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Abstract

Background: Manganese (Mn) participates in lipid metabolism. However, the associations between Mn exposure
and dyslipidaemia is unclear.

Methods: This was a cross-sectional study. Data were collected from the 2017 the Mn-exposed workers healthy
cohort (MEWHC). Finally, 803 occupationally Mn-exposed workers included in the study. The workers were divided
into two groups. The grouping of this study was based on Mn-Time Weighted Averages (Mn-TWA). The high-
exposure group included participants with Mn-TWA greater than 0.15 mg/m3. The low-exposure group included
participants with Mn-TWA less than or equal to 0.15 mg/m3. Mn-TWA levels and dyslipidaemia were assessed.

Results: After adjustment for seniority, sex, cigarette consumption, alcohol consumption, high-fat diet frequency,
medicine intake in the past two weeks, egg intake frequency, drinking tea, WHR, and hypertension, Mn-TWA levels
was negatively correlated with high triglycerides (TG) risk in workers overall (OR = 0.51; 95% CI: 0.36, 0.73; p < 0.01).
The results of males and females were consistent (OR = 0.53; 95% CI: 0.34, 0.81; p < 0.01) and (OR = 0.47; 95% CI:
0.24, 0.94; p < 0.01), respectively. By performing interactions analyses of workers overall, we observed no significant
interactions among confounders. Mn-TWA levels and pack-years on high TG risk (relative excess risk for the
interactions (RERI = 2.29, 95% CI: − 2.07, 6.66), (RERI) = 2.98, 95% CI: − 2.30, 8.26). Similarly, smoking status, drinking
status, high-fat diet frequency, and Waist-to-Hip Ratio (WHR) showed non-significant interactions with Mn-TWA
levels on high TG risk.

Conclusions: This research indicates that high Mn exposure was negatively related to high TG risk in workers.
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Background
Mn is vital for human health and is reflected in physio-
logical metabolism [1–3]. Equally, occupational overex-
posure to Mn exerts neurotoxic effects [4–7]. Mn
participates in lipid metabolism. However, its mechanical
effects are currently unclear. Mn reduces the total antioxi-
dant status of rats and increases brain lipid peroxidation
[8, 9]. Moreover, Mn enhances cholesterol biosynthesis in
the rats’ liver microsome. And stimulates farnesyl pyro-
phosphate synthase activity. An important synthesis path-
way for many lipids in the mevalonate pathway, with
mevalonate being the first branch in this pathway [10, 11].
Moreover, Mn enhances cholesterol biosynthesis in the
rats’ liver microsome. And stimulates farnesyl pyrophos-
phate synthase activity. An important synthesis pathway
for many lipids in the mevalonate pathway, with mevalo-
nate being the first branch in this pathway [12–15].
There are few studies on Mn and lipids. A recent study

showed that exposure of low-level Mn reduced serum tri-
glyceride (TG) levels in rats [16]. Besides, epidemiological
data were concentrated only on the intake of Mn. A diet
study from china indicated that dietary Mn negatively cor-
related with hypertriglyceridaemia in males. And females’
high-density lipoprotein cholesterol (HDL-C) levels in-
creases with Mn intake [17]. Similarly, the HDL-C levels
of obese males decreased with the increased in serum Mn
levels [18]. Other Chinese diet study observed that Mn in-
take was inversely associated with serum TG and total
cholesterol (T-CHO) levels [19].
In recent decades, welding and smelting associated leaded

to Mn overexposure [20]. Additionally, with the use of me-
thyl cyclopentadienyl Mn tricarbonyl (MMT) was added to
the gasoline component, resulting in increased Mn expos-
ure in the general population [21]. Public health issues re-
lated to Mn have attracted more attention.
The MEWHC was a vertically innovative and multi-

course scientific study, which began in the iron and Mn
concentrator from July to October 2011 [22]. The crit-
ical overall goal of MEWHC was to explore early or
long-term physical and mental health hazards, potential
exposure to biomarkers, and conditions related to Mn
exposure. Therefore, we carried out this study to investi-
gate the correlations between Mn external exposure and
hyperlipidemia. And we tried to explore the relationship
between Mn exposure and serum lipids among Mn ex-
posed workers.

Methods
Data collection
It was a cross-sectional study based on the follow-up of
the 2017 MEWHC study. Detailed inclusion criteria and
exclusion criteria for the cohort have been described in
detail before [22, 23]. And the information collected in
this cohort follow-up has been described in detail [24]. It

mainly covers three types of data, including the personal
information of the participants in the questionnaire, the
exposure data of Mn concentrations in the workplace,
collection, and storage of biological specimens and bio-
chemical detection data. Standardized and structured
questionnaires were used to collect necessary worker in-
formation. And participants were surveyed face to face
by professionally trained graduate students. The infor-
mation collected by the participants includes cigarette
consumption, alcohol consumption, high-fat diet fre-
quency, medicine intake in the past two weeks, egg in-
take frequency, drinking tea, and medical history.
Standardized methods were used to measure partici-
pants’ blood pressure. The definition of hypertension
adopted the latest Chinese standards [25]. Waist-to-hip
ratio (WHR) was deemed high if ≥0.9 for males, and
≥ 0.85 for females (WHO, 1999). Other indicators such
as cigarette and alcohol consumption were defined in
detail in our previous studies [26]. Smoking 20 cigarettes
a day in a year was defined as a pack-year [27]. We fur-
ther divided workers’ cigarette consumption into three
categories, based on the median of pack-years: non-
smokers, < 18 pack-years, and ≥ 18 pack-years. Accord-
ing to the exclusion criteria, we excluded workers with
cancer, coronary heart disease, stroke disease, or dia-
betes. And we excluded workers whose serum lipids
were not tested due to insufficient biological samples. In
the end, 22 workers were excluded from the study. A
total of 803 workers participated in this study.

Measurement of Mn levels in respirable dust
Recent researches by our team have introduced in detail
the sampling and monitoring methods of Mn concentra-
tions [24, 26]. Therefore, we briefly described the moni-
toring of air Mn. We have selected 20 types of jobs
covering different levels of Mn exposure in the ferro-
manganese alloy smelter. We randomly selected three
workers in each position for personal sampling. We used
individual samplers to measure workers’ respiratory dust
samples for three consecutive days. In the end, we col-
lected 134 air samples. We strictly abided by China’s
sampling and testing standards. The standards we
adopted are as follows: “Determination of airborne dust
in the workplace part 2: concentrations of respirable
dust” (GBZ/T 192.2–2007); “Specifications of air sam-
pling for hazardous substances monitoring in the work-
place” (GBZ159–2004); “Ambient air and stationary
source emission-determination of metals in ambient par-
ticulate matter-Inductively Coupled Plasma Mass Spec-
trometry (ICP-MS)” (HJ657–2013). After the digestion
of the filter sample, it was measured by ICP-MS (Perkin
Elmer, NexION 2000, USA). The limit of detection
(LOD) of Mn was 0.076 μg/L. Based on the standard of
China, PC-TWA of Mn was 0.15 mg/m3 (as MnO2). Five
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hundred twenty workers with Mn-TWA > 0.15 mg/m3

were defined as a high-exposure group. Two hundred
eighty-three workers with Mn-TWA ≤ 0.15 mg/m3 were
defined as the low-exposure group.
Smelter workers accounted for the most substantial

proportion of the high exposure group. High exposure
group also included ferromanganese alloy crushing oper-
ation workers, pouring crane workers, and crane workers
with ferromanganese alloy raw materials. The low-
exposure group mainly included circulating cooling
water system operators, chemical analysts, office
workers, security guards and workers in other auxiliary
positions.

Measurement of serum lipids
The determination of serum lipids has been described
before [24]. The definition of serum lipids abnormality
adopted the 2016 Chinese guidelines on prevention and
treatment of dyslipidaemia in adults [28]. High LDL-C
was defined as Low-density lipoprotein cholesterol
≥4.14 mmol/L. High TG was defined as triglyceride
≥2.26 mmol/L, high T-CHO was defined as total choles-
terol ≥6.22 mmol/L, and low HDL-C was defined as
high-density lipoprotein cholesterol < 1.04 mmol/L. Dys-
lipidaemia can further develop into cardiovascular dis-
ease [29]. Dyslipidaemia guidelines suggested an LDL-C
target should be set according to individual ASCVD risk.
The Chinese guidelines suggested that LDL-C target
should be set based on an individual’s ASCVD risk
levels. The personal ASCVD risk level was evaluated to
age, sex, Body Mass Index (BMI), hypertension history,
and cigarette consumption [28].

Statistical analysis
The Mann-Whitney U test was used to compare serum
lipids levels in different groups. We used logistic regres-
sion models to estimate Mn exposure levels and the risk
of varying serum lipid abnormalities. Also, there was a
high correlation between age and years of work. Only
the working years were adjusted in the models. Cor-
rected confounders included sex, cigarette consumption,
alcohol consumption, high-fat diet frequency, medicine
intake in the past two weeks, egg intake frequency,
drinking tea, WHR, and hypertension.
We also conducted a hierarchical analysis. Besides,

biological interactions between confounding factors were
also evaluated. Rothman et al. suggested that studies
should pay attention to epidemiological interactions or
additive interactions. The method assessed whether the
combined effect of exposure to two factors was higher
than the sum of their independent effects.
The authors proposed the use of relative excess risk

for interactions (RERI) in assessing additive interactions.
Rothman et al. explained detailed RERI explanations and

calculation methods in the article [30–32]. The inter-
action between Mn-TWA levels and confounders were
evaluated. Confounders included cigarette consumption
(smoking status and pack-years), alcohol consumption,
high-fat diet frequency, medicine intake in the past two
weeks, and WHR. The analysis software we use is R
(version 3.4) and SPSS (version 19.0) A two-sided,
p < 0.05 was considered statistically significant.

Results
In our participants, The median (IQR) ages were
41.75(36.58,46.92) and 45.42 (41.27,49.08) years for low,
and high exposure groups, respectively. The median seni-
ority was 18.92 years. And no significant difference was
observed in seniority between two groups (p = 0.07). The
proportion of males in the two groups was 57.6 and
72.5%, respectively. The ratio of males who consumed cig-
arettes was higher in high-exposure group, at 26.2%
(p < 0.01). And 10.6% of consumed cigarettes in low ex-
posure group. Similarly, the proportion of ≥18 pack-years
was higher in the high exposure group, and the rates were
29.4, 14.5%, respectively (p < 0.01). Alcohol consumption
at the high exposure was higher, at 32.7% (p < 0.01).
Low-exposure was 23.0%. WHR, hypertension, drinking
tea, and medicine intake in the past two weeks were
not different in two groups (p>0.05) (Table 1). High TG
(≥2.3mmol / L), high T-CHO (≥6.1 mmol / L), high
LDL-C (≥4.10mmol / L) and low HDL-C (< 1.04mmol / L)
were 25.5, 15.7, 6.8 and 3.1%. According to the individual’s
ASCVD risk, the overall goal of LDL-lowering was set, and
the incidence rate is 27.4%. The incidence of high TG in
the low-exposure group was higher than that in the high-
exposure group, which were 30.7 and 22.7%, respectively
(p < 0.01)) (Table 2).
Adjusted for potential confounding factors as sex, se-

niority, WHR, high blood pressure, drug intake in the
past half month, high-fat diet consumption, egg intake
frequency, drinking tea, smoking and drinking status,
high TG risk significantly decreased in high exposure
group (OR = 0.66; 95% CI: 0.48, 0.92; p < 0.01), and con-
sistent negative correlation was found in males (OR =
0.53; 95% CI: 0.34, 0.81; p < 0.01) and females (OR =
0.47; 95% CI: 0.24, 0.94; p < 0.01). Similarly, the results
negative correlation between high Mn-TWA levels and
high TG risk were found among subgroups current
smokers (OR = 0.36; 95% CI: 0.20, 0.63), and < 18 pack-
years group (OR = 0.37; 95% CI: 0.18, 0.77), ≥18 pack-
years group (OR = 0.38; 95% CI: 0.18, 0.84), seniority
< 18.92 years group (OR = 0.40; 95% CI: 0.23, 0.67), non-
hypertension group (OR = 0.42; 95% CI: 0.27, 0.65),
high-fat diet frequency < 3 times per week group (OR =
0.46; 95% CI: 0.31, 0.69), and normal WHR group (OR =
0.40; 95% CI: 0.25, 0.66) (Table 3, Fig. 1).
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Table 1 Demographic characteristics of the manganese-exposed workers from MEHWC

Variables Total (n = 803) Low exposure group (n = 283) High exposure group (n = 520) p –Value*

Age (years) 44.25 (39.50,48.42) 41.75 (36.58,46.92) 45.42 (41.27,49.08) < 0.01

Seniority (years) 0.07

< 18.92 402 (50.1) 154 (54.4) 248 (47.7)

≥18.92 401 (49.9) 129 (45.6) 272 (52.3)

BMI (kg/m2) < 0.01

< 24 317 (39.5) 131 (46.3) 186 (35.8)

≥24 486 (60.5) 152 (53.7) 334 (64.2)

Gender < 0.01

Male 540 (67.2) 163 (57.6) 377 (72.5)

Female 263 (32.8) 120 (42.4) 143 (27.5)

Race 0.65

Han 361 (45.0) 128 (45.2) 233 (44.8)

Zhuang 409 (50.9) 141 (49.8) 268 (51.5)

Other race 33 (4.1) 14 (4.9) 19 (3.7)

Education level < 0.01

Middle school or below 257 (32.0) 39 (13.8) 218 (41.9)

High school 367 (45.7) 103 (36.4) 264 (50.8)

Junior college or above 179 (22.3) 141 (49.8) 38 (7.3)

Smoking status < 0.01

Nonsmoker 476 (59.3) 208 (73.5) 268 (51.5)

Former smokers 161 (20.0) 45 (15.9) 116 (22.3)

Current smokers 166 (20.7) 30 (10.6) 136 (26.2)

Pack-yearsa < 0.01

Nonsmoker 431 (53.7) 193 (68.2) 238 (45.8)

< 18 years (low) 178 (22.2) 49 (17.3) 129 (24.8)

≥18 years (high) 194 (24.1) 41 (14.5) 153 (29.4)

Drinking status < 0.01

Former/never drinker 568 (70.7) 218 (77.0) 350 (67.3)

Current drinker 235 (29.3) 65 (23.0) 170 (32.7)

Hypertension 0.23

Yes 251 (31.3) 81 (28.6) 170 (32.7)

No 552 (68.7) 202 (71.4) 350 (67.3)

WHR 0.69

High 294 (36.6) 193 (37.1) 101 (35.7)

Normal 509 (63.4) 327 (62.9) 182 (64.3)

Medicine intake in the past two weeks 0.85

Yes 283 (35.2) 69 (34.7) 214 (35.4)

No 520 (64.8) 130 (65.3) 390 (64.6)

Drinking tea 0.99

Yes 488 (60.8) 316 (60.8) 172 (60.8)

No 315 (39.2) 204 (39.2) 111 (39.2)

High-fat diet frequency < 0.01

< 3times/week 640 (79.7) 242 (85.5) 398 (76.5)

≥3times/week 163 (20.3) 41 (14.5) 122 (23.5)
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In the analysis of interaction, we did not observe that
there was a significant cumulative scale interaction be-
tween Mn-TWA levels and cigarette consumption status
or the pack-years of high TG risk (relative excess risk for
the interactions for cigarette consumption (RERI = 2.29,
95% CI: − 2.07, 6.66), (RERI) = − 2.98, 95% CI: − 1.88,
7.85) for pack-years, respectively. Research showed that
the mutual harm of high-quality Mn-TWA exposure
and current smoking or previous smoking did not ex-
ceed the total number of their hazards, and consistent
results were found in ≥18 pack-years or < 18 pack-years.
In the same way, no obvious interactions between Mn-
TWA levels and alcohol consumption, the frequency of
high-fat diet, and the risk of high TG (Table 4).

Discussion
The associations between Mn exposure and dyslipidae-
mia in occupational workers were first discussed. The
results showed that workers’ exposure to higher Mn-
TWA levels was associated with lower TG risk. And

there was no interaction with confounders. Most of the
researches concentrated on the intake of Mn in the diet.
One clinical study showed that when 14 adults filled the
gluconic acid in the diet, Mn reduced body fat by in-
creasing the body fat metabolism of excreta [33]. An-
other clinical study for 7 young men showed that
adequate intake Mn could reduce blood carbohydrate
levels [34]. One study on the diet of 2111 Chinese par-
ticipants found that male’s Mn intake was inversely pro-
portional to hypertriglyceriduria. And that females’
HDL-C concentrations increased with Mn intake [17].
One Chinese study on the absorption of polymetallic di-
ets for 258 healthy males and females found that the
consumption of Mn was negatively proportional to
serum TG and T-CHO [19]. In this study, Mn exposure
of workers was inversely proportional to serum TG.
However, we did not observe correlations between Mn
exposure and serum T-CHO, HDL-C, LDL-C, and LDL-
lowering targets. Previous researches have already con-
firmed the critical efficacy of Mn in TG regulation.

Table 1 Demographic characteristics of the manganese-exposed workers from MEHWC (Continued)

Variables Total (n = 803) Low exposure group (n = 283) High exposure group (n = 520) p –Value*

Egg intake frequency < 0.01

< 3times/week 602 (75.0) 408 (78.5) 194 (68.6)

≥3times/week 201 (25.0) 112 (21.5) 89 (31.4)

Mn-TWA Mn-Time Weighted Average, Low exposure group, Mn-TWA ≤0.15 mg/m3; High exposure group, Mn-TWA > 0.15 mg/m3; MEHWC, Manganese-exposed
workers healthy cohort; WHR, Body Mass Index; Data were presented as median (25th, 75th) or n (%)
*p –Value were derived from Mann-Whitney U tests for continuous variables according to the data distribution, and chi-square test for the categorical variables
pack-years a: A pack-year was defined as 20 cigarettes smoked every day for 1 year. We further categorized participants’ smoking status into three groups on the
basis of median pack-years: nonsmokers, < 18 pack-years, and ≥ 18 pack-years

Table 2 Prevalence of different forms of dyslipidaemia among participants from MEHWC

Variables Total(n = 803) Low exposure group(n = 283) High exposure group(n = 520) p –Value*

Triglycerides 0.01

≥ 2.3 mmol/L 205 (25.5) 87 (30.7) 118 (22.7)

< 2.3 mmol/L 598 (74.5) 196 (69.3) 402 (77.3)

Total cholesterol 0.18

≥ 6.2 mmol/L 126 (15.7) 51 (18.0) 75 (14.4)

< 6.2 mmol/L 677 (84.3) 232 (82.0) 445 (85.6)

LDL-C 0.44

≥ 4.1 mmol/L 55 (6.8) 22 (7.8) 33 (6.3)

< 4.1 mmol/L 748 (93.2) 261 (92.2) 487 (93.7)

HDL-C 0.61

< 1.0 mmol/L 25 (3.1) 10 (3.5) 15 (2.9)

≥ 1.0 mmol/L 778 (96.9) 273 (96.5) 505 (97.1)

No achieving LDL-lowering targets b 0.57

Yes 220 (27.4) 81 (28.6) 139 (26.7)

No 583 (72.6) 202 (71.4) 381 (73.3)

Mn-TWA, Mn-Time Weighted Average; Low exposure group, Mn-TWA ≤0.15 mg/m3; High exposure group, Mn-TWA > 0.15 mg/m3; LDL-C, Low-density lipoprotein
cholesterol. HDL-C, High-density lipoprotein cholesterol; MEHWC, Manganese-exposed workers healthy cohort; No achieving LDL-lowering targets b, According to
the Chinese guideline-2016 Chinese Guideline for the Management of dyslipidaemia in Adults [28], LDL-lowering targets were set according to individual ASCVD
risk levels. Adjusted by age, gender, WHR, history of hypertension, and smoking status
* p –Value were derived from chi-square test
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Table 3 Adjusted odds ratios [95% confidence interval (CI)] for different forms of dyslipidaemia according to Mn-TWA levels in
MEHWC

dyslipidaemia Model 1* p –
Value

Model 2** p –
ValueOR(95% CI) OR(95% CI)

No achieving LDL-lowering targets 0.91 (0.66,1.26) 0.48 0.77 (0.54,1.09) 0.14

High LDL-C 0.80 (0.46,1.41) 0.80 0.70 (0.39,1.28) 0.25

High TG 0.66 (0.48,0.92) 0.01 0.51 (0.36,0.73) < 0.01

High T-CHO 0.77 (0.52,1.13) 0.18 0.71 (0.47,1.08) 0.11

Low HDL-C 0.81 (0.36,1.83) 0.61 0.55 (0.23,1.30) 0.17

Logistic regression models was used for analysis, with different forms of dyslipidaemia as the dependent variable and Mn-TWA levels (categorical variable) as the
independent variable. No achieving LDL-lowering targets, low-density lipoprotein cholesterol targets were set according to individual ASCVD risk, and adjusted for
the variables as drug status in the past 2 weeks, and alcohol intake status. According to the Chinese guideline-2016 Chinese Guideline for the Management of
dyslipidaemia in Adults [28], high LDL-C was defined as Low-density lipoprotein cholesterol ≥4.14 mmol/L, high TG was defined as triglycerides ≥2.3 mmol/L, high
T-CHO was defined as total cholesterol ≥6.2 mmol/L, and low HDL-C was defined as High-density lipoprotein cholesterol < 1.0 mmol/L.
*Model 1: Without adjusting covariates
**Model 2: Adjusted for the variables as gender, seniority, WHR, hypertension, medicine intake in the past two weeks, high-fat diet frequency, egg intake
frequency, drinking tea, smoking status, and drinking status

Fig. 1 Adjusted ORs for Mn-TWA levels associated with high TG risk in subgroups. Logistic regression models was used for analysis, with high TG
as the dependent variable and Mn-TWA levels (categorical variable) as the independent variable. We set subgroups according to gender,
seniority, smoking status, pack years, drinking status, hypertension, egg intake frequency, drinking tea, medicine intake in the past two weeks, and
WHR. Seniority was divided into two groups by median, and other variables were adjusted. When participants were males, or current smokers, or
smoking ≥18 pack-years, seniority < 18.92 years, or non-hypertension, or high-fat diet frequency less than 3 times per week, or WHR, Mn-TWA
levels showed negative associations with high TG risk
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However, our participants were occupationally touched
to Mn. Therefore, it was not appropriate to compare
dietary Mn intake with the concentrations of occupa-
tional Mn exposure levels of our workers. It was essen-
tial to study the mechanism of Mn′s involvement in
lipids metabolism and to assess the toxic doses of Mn to
dyslipidaemia. It was essential to consider the mechan-
ism of Mn′s involvement in lipids metabolism and to
determine the toxic doses of Mn to dyslipidaemia. Be-
sides, mammalian models must be established to show
that inhalation Mn exposure concentrations were closer
to the occupationally touched to Mn.
Mn can enter peripheral blood through intestinal ab-

sorption and olfactory channels. The steady-state Mn
ions in the peripheral blood were further absorbed and

metabolized by the liver. In contrast, excess Mn (in the
form of Mn2+ is primarily excreted from the liver into
the intestine, along with bile [35–38]. Previously pub-
lished studies have shown that Mn metabolism was re-
lated to lipid peroxidation [39–41]. Also, studies have
shown that Mn has participated in lipid metabolism
through lipid synthesis [12–15]. Thus the influence of
Mn in lipid mechanisms is equivocal.
In terms of lipid synthesis, two pathways exist for TG

synthesis in the liver. One of the mechanisms was the
entry of exogenous fatty acids into hepatocytes, which
are then esterified to synthesize TG. TG can also pass
on the de novo body fat production (DNL) pathway.
Eventually, TG is placed in a storage tank or secretion
tank. TG can also pass on the de novo body fat

Table 4 Adjusted odds ratios [95% confidence interval (CI)] for high TG according to the combined exposure Mn-TWA levels with
categories of smoking status, pack-years, drinking status High-fat diet, and WHR in male workers

Variables n (high
/normal
TG)

Low exposure High exposure Relative excess risk
due to interactions
(RERI)** (95%CI)

OR*(95% CI) OR*(95% CI)

Smoking status

nonsmokers 88/343 1.00 0.71 (0.44,1.16)

Former smokers 11/34 1.19 (0.37,3.80) 0.45 (0.16,1.33) 2.29 (−2.07,6.66)

Current smokers 106/221 2.20 (1.14,4.23) 0.75 (0.43,1.28) 2.98 (−1.88,7.85)

Pack years

nonsmokers 88/343 1.00 0.71 (0.44,1.16)

< 18 years (low) 56/122 2.09 (0.99,4.39) 0.77 (0.42,1.41) 2.29 (−2.07,6.66)

≥18 years (high) 61/133 1.83 (0.83,4.02) 0.66 (0.36,1.19) 2.98 (−2.30,8.26)

Drinking status -0.56 (−1.80,0.69)

Former/never drinker 127/441 1.00 0.55 (0.36,0.84)

Current drinker 78/157 1.37 (0.72,2.59) 0.60 (0.35,1.02)

High-fat diet frequency 5.82 (−20.28,31.92)

<3 times/week (low) 165/475 1.00 0.49 (0.33,0.72)

≥3 times/week (high) 40/123 0.79 (0.35,1.76) 0.51 (0.30,0.87)

Hypertension 2.26 (−2.03,6.65)

Yes 65/186 1.00 0.40 (0.26,0.62)

No 140/412 0.63 (0.34,1.15) 0.54 (0.33,0.88)

WHR 14.61 (−62.23,91.45)

Normal 103/91 1.00 0.43 (0.27,0.69)

High 102/407 1.40 (0.80,2.47) 0.88 (0.54,1.45)

Low exposure group, Mn-TWA ≤0.15 mg/m3; High exposure group, Mn-TWA > 0.15 mg/m3. pack-years, A pack-year was defined as 20 cigarettes smoked every day
for 1 year [27]. We further categorized participants’ smoking status into three groups on the basis of median pack-years: nonsmokers, < 18 pack-years,
and ≥ 18 pack-years
*OR: In our cohort, only participants were males, Mn-TWA levels showed stronger negative associations with high TG risk. And OR across the combined exposure
of Mn-TWA levels and the other risks factors of dyslipidaemia were obtained in logistic regression models in male. Adjusted for the variables as gender, seniority,
smoking status, pack-years, drinking status, hypertension, and medicine status in the past two weeks, egg intake frequency, drinking tea and WHR; Combined
categories variables did not be adjusted
**RERI: We assessed the presence of interactions between exposure Mn-TWA levels and smoking status, pack-years, drinking status, High-fat diet, and WHR by
testing whether the joint effect from exposure to both factors was greater than the sum of their independent effects. When the relative excess risk for interaction
> 0, there is an additive scale interactions between the two risk factors, and the 95% confidence interval is positive and does not contain 0. Otherwise, there was
no interactions, and RERI = 0 indicates exact additivity and there is no additive scale interactions
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production (DNL) pathway. Eventually, TG is placed in
a storage tank or secretion tank [42–45]. Acetyl-CoA
carboxylase (ACC) was an important metal catalyst for
the production of the Novo DNL acids (necessary phos-
phatases). Phosphatase was a necessary auxiliary enzyme
to active ACC. And phosphatase relied on Mn2 + activa-
tion and dephosphorylation to participate in ACC activ-
ity [43, 46]. Therefore, Mn 2+ plays a crucial role in the
synthesis of TG in the liver. The allosteric inhibition of
liver ACC significantly reduces hepatic TG concentra-
tions and increased plasma TG levels [47, 48]. It is spec-
ulated that the inhibition of ACC is the mechanism of
manganese-induced hypertriglyceridemia [49]. We hy-
pothesized that higher levels of Mn2+ were stored in the
livers of workers exposed to higher Mn levels. And ACC
was more likely to be activated in the liver. Eventually,
TG levels in the liver may be higher, while TG levels in
serum are reduce.
Gender is a common factor affecting Mn absorption.

Previous studies have found that females have higher Mn
absorption capabilities. And Males were found to have
lower levels of Mn in their blood than females [50–53].
However, males are reported to be more prone to TG,
lipid abnormalities, and metabolic diseases [54–56]. TG
metabolism is regulated by endogenous estrogen and an-
drogen [57]. Currently, several studies have observed that
in hepatocyte-specific ERa-knock-out mice, estrogen can-
not make liver fatty degeneration. This result suggests that
estrogen directly acts on the liver via the Estrogen Recep-
tor alpha (ERa), thereby decreasing TG [58–60]. In add-
itionally, to cope with obesity, both males and females
increase the flow of fatty acids into the peripheral blood.
Visceral or visceral chamber fat contributes more to liver
fatty acid delivery, than subcutaneous fat [46]. The fatty
acids that are absorbed into the liver are assembled into
TG. And then wrapped up in TG rich very low-density
lipoprotein (VLDL) particles and expelled from the liver
[61, 62]. Other studies have observed that females can
produce more TGDL-rich VLDL particles, and these par-
ticles help reduce overall blood TG levels.
When the body ingests food, TG circulates in the form of

chylomicrons containing apolipoprotein 48. Study through
short-term and long-term high-fat feeding found that fe-
males can better clear diet-related TG [63–65]. Consistent
with previous research results, the proportion of females
with high TG was indeed lower in our study subjects, and
that high TG was observed in males. But the high TG risk
is not different between males and females workers after
exposure to Mn. We speculate that we may have corrected
WHR factors in the statistical analysis, to avoid confound-
ing effects caused by sex hormones. Therefore, our research
can reflect that manganese is involved in TG metabolism.
In our study, smoking and drinking rates were higher

than the general population, our smoking and drinking

rates were 40.7 and 28.4%, respectively, were wherein a
survey of 163,641 Chinese adults between 2013 and
2014, the rates were 24.4 and 8.7%, respectively. Guide-
lines on the treatment of blood cholesterol to reduce
atherosclerosis by The American Heart Associations
(AHA, 2013) have indicated that smoking was an inde-
pendent risk behaviour for dyslipidaemia. That small
amounts of alcohol could raise TG levels further [29].
Previous studies have shown that WHR and high-fat diet
are significantly and positively correlated with high TG
levels [66–70]. However, from interactions analyses, we
observed no interactions between Mn-TWA levels and
smoking effects (both smoking status and pack-years),
drinking status, high-fat diet, and the WHR on high TG
risk. Although not statistically significant, regardless of
whether the population’s high-fat diet frequency was high
or low, we can observe a negative correlation between
Mn-TWA levels exposure and high TG risk. This result
suggests that the intensity of Mn exposure to decrease
high TG risk was greater than that of a high-fat diet. Fur-
ther investigations are required to confirm these findings.
This is the first study to examine the relationship

between Mn exposure and dyslipidaemia in occupa-
tional workers. We comprehensively carried out a
full range of accurate measurements and analysis of
the risk sources and potential risks related to lipid
metabolism. And we will further conduct follow-up
the cohort to evaluate the risk of hyperlipidemia ex-
posed to Mn. There were some limitations to our
study. Firstly, non-Mn exposed individuals were not
included as controls. Therefore, the confounding ef-
fect of regional diet mix, labor efficiency, genetic in-
heritance, and environmental hazards cannot be
ruled out. Our data does not accurately reflect Mn
cumulative exposure indices (Mn-CEI). So there is
no way to comprehensively discuss the relationships
between long-term Mn cumulative exposure and
dyslipidaemia.

Conclusions
This study observed an inverse correlation between
workers’ high TG and Mn exposure levels. We expect
larger prospective studies to confirm the association be-
tween Mn exposure and dyslipidaemia.
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