spreml model for serious mental illness may

be used to compute fitted values. When mean values for

tobacco and alcohol abuse together with minimum or
maximum values for monthly cannabis use are entered
into this model minimum and maximum values for ser-
ious mental illness of 3.62 and 7.06% result (maximum =
1.95-fold minimum value). Figure 4a shows the modelled
rate of serious mental illness as a function of cannabis
use decile (Supplementary Table 7).
Data also lend themselves to analysis by the formal tech-

niques of causal inference. Inverse probability weights
were calculated as described and entered into robust gen-
eralized linear regression equations. The effect of conduct-
ing regression procedures with inverse probability weights
is to make the sample pseudo-randomly conducted with
regard to the exposure of interest, in this case cannabis
use, so that the outcome can be properly assessed without
the confounding arising from the exposure being non-
randomly distributed across the other covariate exposure
groups. The results of final models from additive and
interactive models as shown in Table 3. In this Table the
dependent variable is serious mental illness rates and the
list of covariates includes five racial groups, median house-
hold income, ethnic cannabis use scores (LCEDI) and

Fig. 3 Mental Illness by Substance Exposure. Data from NSDUH Shapefiles
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Table 1 Spatial panel general method of moments regression – final models

General Parameters Model

Instrumental Variables Parameter Estimate (95%C.I.) P-Value Para-meters Value P-Value

Any Mental Illness

NHWhite_Score spgm (amiyr ~ Cigarettes * Cannabis * Alcohol_Abuse + Cocaine + Med_HH_Income + 5_Races)

NHBlack_Score Cigarettes: Cannabis: Alcohol_Abuse −0.05 (− 0.07--0.03) 2.5E-05 rho − 0.5152 N/A

Hispanic_Score Cigarettes: Alcohol_Abuse 0.11 (0.06–0.16) 4.6E-05 sigma^2_ 0.003 N/A

NHAsian_Score Cannabis: Alcohol_Abuse 1.21 (0.61–1.81) 7.9E-05 lambda 0.6753 1.30E-05

NHAIAN_Score Cigarettes: Cannabis 0.09 (0.05–0.13) 0.0001

Alcohol_Abuse −2.43 (−3.72--1.14) 0.0002

Cigarettes −0.17 (− 0.26--0.08) 0.0003

Cannabis −1.99 (−3.08--0.9) 0.0004

Cocaine 0.05 (0.01–0.09) 0.0128

Median_Household_Income −0.03 (− 0.06–0) 0.0339

Afr.Am_Pop_Fraction 0.03 (0–0.06) 0.0485

Major Depressive Episode

NHWhite_Score spgm (mde ~ Cigarettes * Cannabis * Alcohol_Abuse + Cocaine + Med_HH_Income + 5_Races)

NHBlack_Score Cannabis: Alcohol_Abuse 1.74 (0.97–2.51) 9.9E-06 rho −0.6813 N/A

Hispanic_Score Cigarettes: Cannabis: Alcohol_Abuse −0.07 (− 0.1--0.04) 2.6E-05 sigma^2 0.005 N/A

NHAsian_Score Cannabis −2.98 (− 4.38--1.58) 2.9E-05 lambda 0.8945 1.20E-04

NHAIAN_Score Alcohol_Abuse −3.46 (−5.1--1.82) 3.8E-05

Cigarettes: Cannabis 0.12 (0.06–0.18) 6.3E-05

Cigarettes: Alcohol_Abuse 0.13 (0.06–0.2) 8.1E-05

Cigarettes −0.23 (− 0.35--0.11) 2.4E-04

Serious Mental Illness

NHWhite_Score spgm (smiyr ~ Cigarettes * Cannabis * Alcohol_Abuse + Cocaine + Med_HH_Income + 5_Races)

NHBlack_Score Cigarettes: Alcohol_Abuse 0.1 (0.03–0.17) 0.0048 rho − 0.7386 N/A

Hispanic_Score Cigarettes −0.17 (− 0.29--0.05) 0.0058 sigma^2 0.0055 N/A

NHAsian_Score Cigarettes: Cannabis: Alcohol_Abuse −0.04 (− 0.07--0.01) 0.0082 lambda 0.7722 3.37E-07

NHAIAN_Score Cocaine 0.07 (0.02–0.12) 0.0087

Cigarettes: Cannabis 0.08 (0.02–0.14) 0.0092

Alcohol_Abuse −2.14 (−3.82--0.46) 0.0126

Cannabis: Alcohol_Abuse 0.96 (0.17–1.75) 0.0169

Cannabis −1.66 (−3.09--0.23) 0.0231

NHWhite_Score Suicidal Thoughts Past Year

NHBlack_Score spgm (suithyr ~ Cigarettes * Cannabis * Alcohol_Abuse + Cocaine + Med_HH_Income + 5_Races)

Hispanic_Score Alcohol_Abuse −3.05 (− 4.67--1.43) 0.0002 rho −0.6752 N/A

NHAsian_Score Cannabis: Alcohol_Abuse 1.37 (0.61–2.13) 0.0004 sigma^2_ 0.0051 N/A

NHAIAN_Score Cigarettes: Alcohol_Abuse 0.12 (0.06–0.18) 0.0004 lambda 0.7757 7.96E-12

Cigarettes: Cannabis: Alcohol_Abuse −0.05 (− 0.08--0.02) 0.0012

Cigarettes −0.19 (− 0.31--0.07) 0.0016

Cannabis −2.18 (−3.55--0.81) 0.0019

Cigarettes: Cannabis 0.08 (0.02–0.14) 0.0037

Abbreviations
5_Races: Caucasian-American, African-American, Hispanic-American, Asian-American, NHAIAN
Technical Notes:
phi:- Idiosyncratic component of the spatial error term
psi:- Individual time-invariant component of the spatial error term
rho:- Spatial autoregressive parameter
lambda:- Spatial autocorrelation coefficient
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drug use variables for cigarettes, binge alcohol, monthly
cannabis and annual cocaine. In additive models both can-
nabis use (β-estimate = − 0.43 (− 0.65 - -0.21), P = 0.0002),
and Caucasian American cannabis use (β-estimate = 0.95
(0.05–1.85), P = 0.0396) survived model reduction and
were significant. In models including a four-way cigarette:
alcohol:cannabis:cocaine interaction, terms including can-
nabis were significant from (β-estimate = 0.12 (0.10, 0.14),
P < 10− 16).
In inverse probability weighted mixed effects additive

and interactive models with the same list of dependent
variables and predictive covariates, terms including can-
nabis were again significant (from β-estimate = 0.11
(0.07, 1.15), 1.5 × 10− 5; Supplementary Table 8).
Sensitivity analyses may be conducted on these odds

ratio, mixed effects and geospatial data with many highly
significant e-Value results as shown in Supplementary
Table 9. The minimal e-values in the geotemporospatial
analyses ranged from 3.13 to 2,660,000 (Supplementary
Table 9). This compares positively to comments in the
literature that e-Values above 1.25 are often quoted in
scientific reports [52]. Such elevated values make uncon-
trolled confounding extremely unlikely and point to a
relationship which is truly causal in nature.
When one considers state-based data for the 6 years

of the NSUDH shapefiles states with legal cannabis
status had an increased rate of serious mental illness
(Prevalence ratio (PR) = 1.09 (95%C.I. 1.04, 1.13), at-
tributable fraction in the exposed (AFE) = 7.93% (4.17,
11.55%), attributable fraction in the population
(AFP) = 0.70% (0.035, 1.06%), Chi.Squ. = 16.25, df = 1,
P = 5.55 × 10− 5).
Figure 4b and Table 4 show the mean rate of serious

mental illness as a function of cannabis legal status when
NSDUH results are extrapolated onto whole state popu-
lations. The values for the Illegal, Medical, Decrimina-
lized and Legal Status are 4.26 (4.18, 4.34%), 4.11 (4.01,
4.21%), 4.01 (3.83, 4.19%) and 4.75 (4.65, 4.85%) respect-
ively. The notches for the Decriminalized and Legal sta-
tuses are noted to not overlap those of the illegal status.
Cannabis decriminalization was associated with an in-
creased incidence of serious mental illness (PR = 1.035
(1.034, 1.036), AFP = 3.28% (3.18, 3.37%), AFE = 1.13%
(1.09, 1.16%), ChiSq. = 4635.1, df = 1, P < < 10− 300), as
was cannabis legalization (PR = 1.155 (1.153, 1.158),
AFE = 12.91% (12.72, 13.10%), AFP = 0.83% (0.82, 0.85%),
ChiSq. = 15,015.1, df = 1, P < < 10− 300).
Supplementary Fig. 7 shows the rate of all mental ill-

ness syndromes against cannabis legalization status from
state based data. The Chi-squared comparisons are
shown in Supplementary Table 10. Results for any men-
tal illness and suicidal ideation are both significant (P =
0.0395 and P = 0.0395) are that for serious mental illness
approaches significance (P = 0.0654).

Discussion
Main findings
This study applies current geospatial techniques to the
analysis of the four metrics of mental illness spatially de-
scribed by SAMHSA in recent iterations of NSDUH.
Using spatial panel generalized method of moments
(spgm) techniques drug-related variables pertaining to
tobacco, alcohol, abuse cannabis and cocaine were found
to be more significant than socioeconomic and ethno-
graphic factors after correction using estimates for in-
creased local exposure to cannabis in some ethnic
groups. For cannabis this included terms significant
from P < 10− 5. When more advanced spatial techniques
such as the full spatial panel random error maximum
likelihood (spreml) models were used these results were
confirmed overall and included an increased level of
statistical significance for terms including cannabis for
all four mental illness metrics from P < 4.0 × 10− 11.
Therefore geospatial techniques increased the precision
of the parameter estimates by several orders of
magnitude.
It is of interest to consider these findings in the light

of the remarks mentioned in the Introductory section re-
lating to the poor and declining mental health of US
young adults. First, there is a very obvious association
nationally with the dramatic decline in the mental health
of young adults in the USA and rising levels of cannabis
use in that age demographic [27, 54]. Our results con-
firm this trend at the higher geospatial resolution of the
substate level.
Secondly both study hypotheses are confirmed by

study results. All indices of mental health (any mental
illness, major depressive illness, serious mental illness
and suicidal ideation) are robustly associated with the
use of all addictive substances investigated. It is equally
clear that the hypothesized relationships between canna-
bis and all four indices of mental ill-health are not only
established, but robust to multivariable adjustment.
Moreover analysis of the data with inverse probability

weights in both mixed effects models and robust gener-
alized linear models together with sensitivity analyses in-
dicated that the relationship fulfilled the criteria of
causality in each case.
Any mental health issues and suicidal ideation were

also shown to be worse in parallel with liberalized can-
nabis policies. The result for serious mental illness
approached significance (P = 0.06).

Pathways and mechanisms
Since the existence of plausible biological pathways
explaining a potential causal pathway from cannabis ex-
posure to mental illness is a foundational pillar of causal
algorithms such as that of Hill [55] it becomes very im-
portant to consider briefly some of the neurotoxic
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Table 2 Spatial panel random error maximum likelihood regression – final models

General Parameters Model

Instrumental Variables Parameter Estimate (95%C.I.) P-Value Para-meters Value P-Value

Any Mental Illness

spreml (amiyr ~ Cigarettes * Cannabis * Alcohol_Abuse + Cocaine + Med_HH_Income + 5_Races)

NHWhite_Score Alcohol_Abuse −4.19 (− 5.02--3.36) < 2.2e-16 phi 0.008 0.9908

NHBlack_Score Cannabis: Alcohol_Abuse 1.96 (1.55–2.37) < 2.2e-16 psi 0.4002 0.251

Hispanic_Score Cannabis −3.33 (−4.06--2.6) < 2.2e-16 rho −0.1507 0.3296

NHAsian_Score Cigarettes: Alcohol_Abuse 0.15 (0.11–0.19) < 2.2e-16 lambda 0.2336 0.0425

NHAIAN_Score Cigarettes −0.26 (−0.32--0.2) 4.00E-15

Cigarettes: Cannabis: Alcohol_Abuse −0.07 (− 0.09--0.05) 2.70E-15

Cigarettes: Cannabis 0.12 (0.09–0.15) 1.20E-13

Caucasian-Amer.Pop_Fraction 0.09 (0.06–0.12) 1.00E-10

Median_Household_Income −0.09 (− 0.12--0.06) 1.30E-06

Hispanic_Pop_Fraction −0.01 (− 0.02–0) 0.0033

African-Amer._Pop_Fraction −0.01 (− 0.02–0) 0.0062

Asian_Pop_Fraction 0.02 (0.01–0.03) 0.0131

Major Depressive Episode

spreml (mde ~ Cigarettes * Cannabis * Alcohol_Abuse + Cocaine +Med_HH_Income + 5_Races)

NHWhite_Score Cannabis: Alcohol_Abuse 2.03 (1.54–2.52) 3.60E-16 phi 0.1573 0.9579

NHBlack_Score Alcohol_Abuse −4.14 (−5.14--3.14) 4.90E-16 psi 0.3124 0.8569

Hispanic_Score Cannabis −3.53 (− 4.41--2.65) 3.80E-15 rho −0.3358 0.0325

NHAsian_Score Cigarettes: Alcohol_Abuse 0.16 (0.12–0.2) 1.60E-12 lambda 0.3809 0.0002

NHAIAN_Score Cigarettes: Cannabis: Alcohol_Abuse −0.08 (−0.1--0.06) 1.90E-12

Cigarettes −0.27 (− 0.35--0.19) 4.50E-12

Cigarettes: Cannabis 0.14 (0.1–0.18) 5.70E-12

Caucasian-Amer._Pop_Fraction 0.08 (0.05–0.11) 2.20E-08

Hispanic_Pop_Fraction −0.02 (−0.03−−0.01) 0.0003

African-Amer._Pop_Fraction −0.01 (− 0.02–0) 0.0025

AIAN_Pop_Fraction -0.01 (−0.02–0) 0.0085

Median Household Income −0.04 (− 0.07--0.01) 0.0312

Serious Mental Illness

spreml (smiyr ~ Cigarettes * Cannabis * Alcohol_Abuse + Cocaine + Med_HH_Income + 5_Races)

NHWhite_Score Caucasian-Amer. 0.21 (0.17–0.25) < 2.2e-16 phi 0.176 NA

NHBlack_Score Median Household Income −0.22 (−0.27--0.17) < 2.2e-16 psi 0.153 NA

Hispanic_Score Alcohol_Abuse −4.55 (−5.69--3.41) 6.20E-15 rho 0.1311 0.2141

NHAsian_Score Cannabis: Alcohol_Abuse 2.04 (1.48–2.6) 1.00E-12 lambda 0.0618 0.4449

NHAIAN_Score Cannabis −3.44 (−4.46--2.42) 3.40E-11

Cigarettes:Alcohol_Abuse 0.17 (0.12–0.22) 7.60E-11

Cigarettes −0.27 (−0.36--0.18) 1.50E-09

Cigarettes: Cannabis: Alcohol_Abuse −0.08 (− 0.11--0.05) 2.90E-09

Cigarettes: Cannabis 0.13 (0.08–0.18) 2.00E-08

African-Amer._Pop_Fraction −0.02 (−0.03--0.01) 9.30E-06

Hispanic_Pop_Fraction −0.02 (− 0.03--0.01) 0.005

Asian_Pop_Fraction 0.02 (0–0.04) 0.0089

Suicidal Thoughts Past Year
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mechanisms which have been described in the published
literature. We note that numerous biological pathways
have been described linking cannabinoid exposure to
neurotoxicity and adverse neuropsychiatric outcomes.
Several genetic and epigenetic pathways have been

described linking altered dopamine receptor gene and
other gene expression with addictive, behavioural and
autistic outcomes [56–60]. Cannabinoids have been
shown to have adverse effects on neural stem cell activ-
ity [61] which negatively and importantly impacts brain

Table 2 Spatial panel random error maximum likelihood regression – final models (Continued)

General Parameters Model

Instrumental Variables Parameter Estimate (95%C.I.) P-Value Para-meters Value P-Value

spreml (suithyr ~ Cigarettes * Cannabis * Alcohol_Abuse + Cocaine + Med_HH_Income + 5_Races)

NHWhite_Score Alcohol_Abuse −4.36 (−5.33--3.39) < 2.2e-16 phi 0.0225 0.9737

NHBlack_Score Cannabis: Alcohol_Abuse 1.99 (1.52–2.46) < 2.2e-16 psi 0.1854 0.726

Hispanic_Score Cannabis −3.4 (−4.26--2.54) 1.05E-14 rho −0.1314 0.2451

NHAsian_Score Cigarettes: Alcohol_Abuse 0.16 (0.12–0.2) 6.72E-13 lambda 0.2824 0.0005

NHAIAN_Score Cigarettes −0.26 (− 0.34--0.18) 8.28E-12

Cigarettes: Cannabis: Alcohol_Abuse −0.07 (− 0.09--0.05) 8.14E-11

Cigarettes: Cannabis 0.12 (0.08–0.16) 7.25E-10

Hispanic_Pop_Fraction −0.02 (−0.03--0.01) 5.53E-08

African-Amer._Pop_Fraction −0.02 (− 0.03--0.01) 2.89E-07

Caucasian-Amer._Pop_Fraction 0.07 (0.04–0.1) 1.12E-06

Asian_Pop_Fraction 0.03 (0.02–0.04) 1.03E-05

Median Household Income −0.08 (−0.12--0.04) 5.70E-05

Abbreviations
5_Races: Caucasian-American, African-American, Hispanic-American, Asian-American, NHAIAN
Technical Notes:
phi:- Idiosyncratic component of the spatial error term
psi:- Individual time-invariant component of the spatial error term
rho:- Spatial autoregressive parameter
lambda:- Spatial autocorrelation coefficient

Fig. 4 Modelled Relationships and Legal Status. a Serious Mental illness by Rising Cannabis Concentration. b Serious Mental Illness by
Legal Status
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plasticity and brain aging [62]. Cannabinoids can also in-
duce microglial activation and priming [63] which was
recently shown to set the brain on a pathway which
phenocopies aging [64]. Cannabis exposure has also
been shown to age the human organism in a longitu-
dinal study of cardiovascular ageing [64]. Cannabinoids
have been shown to decouple both synapses, by nega-
tively impacting the neurexin-neuroligin machinery
which scaffolds them [65–68], and grey-white matter
coupling [69]. Similarly cannabinoids negatively impact
both actin and tubulin expression and dynamics [65]
impacting axonal guidance and growth cone mechanics
[70] and chromosomal mechanisms, chromosomal seg-
regation and cell division [71]. Cannabis has a negative

effect on cell growth, macromolecular synthesis and cell
division [72, 73] and adversely affects the slit:robo ratio
which controls the hypertrophic exuberant growth of
the massive human cerebral cortex [74–76].
It is also important to appreciate that such negative

cellular mechanisms have been ascribed to cannabinoids
other than simply Δ9-tetrahydrocannabinol as other
chemical moieties, including cannabidiol, cannabichro-
mene and cannabinol have been similarly implicated
[77–80]. Indeed it is known that cannabis oil is toxic to
many plants including the leaves of Cannabis sativa it-
self [81].
It is also relevant in this regard that both the epigen-

etic actions and chromosomal mis-segregation actions of
cannabinoids imply not only genotoxicity and epigen-
otoxicity in the exposed individuals themselves, but also
heritable changes to several subsequent generations [82].
As the use of cannabis becomes both more widespread
and consumption increases in existing users, cannabin-
oid exposure will likely become multigenerational and
open new routes to cannabinoid-induced heritable neu-
ropsychopathology. This was recently shown for autism
in USA [83, 84].
Whilst this study relates to the mental health of adults

it has been shown that cannabis use is linked with ad-
verse mental health outcomes in offspring of exposed
populations including autism and ADHD-like changes
[83–94]. This important datum further amplifies the sig-
nificance of the present investigation into the cross-
generational context.
Hence taken together these data overall clearly indi-

cate not only that increased cannabis use is causally as-
sociated with adverse mental health outcomes at the
statistical and epidemiological level, but that multiple
biological pathways exist to explain the causal relation-
ship mechanistically. Indeed data in this report indicates
that the cannabis-mental illness relationship fulfills all
ten of Hill’s criteria for causal relationships [55], in
addition to the unequivocal demonstration of very close
relationships across space and time and the results of
the causal inferential techniques employed.

Strengths and limitations
Our study has a number of strengths and limitations. Its
strengths include investigation of what we believe to be

Table 3 Robust Generalized Linear Models Results

Parameter Estimate C.I. P-Value

Additive Models

Cocaine 0.27 (0.13–0.41) 7.6E-05

Alcohol 0.09 (0.05–0.13) 0.0001

Asian.Am 0.12 (0.06–0.18) 0.0005

Median Household Income 0.22 (0.06–0.38) 0.0041

Cauc.Am.Cannabis 0.95 (0.05–1.85) 0.0396

Cannabis −0.43 (−0.65--0.21) 0.0002

Cigarettes −0.02 (−0.04–0.00) 6.2E-05

Afric.Am −0.09 (−0.13--0.05) 5.8E-06

Hispanic −0.22 (−0.32--0.12) 2.4E-06

Interactive Models

Cigarettes: Alcohol 0.06 (0.04–0.08) 3.2E-26

Cigarettes: Cannabis 0.12 (0.10–0.14) 1.5E-21

Asian.Am 0.07 (0.05–0.09) 4.0E-19

Alcohol: Cannabis 0.51 (0.39–0.63) 2.7E-17

Alcohol: Cannabis: Cocaine 0.04 (0.02–0.06) 2.2E-07

Afric.Am.Cannabis −0.19 (−0.27--0.11) 3.8E-05

Alcohol: Cocaine −0.07 (−0.11−− 0.03) 1.9E-05

AIAN.Am -0.03 (−0.03--0.03) 3.7E-07

Cigarettes: Alcohol: Cannabis −0.02 (−0.02--0.02) 2.0E-18

Afric.Am −0.05 (−0.07--0.03) 4.0E-20

Alcohol −1.41 (−1.65--1.17) 2.0E-26

Cigarettes −0.30 (−0.36--0.24) 6.4E-28

Cannabis −2.75 (−3.20--2.30) 3.4E-28

Table 4 Serious mental illness prevalence ratios by legal status

Status Serious Mental
Illness Cases

No. Using Cannabis
Last Month

Population Proportion with Serious
Mental Illness

Proportion Using
Cannabis Last Month

Decriminalized 6,106,622 12,033,634 143,356,702 4.26% (4.18, 4.34%) 8.39%

Illegal 11,650,796 17,995,589 283,172,529 4.11% (4.01, 4.21%) 6.35%

Legal 805,083 2,337,511 16,936,978 4.75% (4.65, 4.85%) 13.80%

Medical 7,394,236 16,516,827 184,526,713 4.01% (3.83, 4.19%) 8.95%
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the best most carefully geospatially and temporally de-
fined dataset in the world which measures both drug use
and mental health outcomes in a synchronized and coor-
dinated manner. Also we believe that the application of
modern advanced geospatial analysis to these public
health problems is also new and novel and innovative.
The limitations of this study relate mainly to its eco-
logical design. For example we had to estimate local use
of cannabis by ethnic origin as substate estimates were
not available. Similarly individual respondent data from
the survey is not available outside of dedicated US re-
search centres and it is clear that access to such data
would increase the power of the present investigation.
We feel therefore that while the present analysis repre-
sents an important contribution to the literature in the
field it also provides a strong impetus for further
research.

Generalizability
Given that NSDUH is conducted carefully in a nationally
representative manner of the non-institutionalized adult
US population the present results are likely to be
generalizable to other developed nations. Moreover as it
appears that the geospatially observed trends are rooted
in the biological processes and mechanisms, what we are
seeing at the public health level reflects downstream
pharmacological effects from altered biological processes
occurring in human neurophysiology. We note that all
five of the major racial groups investigated herein
showed significant statistical relationships with mental
health metrics suggesting cross-racial effects.

Conclusions
Our interpretation of these results is that all four of the
adverse mental health outcomes mapped geotemporos-
patially by SAMHSA are linked upon formal geospatial
analysis with the use of all four of the addictive drugs
for which data was available. On testing of single do-
mains of variables against serious mental illness only the
drug group was significant, whilst median household in-
come and racial profiling were not. After adjustment for
the usual battery of ethnic, drug use and socioeconomic
covariates, terms including cannabis were significantly
linked with all four domains of mental ill-health from a
high level of statistical significance, implying that the
widespread deployment of cannabis and cannabinoids
for primarily commercial motivations is likely to carry
with it major negative mental health implications for the
future. Inverse probability weighting was employed to
transform data from a purely ecological observational
data series to a formal pseudo-randomized design.
Highly significant estimates and confidence intervals at
inverse probability-weighted robust and mixed effects re-
gression together with large e-Values clearly indicate

that these results fulfil the criteria for causal relation-
ships. These epidemiological relationships are consistent
with numerous cellular and molecular mechanisms de-
scribing cannabis-related neurotoxicity.
We find these results to be of great concern not only

for the public health community within the USA but
also for the wider international community.
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