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Abstract

Background: Ad hoc assumptions about the unobserved infection event, which is known only to occur between
the latest-negative and earliest-positive test dates, can lead to biased HIV incidence rate estimates. Using a
G-imputation approach, we infer the infection dates from covariate data to estimate the HIV incidence rate in a
hyper-endemic South African setting.

Methods: A large demographic surveillance system has annually tested a cohort of HIV-uninfected participants living
in the KwaZulu-Natal province. Using this data, we estimated a cumulative baseline hazard function and the effects of
time-dependent covariates on the interval censored infection dates. For each HIV-positive participant in the cohort,
we derived a cumulative distribution function and sampled multiple infection dates conditional on the unique
covariate values. We right censored the data at the imputed dates, calculated the annual HIV incidence rate per 100
person-years, and used Rubin’s rules to obtain the 95% confidence intervals.

Results: A total of 20,011 uninfected individuals with a repeat HIV test participated in the incidence cohort between
2005 and 2018. We observed 2,603 infections per 58,769 person-years of follow-up among women and 845 infections
per 41,178 person-years of follow-up among men. Conditional on age and circumcision status (men only), the female
HIV incidence rate declined by 25%, from 5.0 to 3.7 infections per 100 person-years between 2014 and 2018. During
this period, the HIV incidence rate among men declined from 2.1 to 1.1 infections per 100 person-years—a reduction
of 49%. We observed similar reductions in male and female HIV incidence conditional on condom-use, marital status,
urban residential status, migration history, and the HIV prevalence in the surrounding community.

Conclusion: We have followed participants in one of the world’s largest and longest running HIV cohorts to estimate
long-term trends in the population-wide incidence of infection. Using a G-imputation approach, we present further
evidence for HIV incidence rate declines in this hyper-endemic South African setting.
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Background
There is an urgent need to assess the impact of treatment
and prevention services on the population-wide incidence
of HIV infection in sub-Saharan Africa [1]. One way to
quantify the incidence rate is to repeatedly test a cohort
of uninfected participants until they are HIV-positive [2].
However, population-based cohorts are logistically dif-
ficult and costly to maintain, with test dates typically
scheduled on a periodic basis, say every six, twelve, or
twenty-four months. This means that we rarely (if ever)
observe the infection event, which is censored at some
time-point between the latest HIV-negative and earliest
HIV-positive test dates, otherwise known as the censoring
interval. Furthermore, participants may miss their sched-
uled test dates, either due to testing fatigue, sickness, work
commitments, or out-migration (among other reasons)
[3–5], thus increasing the censored interval length and our
uncertainty about the timing of the infection event [6].
Several ad-hoc imputation strategies have been adopted

to address the interval censoring problem. The most pop-
ular of these is to assume that the infection event occurs
at the mid-point of the censoring interval. However, our
research shows that mid-point imputation can lead to
severely biased annual incidence rates once the censor-
ing interval extends across one or more years [6]. In
a simulation analysis, we demonstrated that the single
random-point method, when coupled with standard mul-
tiple imputation procedures, produced estimates (with
appropriate standard errors) close to the true incidence
rate [6]. Nevertheless, one limitation of the single random-
point method is that it discards important auxiliary infor-
mation about the timing of the infection event [7]. For
example, we know that participants will have, on aver-
age, shorter times to infection if they are young and
female (aged 15–24 years) or live in communities with a
high prevalence of HIV [8, 9]. Such information, which
is routinely collected by surveillance systems during HIV
testing, could reduce uncertainty about the infection date
and improve the accuracy of the incidence rate estimates.
To estimate the HIV incidence rate, we use a novel

method called G-imputation to infer the unobserved
infection dates from covariate data [10]. First, we lever-
age a G-transformation model to estimate the cumula-
tive baseline hazard function and the effects of time-
dependent covariates on the interval censored data [11].
Next, we derive a cumulative distribution function for
each HIV-positive participant. From this distribution, we
sample multiple infection dates conditional on the partic-
ipant’s covariate values [10]. The data come from a large,
population-based HIV surveillance system in the north-
east region of South Africa. In this paper, we undertake a
first empirical analysis of this data using the G-imputation
approach, motivate our selection of covariates to infer the
infection dates, and assess the impact of model selection

on the incidence rate estimates. We further compare our
G-imputation results with previously published estimates
using single random-point imputation. This work contin-
ues our efforts to address the interval censoring problem
and accurately estimate the incidence of HIV in a hyper-
endemic South African setting.

Methods
Surveillance area
Since 2000, the Africa Health Research Institute (AHRI)
has maintained a comprehensive, population-based
surveillance system in the uMkanyakude district of the
KwaZulu-Natal province. The surveillance system has
been designed to capture the complex and dynamic
demographic reality of its surrounding community [18].
With a size of 438 km2, the surveillance area is home to
approximately 90,000 persons living in 11,000 households.
Households are mostly scattered across the landscape,
with several informal peri-urban settlements and a single
urban township. People living in the surveillance area are
generally poor and frequently migrate to urban or indus-
trial areas for long periods of time [12]. The majority of
the participants are Zulu-speaking (black) Africans.

Household and HIV surveys
Two to three times yearly, trained field-workers visit all
households in the surveillance area. Household attributes
are recorded and a senior household member provides
information on the birth, death, relationship, and migra-
tion history of household residents. Since 2004, an annual
HIV survey has been nested in the household survey. Men
between the ages of 15 and 54 years and women between
the ages of 15 and 49 years are eligible for HIV testing.
After obtaining written consent, field workers adminis-
ter individual questionnaires in private and extract blood
according to the UNAIDS and WHO Guidelines for Using
HIV Testing Technologies in Surveillance [13]. The House-
hold and HIV surveys, and the respective participation
rates, are described in greater detail elsewhere [17].

Statistical methods
To be consistent with previous AHRI analyses, we
included men aged 15–54 years and women aged 15–
49 years that tested for HIV between 2005 and 2018.
Participants had to be repeat-testers, with a first HIV-
negative test result followed by at least one valid HIV
test result. We identified all repeat-testers whose infection
event was censored between the latest HIV-negative and
earliest HIV-positive test dates. For these repeat-testers,
we imputed the infection dates in two stages.
For the first stage, we used a G-transformation model

to quantify the effects of the time-dependent covari-
ates on the interval censored infection events. The G-
transformation model is described in greater detail by
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Zeng et al. elsewhere [11, 14]. Let T denote the infection
time and let Z(·) denote a d-vector of covariates. Under
the semiparametric transformation model, the cumulative
hazard function for T conditional on Z(·) can be written
as:

�(t;Z) = G
(∫ t

0
eβ

ᵀZ(s)d�(s)
)

(1)

where β is a d-vector of regression parameters, �(·) is
an unknown increasing function, and G(·) is a strictly
increasing transformation function [11]. For this analysis,
we selected G(x) = log(1 + x), which gives the pro-
portional odds model. The G-transformation model does
not require imputed infection times as input or return
imputed infection times as output.
Based on previous work from the AHRI surveillance

area, we selected covariates that had a well-established
association with the risk of HIV acquisition. We grouped
these as follows: Individual covariates: age (5 year cate-
gories from 15 to 40 years, and >40 years) and circum-
cision status (circumcised or not) [9, 15, 16]. Only men
were asked to self-report their circumcision status in the
HIV surveys. Behavioral covariates: marital status (sin-
gle vs. married), condom use (always vs. sometimes), and
cumulative time spent outside the surveillance area (low,
moderate, high) [12, 15–17, 19–21]. Structural covariates:
area of residence (urban, peri-urban, rural), household
socio-economic status (low, middle, high), and opposite-
sex HIV prevalence [8, 15, 21–23]. The community HIV
prevalence is a geospatial measure that we constructed
using methods described elsewhere [8].
For comparison with the multivariate models, we also

ran a model with no covariates and undertook univariate
analyses for each covariate. All covariates were treated as
time-dependent. Because of the large differential in HIV
acquisition risk between men and women, we stratified
the analyses by sex [15, 23–25].
For the second stage, we used the G-transformation

model results to derive the participant’s unique cumula-
tive distribution function and sample multiple infection
dates conditional on his or her covariate values [10]. For
the i+thHIV-positive repeat-tester, the unique cumulative
distribution function is given by:

F̂i+(t;Zi+ , β̂) = 1−e
−G

(∑
{j:uj≤t} e

β̂ᵀZi+ (uj)
[
�̂(uj)−�̂(uj−1)

])
,

(2)

which is also a right-continuous, non-decreasing step
function having knots at u1 ≤ u2 ≤ · · · ≤ um with
u1 ≥ 0 and um ≤ U [10]. If we define F̂i+(t;Zi+ , β̂) =
F̂i+(uj;Zi+ , β̂) for any t ∈ (uj,uj+1], then the probability
of sampling an infection date within the i+th censoring

interval is:

Pr(Ti+ = uj|β̂) = F̂i+(uj;Zi+ , β̂) − F̂i+(uj−1;Zi+ , β̂).
(3)

We right censored the data at the imputed date (or at the
latest HIV-negative date for all uninfected repeat-testers),
and calculated the annual incidence rate per 100 person-
years. To quantify the uncertainty of our approach, we
generated 300 imputed datasets and obtained the means
of the annual estimates and their standard errors using
Rubin’s rules [26]. For the single random-point method,
we sampled the infection dates from a uniform distribu-
tion, as described in detail elsewhere [6], and calculated
the incidence rates using the same multiple imputation
strategy.
All analyses were performed with R statistical software,

version 3.6.3.

Results
Participation rates for the HIV incidence cohort are
shown in Table S1. On average, 71% (range: 64–77%) of the
eligible HIV-negative participants had a repeat HIV test,
entered the incidence cohort, and contributed person-
time to the analysis between 2005 and 2018. Figure S1
shows that there were no significant differences between
the eligible HIV-negative participants that did and did not
enter the incidence cohort. Of the 20,011 repeat-testers
that entered the cohort, 11,412 were women aged 15–49
years and 8,599 were men aged 15–54 years. We observed
2,603 infections per 58,769 person-years of follow-up
among women, with an overall incidence of 4.43 infec-
tions per 100 person-years. Among men, we observed 845
infections per 41,178 person-years of follow-up with an
overall incidence of 2.05 infections per 100 person-years.
The median length of the censoring interval was 3 years.
The G-transformation model results for the individual,

behavioral, and structural level covariates are shown in
Table 1 (univariate) and Table 2 (multivariate). For the
individual covariates in Table 2, the risk of HIV acquisi-
tion was highest among men in the 30–34 year age group
(HR=6.175, 95% CI=[5.094, 7.486]) and among women
in the 20–24 year age group (HR=1.382, 95% CI=[1.250,
1.528]), when compared with 15–19 year olds. Male cir-
cumcision was also associated with a reduced risk of
HIV acquisition among men (HR=0.729, 95% CI=[0.558,
0.953]), holding age constant.
For the behavioral covariates in Table 2, being mar-

ried was protective against HIV acquisition among
men (HR=0.619, 95% CI=[0.466, 0.823]) and women
(HR=0.396, 95% CI=[0.343, 0.459]) when compared with
being single, holding all else constant. For self-reported
condom use, men (HR=0.973, 95% CI=[0.830, 1.140]) and
women (HR=0.628, 95% CI=[0.574, 0.687]) had a lower
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Table 1 Univariate results showing the G-transformation hazard ratios for the individual, behavioral, and structural level covariates of
HIV acquisition

Men Women

HR 95% CI P-value HR 95% CI P-value

Individual Variables

Age (vs. 15–19 years):

20–24 3.795 (3.211, 4.485) <0.001 1.382 (1.250, 1.528) <0.001

25–29 5.707 (4.888, 6.662) <0.001 1.161 (1.033, 1.305) 0.012

30–34 6.367 (5.302, 7.647) <0.001 0.990 (0.846, 1.158) 0.896

35–39 5.085 (3.820, 6.769) <0.001 0.374 (0.296, 0.472) <0.001

40+ 2.627 (2.155, 3.203) <0.001 0.242 (0.202, 0.289) <0.001

Circumcised (vs. Uncircumcised) 0.694 (0.548, 0.879) 0.002

Behavioral Variables

Married (vs. Single) 0.636 (0.504, 0.803) <0.001 0.327 (0.284, 0.378) <0.001

Condom use: Sometimes (vs. Always) 1.362 (1.172, 1.582) <0.001 1.465 (1.347, 1.592) <0.001

Cum. Outmigration (vs. Low):†

Moderate 0.914 (0.770, 1.086) 0.306 1.594 (1.457, 1.744) <0.001

High 1.186 (1.001, 1.404) 0.048 1.435 (1.298, 1.588) <0.001

Structural Variables

Household SES (vs. Lower tertile)

Middle tertile 1.225 (1.051, 1.428) 0.009 1.080 (0.977, 1.194) 0.133

Upper tertile 1.135 (1.001, 1.287) 0.049 1.093 (1.003, 1.191) 0.044

Area of residence (vs. Urban):

Rural 0.656 (0.562, 0.767) <0.001 0.774 (0.716, 0.838) <0.001

Peri-urban 1.210 (0.910, 1.609) 0.190 1.007 (0.781, 1.299) 0.956

HIV Prevalence (vs. Low):‡

Moderate 1.745 (1.371, 2.222) <0.001 1.365 (1.239, 1.505) <0.001

High 2.337 (1.964, 2.781) <0.001 1.593 (1.440, 1.761) <0.001

Hazard ratio (HR), Standard error (SE), Confidence interval (CI). Hazard ratios were obtained with the G-transformation model for interval censored data
†Low, moderate, and high defined as <5%, 5–20%, and >20% cumulative time spent outside of the study area for men and women
‡Opposite-sex HIV prevalence of the participant’s surrounding community. Low, moderate, and high prevalence defined as <10%, 10–20%, and >20% for men and <15%,
15–25%, >25% for women, respectively. Different categories used because of the large difference in HIV prevalence among men and women

risk of HIV acquisition when compared with using con-
doms sometimes. Compared with low cumulative out-
migration, a high (HR=1.163, 95% CI=[0.976, 1.387])
amount of cumulative time spent outside the study area
was associated with a higher risk of HIV acquisition
among men. Among women, moderate (HR=1.304, 95%
CI=[1.186, 1.433]) and high (HR=1.197, 95% CI=[1.077,
1.330]) cumulative out-migration was associated with a
higher risk of HIV acquisition.
For the structural covariates, living in a household with

a higher socio-economic status increased the HIV acqui-
sition risk for men and women, as shown in the uni-
variate models in Table 1. In the multivariate model in
Table 2, household socio-economic status was not sig-
nificant. Because area of residence and HIV prevalence
were highly correlated, we dropped the former variable

from the multivariate model. Living in a community with
a high HIV prevalence was associated with a higher HIV
acquisition risk among men (HR=1.325, 95% CI=[0.885,
1.983]) and women (HR=1.601, 95% CI=[1.413, 1.815]),
when compared with living in a community with low HIV
prevalence.
In Fig. 1, we compare the HIV incidence rates from

the single random-point method, a G-imputation model
with no covariates, and the G-imputation models with
the individual, behavioral, and structural level covariates.
The G-imputation estimates and their 95% confidence
intervals are presented in Table S2 of the Supplement.
Across all models, the incidence rate was higher in women
than men and incidence declines occurred earlier in men
than women. The incidence rates did not differ markedly
across the individual, behavioral, and structural models,
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Table 2 Multivariate results showing the G-transformation hazard ratios for the individual, behavioral, and structural level covariates of
HIV acquisition

Men Women

HR 95% CI P-value HR 95% CI P-value

Individual Variables

Age (vs. 15–19 years):

20–24 3.743 (3.131, 4.476) <0.001 1.382 (1.250, 1.528) <0.001

25–29 5.554 (4.714, 6.544) <0.001 1.161 (1.033, 1.305) 0.012

30–34 6.175 (5.094, 7.486) <0.001 0.990 (0.846, 1.158) 0.896

35–39 4.948 (3.704, 6.611) <0.001 0.374 (0.296, 0.472) <0.001

40+ 2.523 (2.051, 3.104) <0.001 0.242 (0.202, 0.289) <0.001

Circumcised (vs. Uncircumcised) 0.729 (0.558, 0.953) 0.021

Behavioral Variables

Married (vs. Single) 0.619 (0.466, 0.823) <0.001 0.396 (0.343, 0.459) <0.001

Condom use: Sometimes (vs. Always) 0.973 (0.830, 1.140) 0.734 0.628 (0.574, 0.687) <0.001

Cum. Outmigration (vs. Low):†

Moderate 0.883 (0.738, 1.056) 0.172 1.304 (1.186, 1.433) <0.001

High 1.163 (0.976, 1.387) 0.091 1.197 (1.077, 1.330) <0.001

Structural Variables

Household SES (vs. Lower tertile)

Middle tertile 0.847 (0.678, 1.060) 0.146 0.955 (0.856, 1.066) 0.412

Upper tertile 0.933 (0.776, 1.121) 0.459 0.999 (0.904, 1.104) 0.987

HIV Prevalence (vs. Low):‡

Moderate 0.940 (0.566, 1.560) 0.811 1.361 (1.205, 1.536) <0.001

High 1.325 (0.885, 1.983) 0.171 1.601 (1.413, 1.815) <0.001

Hazard ratio (HR), Standard error (SE), Confidence interval (CI). Hazard ratios were obtained with the G-transformation model for interval censored data
†Low, moderate, and high defined as <5%, 5–20%, and >20% cumulative time spent outside of the study area for men and women
‡Opposite-sex HIV prevalence of the participant’s surrounding community. Low, moderate, and high prevalence defined as <10%, 10–20%, and >20% for men and <15%,
15–25%, >25% for women, respectively. Different categories used because of the large difference in HIV prevalence among men and women

with the individual model showing the largest declines in
incidence. For the individual model, the female incidence
declined by 25% from 5.0 to 3.7 infections per 100 person-
years between 2014 and 2018. Conditional on age and cir-
cumcision status, the incidence rate among men fell from
2.1 to 1.1 infections per 100 person-years between 2014
and 2018—a decline of 49%. Relative to the G-imputation
models, the single random-point estimates show a slightly
larger decline in incidence from 2011 onward for men and
from 2013 onward for women.

Discussion
Accurate incidence rate estimates are critically needed
to evaluate the effectiveness of HIV prevention strate-
gies in sub-Saharan Africa. One way to measure the
population-wide incidence is to repeatedly test a large
cohort of uninfected participants until they are HIV-
positive [2]. However, due to periodic testing and missed
test dates, we rarely (if ever) observe the exact infection

date, which is known only to occur at some time-point
between the latest HIV-negative and earliest HIV-positive
test dates (the censoring interval). We have previously
shown that ad hoc assumptions about the infection date—
for example, imputation of the event at the mid-point of
the censoring interval—can lead to artefactual trends in
the HIV incidence rate [6]. Recently, we demonstrated a
novel statistical approach, called G-imputation, to infer
the infection date conditional on covariate information
associated with the risk of HIV acquisition [10]. In a sim-
ulation analysis, we showed that incidence rate estimates
from the G-imputation method were close to the true
estimates, and were more accurate than estimates from
the mid-point method and single random-point method
using multiple imputation [10]. Here, we used the G-
imputation approach, with data collected from one of the
world’s largest and longest running HIV cohorts, to accu-
rately estimate trends in the population-wide incidence of
infection.



Vandormael et al. BMC Public Health         (2020) 20:1205 Page 6 of 9

Fig. 1 Shows the male and female HIV incidence rates computed from the single random-point method and four G-imputation models with 1) no
covariates, 2) individual-level covariates (age, circumcision status [for men only]), 3) behavioral-level covariates (marital status, condom use,
cumulative out-migration), and 4) structural-level covariates (household socio-economic status, HIV prevalence)

The first stage of our imputation approach required the
use of a G-transformation model to estimate the effects
of the time-dependent covariates on the interval censored
infection dates [11, 14]. Our results show that women
aged 15–24 years and men aged 25–34 years had the high-
est risk of HIV acquisition. This age-specific risk can be
attributed to the age structure of sexual partnerships in
the surveillance area. Men aged 25–34 years are most
likely to report recent sexual activity with women aged
25–34 years, which is the period of peak female HIV
prevalence. These men, who are more likely to be recently
infected, will have a higher risk of transmitting HIV to
their younger female partners (aged 15–24 years), who
then age into the group of similar-aged male partners
[25, 27]. One factor that could reduce the risk of HIV
acquisition among men, and therefore disrupt the cycli-
cal structure of onward HIV transmission, is voluntary
medical male circumcision (VMMC). Male circumcision
is strongly associated with a reduced risk of HIV acqui-
sition among men in sub-Saharan African settings [17,
28]. Our results confirm that male circumcision was a
significant protective factor against HIV acquisition. This
finding is broadly consistent with the introduction of a
local VMMC program in 2009, where 33% of all men
reporting being circumcised by 2016 [17]. Because age
and circumcision status are strongly associated with the
risk of HIV acquisition, we used this covariate to infer the
date of infection.

We report that more cumulative time spent outside the
study area increased both the male and female risk of
HIV acquisition, a result that is supported by previous
research [12, 16, 19, 20, 29]. For example, one of these
studies showed that the HIV acquisition risk increased by
50% when men spent 44% and women 90% of their time
away from their household residence [12]. Mobility pat-
terns in the study area are largely shaped by the legacy of
apartheid-era policies, which sought to regulate the rural
supply of African labourers into urban centres and prevent
their spouses or families from joining them [30]. Presently,
the lack of local employment opportunities and ongoing
cyclical migration has resulted in the extended absence
of men from the rural family home, leading to marital
instability [31, 32]. Research has shown that resident par-
ticipants who spend fewer nights in the study area are
more likely to have higher levels of risky sexual behavior
and less likely to access HIV prevention services [33–35].
Thus, the strong association between migration and HIV
acquisition risk motivated the inclusion of this covariate
data in our imputation strategy.
Our results show that higher prevalence of HIV in

the surrounding community was significantly associated
with increased HIV acquisition risk, as we have demon-
strated elsewhere [8, 15]. Higher HIV prevalence means
that uninfected residents will have an increased probabil-
ity of meeting, having sexual contact, and acquiring HIV
from an infected resident. In the AHRI surveillance area,
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HIV prevalence is highest (>35%) in the informal urban
settlements near the N2 highway while the more inac-
cessible rural areas near the western boundary have the
lowest HIV prevalence (<10%) [22]. For this reason, the
urban/rural status of a community is strongly correlated
with a measure of its HIV prevalence. Our results show,
for example, that living in an urban area was associated
with a higher risk of HIV acquisition when compared with
living in rural areas, which is consistent with previous
research from the surveillance area [16, 21]. We therefore
included HIV prevalence as covariate information in our
analysis, as we would expect those living in high preva-
lence (urban) areas to have shorter times to infection than
participants living in low prevalence (rural) areas.
In the second stage, we used the G-transformation

model results and the participant’s covariate values to
infer the HIV infection date. We used a model with
no covariates, individual-level covariates only, behavioral-
level covariates only, and structural-level covariates only.
The four models show significant declines in the HIV inci-
dence rates for men and women. For example, conditional
on age, the female incidence rate declined by 25%, from 5.0
to 3.7 infections per 100 person-years between 2014 and
2018 (see Table S2). During this period, themale incidence
(conditional on age and circumcision status) declined
from 2.1 to 1.1 infections per 100 person-years between
2014 and 2018—a reduction of 49%. As we describe else-
where [24], the larger decline in male incidence is likely
due to the introduction of a VMMC programme in 2009,
the scale-up of HIV testing and counseling services in
2010, and female ART coverage surpassing 35% in 2012.
Among women, declines in HIV incidence began once
men reached similar levels of ART coverage [17].
In this study, we confirm that the HIV incidence rate

in the AHRI surveillance area has declined markedly
since 2012. Previously, we used the single random-point
method and standard multiple imputation procedures to
demonstrate real declines in the incidence of HIV infec-
tion [6, 17]. These declines among men and women indi-
cate gradual progress toward HIV epidemic control [36,
37]. However, HIV incidence remains high, particularly
among women. We have previously argued that the high
female HIV incidence reflects a differential in the uptake
of treatment among men, who have lower ART cover-
age and higher levels of detectable viremia [17, 24, 38,
39]. Research from the ongoing HIV incidence cohort,
together with the findings from the ANRS Treatment-as-
Prevention trial in the same community [40], suggests that
innovative health systems approaches will be needed to
get people in early stages of HIV infection onto treatment
[37].
Our HIV incidence results are broadly consistent with

other studies from South Africa and sub-Saharan Africa.
In a community-based cohort study from a (different)

rural area in KwaZulu-Natal, the HIV incidence rate
among young women (aged 15–19 years) declined from
4.6 to 2.7 per 100 person-years between 2014 and 2018.
However, declines among men and women in the older
age groups were marginal or remained unchanged [41].
Similar to our findings, representative and cross-sectional
studies from eSwatini (prevoiusly Swaziland) and South
Africa have reported reductions in both the male and
female HIV incidence rate between 2011 and 2017 [42,
43]. Two other population-based cohorts from Uganda
and Kenya have also reported reductions of between 42–
50% in the overall incidence of HIV between 2012 and
2016 [44, 45]. Together, these studies show that a com-
bination of treatment preventions has been successful in
reducing HIV incidence at the population level, but that
greater coverage of these strategies is needed to reach key
milestones by 2030 [46].

Conclusion
In conclusion, we used the G-imputation approach with
covariate data collected from one of the world’s largest
and longest running HIV cohorts to estimate trends in
the population-wide incidence of infection. Our results
show that the female incidence rate declined by 25%, from
5.0 to 3.7 infections per 100 person-years between 2014
and 2018. During the same period, the HIV incidence
rate among men declined from 2.1 to 1.1 infections per
100 person-years—a reduction of 49%. Our G-imputation
results provide further evidence to support the observa-
tion that the HIV incidence rate among men and women
has been declining over time. This work contributes to
ongoing efforts to improve the accuracy of incidence rate
estimates following the scale-up of HIV prevention ser-
vices in sub-Saharan Africa.
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