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Abstract

Background: Statistical data on burden of kidney cancer and the relavant risk factors are valuable for policy-
making. This study aims to estimate kidney cancer deaths and high body-mass index (BMI) attributable to the
deaths by gender and age group in China adults, compared with U.S.

Methods: We extracted kidney cancer data (1990–2017) about the age-standardized rates using the comparative
risk assessment framework of the 2017 Global Burden of Disease study. We performed an age-period-cohort (APC)
analysis to estimate trends of kidney cancer mortality attributable to high BMI.

Results: During 1990–2017, age-standardized mortality rate of kidney cancer was increasing in China but
decreasing in U.S. The mortality attributable to high BMI in China showed a general increasing trend, while that in
U.S. men was increasing and tended to be stable in women since 1995. APC analysis showed a similar pattern of
age effect between China and U.S. adults, which substantially increased from 20 to 24 to 90–94 age group.
Differently, the period effect rapidly increased in China than U.S. adults during 1990–2017. The cohort effect peaked
in the earlier cohort born in 1902–1906 in China, and it declined consistently in U.S. with exception of 1902–1906
and 1907–1911 birth cohort.

Conclusions: The kidney cancer deaths attributable to high BMI, and period effect have been generally increasing
in China adults, compared with U.S. adults in which the trend tends to be stable in recent years. The rapid aging
may also intensify the increasing trend of kidney cancer death in China. Effective measures should be conducted
on body weight control and care for kidney cancer prevention.
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Background
Kidney cancer has been the common cancers in the world
[1, 2]. There are 48,210 new cases and 17,168 deaths in
China in 2017, accounting for 12.27% and 12.39% of 393,
042 new cases and 138,528 deaths worldwide, respectively

[2]. Kidney cancer mainly includes renal cell carcinoma
with a proportion of 90–95% [3]. The incidence of kidney
cancer has increased year by year in recent years, rising by
2% to 3% compared with 10 years ago [4]. The mortality
of kidney cancer has been stable globally since the 1990s,
while it decreases in most countries in recent years [5]. In
China, both incidence and mortality of kidney cancer
seemed low, but previous study reported incidence of kid-
ney cancer had greatly increased [6]. The mortality trend
of kidney cancer remains unknown.
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Established risk factors for kidney cancer mainly in-
clude tobacco smoking, obesity/overweight, hypertension
and chronic kidney disease [5, 7–10]. It is currently ac-
cepted that there is a global epidemic of obesity [11].
The prevalence of overweight or obesity in China adults
is also rising greatly during 1993–2014 [12, 13]. It is be-
ing concerned that obesity increased the risk of kidney
cancer [8, 14]. This relationship is attributed to abnor-
mal secretion of adipokines, insulin resistance, higher es-
trogen level among overweight/obesity individuals [9,
10]. However, with a rapid urbanization and transition
to western dietary and lifestyle in China, people experi-
enced an increasing exposure to obesity [6, 15], and
trends of kidney cancer death remains unknown. The
prevalence of obesity/overweight is different between
China and U.S. populations. Therefore, we aim to fur-
ther estimate the time patterns of kidney cancer mortal-
ity attributable to high BMI to present the relative risk
due to age, period and cohort of the mortality in China,
compared with U.S., which could provide epidemio-
logical evidence for kidney cancer prevention and
control.

Methods
Data sources
This study obtained kidney cancer data from global bur-
den of disease (GBD) 2017 study. GBD 2017 study pro-
vided a comprehensive estimation of annual incidence,
prevalence, mortality for causes of death and the corre-
sponding risk factors in 195 countries and territories
during 1990–2017 [16, 17]. The GBD study summaries
burden of disease for global populations among different
causes, locations, ages, and sexes [18]. The authors de-
clare all the data used in the study was deidentified. Eth-
ics was not required because the data was publically
available.
The age-standardized mortality rates (ASMR) of kid-

ney cancer attributable to high BMI were obtained from
GBD 2017 [19]. The GBD study attributes each death to
a single underlying cause that began the series of events
leading to death, in accordance with ICD principles. Kid-
ney cancer was defined as the International Classifica-
tion of Diseases of the 10th revision (ICD-10) code C64
and code 189 in ICD-9 [16]. The original mortality data-
base is composed of vital registration (VR), verbal aut-
opsy (VA), registry, survey, police, and surveillance data
[1, 20]. The GBD study organizes causes of death in a
hierarchical list (four levels), which was further refined
to separately estimate causes with substantial policy
interest or high levels of burden. To predict the level for
each cause of death, GBD 2017 used the Cause of Death
Ensemble model (CODEm) to systematically test a large
number of functional forms and permutations of covari-
ates [16]. The original data of kidney cancer mortality in

China population was mainly from the Cause of Death
Reporting System of the Chinese Center for Disease
Control and Prevention (CDC), Disease Surveillance
Points (DSPs) and the Maternal and Child Surveillance
System, which are considered to be nationally represen-
tative [21]. Mortality data sources of both China and U.S
were classified into cancer groups according to the
International Classification of Diseases and estimated by
GBD study. To increase the comparability of the two re-
gions, age-standardized mortality rates were calculated
adjusted to the GBD 2017 global standard population
using the direct method. In this analysis, mortality data
of the population aged under 20 years old was excluded
for both China and U.S. because kidney cancer diag-
nosed in children is rare. The mortality of people aged
above 95 years old was also excluded because these data
couldn’t meet APC analysis.

Attributable burden
The GBD study incorporated the comparative risk as-
sessment framework previously to quantify the burden
of several causes and impairments attributable to 84 envir-
onmental, occupational, metabolic, and behavioral risk
factors. Systematic literature search was performed in
PubMed to find the evidence for kidney cancer deaths due
to the attributable risk factors. For each included study,
the proportions of kidney cancer cases induced by the spe-
cific risk factors were calculated with exception of outliers
or data that did not meet the inclusion criteria [2]. Briefly,
after assessing the casual evidence in each risk-outcome
pair, we analyzed the attributable burden of kidney cancer
deaths to high BMI. Overweight and obesity are defined
by measures of weight and height that provide an index of
one’s mass, referred to as a BMI. In this study, based on
comparative risk assessment from GBD 2017 study, high
body-mass index (BMI) for adults (ages 20+) is defined as
BMI greater than theoretical minimum risk exposure
level: 20–25 kg/m2 [22].

Statistical analysis
In the descriptive analysis, the age-standardized mortality
rate (per 100,000 population) was calculated according to
the direct method by summing up the products of age-
specific rates (αi, where i denotes the i th age class) and the
number of persons (βi) in the same age subgroup i of the
chosen reference standard population, followed by dividing
the sum of the standard population weights, i.e., [23].

ASMR ¼
PA

i¼1αiβiPA
i¼1βi

� 100; 000

Standardization was considered imperative for this
study as it eliminates the bias when comparing the rates
between the two areas.
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The APC model could be expressed as:

Y J ¼ μþ a age j þ βperiod j þ γcohort j þ εi

where YJ denoted the response variable—the net effect
on colorectal cancer mortality for group j, a, β and γ de-
noted the coefficient of age, period and cohort of APC
model, respectively, and μ denoted the intercept of the
model. εi denoted the residual of the APC model.
In this model, the cohort can be expressed by age and

period; that is, cohort = period−age. An on-identification
problem may still exist as there is a linear relationship
between the age, period and cohort. In our study, APC
model with an intrinsic estimator (IE) method was used
to solve the collinearity problem, which is based on es-
timable functions and the singular value decomposition
of matrices [24].
In this analysis, age reflects variations in vital rates, based

on that mortality risk increases with the process of ageing.
Period effects represent influential factors, including com-
plex sets of historical events and environmental factors, that
simultaneously affect all age groups. Cohort effects repre-
sent variations across groups of individuals born in the
same year or years. The age, period and cohort effects influ-
ence morbidity and mortality risks of disease in specific
ways, especially period effect represent complex sets of his-
torical events and environmental factors [1]. APC analysis
was used to decompose the three trends in mortality and
provides unbiased and relatively efficient estimation results
[25]. The conventional approaches include two-factor
models (age-period (AP), age-cohort (AC), and period-
cohort (PC) models) and constrained generalized linear
models (CGLIMs). APC model was commonly selected for
estimating age, period and cohort effect of disease data [24,
26]. Goodness-of-fit statistics and the best-fitting model
was presented in Supplementary Table 1.
In this work, age-specific rates of kidney cancer mor-

tality attributable to high BMI were classified by con-
secutive age groups (20–24, 25–29, ..., 90–94), 5-year
periods (1992, 1997, 2002, 2007, 2012, 2017), and cor-
respondingly 5-year birth cohort groups (1902–1906,
1907–1911, …, 1997–2001). The estimated coefficients
for the age, period and cohort effects by APC analysis
was shown in Supplementary Table 2A and 2B, and
then these coefficients were calculated to the exponential
value (exp(coef.) = ecoef.) which denotes the mortality rela-
tive risk (RR) of a particular age, period, or birth cohort
relative to each average level (see Tables 1 and 2). For ex-
ample, for period effect of China men, the risk of kidney
cancer due to high BMI in 2017 was 6.23 (exp. (β2017 -
βmean) − (β1992 − βmean) = exp. (β2017 - β1992) ≈ 6.23) times
the risk in 1992. This analysis was performed by Stata 14.0
software (StataCorp, College Station, TX, USA).

Results
Age-standardized mortality rates of kidney cancer
Figure 1 shows ASMR of kidney cancer in China and
U.S. for both sexes at all ages during 1990–2017. Ac-
cording to GBD 2017, the ASMR of kidney cancer in-
creased from 0.64/100,000 in 1990 to 0.94/100,000 in
2017 in China, and it decreased from 3.21/100,000 in
1990 to 3.12/100,000 in 2017 in the U.S. In 2017, the
ASMRs of kidney cancer in U.S. (4.55/100,000 in men;
1.93/100,000 in women) were much higher than China
(1.29/100,000 in men; 0.62/100,000 in women) for both
sexes. Overall, the ASMR of kidney cancer was increas-
ing in China for both sexes, while the ASMR in the U.S.
decreased and tended to be stable during the same
period. Thus, the prevalence of risk factors for kidney
cancer may still impact the mortality in Chinese people.

Trends in mortality of kidney cancer attributable to high
BMI
Trends in ASMR of kidney cancer attributable to high
BMI from 1990 to 2017 for China and the U.S. are
shown in Fig. 2. The highest rate in China was 0.12/100,
000 in men and 0.09/100,000 in women in 2017. In the
U.S., the highest rate was 1.18/100,000 in men and 0.70/
100,000 in women during 2001–2005. China showed a
low attributable mortality, compared with the U.S. In
overall, a general increasing trend was observed, except
for U.S. women, although it shows a low level of age-
standardized mortality rate of kidney cancer attributable
to high BMI in China compared with the U.S.

The results from APC analysis of kidney cancer mortality
attributable to high BMI
Age, period (year of death), and cohort (year of birth) are
three independent factors that have been found to be as-
sociated with cancer mortality, and, therefore, each of
these factors may affect trends in cancer mortality. We
mentioned before that as we used APC model with the IE
method to eliminate the non-identification problem as
there is a linear relationship between the age, period and
cohort. The three independent effects were presented:

Age effect
Age effect on the mortality showed an increasing trend in
both China and U.S. adults (Fig. 3a, Tables 1 and 2). The
age effect indicates the RR of mortality attributable to high
BMI (high-BMI-attributable mortality) varies from youn-
ger and older age groups. Generally, a similar pattern of
age effect was observed between China and U.S., as well as
genders. From 20 to 24 to 90–94 age group, the RR of kid-
ney cancer mortality attributable to high BMI increased
by 60.80 times and 34.17 times in men and women in
China, respectively; in U.S., it increased by 69.68 times
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and 55.23 times in men and women, respectively (see Sup-
plementary Table 2A and 2B).

Period effect
The period effect on the mortality continuously in-
creased in both China and U.S. adults, while it rapidly
increased in China than U.S. during the observation
period (Fig. 3b, Tables 1 and 2). This trend indicates that
the RR of kidney cancer mortality attributable to high
BMI increased with advancing time, and Chinese popu-
lation is being more exposed to an increased risk of kid-
ney cancer deaths. From 1992 to 2017, the RR of the
mortality increased by 6.23 times and 4.14 times in men
and women in China, respectively; in U.S., it increased
by 2.53 times and 2.05 times in men and women, re-
spectively (see Supplementary Table 2A and 2B). Add-
itionally, men have a higher risk than women.

Cohort effect
The cohort effect continuously decreased in China, and
a decreasing trend was also observed in U.S. with excep-
tion of 1902–1906 and 1907–1921 birth cohort (Fig. 3c,
Tables 1 and 2). From 1902–1906 to 1997–2001 birth
cohort, the RR of kidney cancer mortality attributable to
high BMI decreased by 92.24 and 92.29% in men and
women in China, respectively; in U.S., the RR of that de-
creased by 87.54 and 87.64% in men and women, re-
spectively (see Supplementary Table 2A and 2B).

Discussion
The causes of kidney cancer are very complex, and the
relevant literature shows that smoking, hypertension and
obesity are the three most important risk factors [27].
According to relevant studies, the summary relative risk
estimate was 1.07 (95% CI 1.05–1.09) per unit of in-
crease in BMI [28]. With the socio-economic develop-
ment, urbanization, intensified industrialization and
changes in dietary and lifestyles, the exposure to kidney
cancer risk factors in Chinese population has increased.
From 1980 to 2000, global tobacco consumption showed
an upward trend in most regions, and tobacco consump-
tion in China increased the fastest; but decreased by 27%

Table 1 The relative risks of kidney cancer mortality attributable
to high BMI due to age, period and cohort effects, China

Factor Men Women

RR 95% CI RR 95% CI

Lower Upper Lower Upper

Age

20–24 0.07 0.00 4.93 × 105 0.11 0.00 2.52 × 105

25–29 0.13 0.00 2322.96 0.17 0.00 3853.25

30–34 0.21 0.00 410.40 0.20 0.00 1275.74

35–39 0.31 0.00 168.34 0.25 0.00 478.42

40–44 0.50 0.00 89.29 0.40 0.00 159.30

45–49 0.82 0.01 60.57 0.67 0.01 83.08

50–54 1.22 0.03 47.55 0.98 0.02 57.00

55–59 1.62 0.07 36.81 1.40 0.05 41.47

60–64 1.91 0.14 26.61 2.03 0.13 31.29

65–69 2.23 0.25 19.89 2.74 0.30 25.00

70–74 2.63 0.42 16.29 3.29 0.51 21.10

75–79 3.50 0.73 16.75 3.52 0.62 19.90

80–84 3.57 0.71 17.98 3.34 0.51 21.85

85–89 4.07 0.63 26.21 3.96 0.45 34.84

90–94 3.96 0.40 39.22 3.63 0.25 52.85

Period

1992 0.39 0.05 2.85 0.49 0.06 3.99

1997 0.49 0.11 2.16 0.59 0.12 2.80

2002 0.82 0.28 2.38 0.85 0.27 2.70

2007 1.31 0.50 3.40 1.18 0.40 3.44

2012 1.98 0.61 6.47 1.68 0.45 6.22

2017 2.44 0.50 11.88 2.05 0.36 11.79

Cohort

1902–1906 3.29 0.04 276.04 2.70 0.02 355.62

1907–1911 2.68 0.08 91.34 2.40 0.05 110.30

1912–1916 2.27 0.12 41.76 2.15 0.09 50.90

1917–1921 1.97 0.17 22.35 1.90 0.13 27.13

1922–1926 1.89 0.24 15.10 1.80 0.18 17.56

1927–1931 1.76 0.26 11.84 1.74 0.22 13.98

1932–1936 1.55 0.20 12.23 1.64 0.17 15.64

1937–1941 1.35 0.12 14.80 1.52 0.11 20.67

1942–1946 1.11 0.07 18.81 1.37 0.06 28.99

1947–1951 1.01 0.04 28.23 1.27 0.04 45.26

1952–1956 1.04 0.02 45.92 1.26 0.02 78.05

1957–1961 0.92 0.01 69.02 1.06 0.01 127.64

1962–1966 0.78 0.01 103.57 0.82 0.00 216.10

1967–1971 0.78 0.00 170.81 0.78 0.00 387.01

1972–1976 0.64 0.00 295.45 0.63 0.00 787.25

1977–1981 0.50 0.00 769.12 0.48 0.00 3280.14

1982–1986 0.45 0.00 2792.20 0.42 0.00 17,949.19

Table 1 The relative risks of kidney cancer mortality attributable
to high BMI due to age, period and cohort effects, China
(Continued)

Factor Men Women

RR 95% CI RR 95% CI

Lower Upper Lower Upper

1987–1991 0.42 0.00 21,024.40 0.38 0.00 1.23 × 105

1992–1996 0.37 0.00 2.15 × 106 0.32 0.00 6.76 × 106

1997–2001 0.26 0.00 1.36 × 1014 0.21 0.00 4.28 × 1014

Notes: RR Relative risk [RR = exp.(coefficient)], CI Confidence interval
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and 2% in the Americas and Europe [29]. According to
the Chinese national nutrition and health survey, the
prevalence of hypertension in the population aged over
15 years old was 5.1% in 1958–1959, 7.7% in 1979–1980,
13.6% in 1991, and 17.6% in 2002, and the age-
standardized rate also showed the upward trend [15]. In
1982, overweight and obesity among the Chinese popu-
lation were still very rare, at 6% and 0.6%, respectively.
In 2014, the overweight rate reached 34.26% and the
obesity rate was 10.98% [15]. In overall, all these factors
may be related to the increased mortality of kidney can-
cer in this present study.
Obesity/overweight is considered to be the increased

risk for kidney cancer [8, 14]. The prevalence of obesity/
overweight is different between China and the U.S. Our
study found that kidney cancer deaths attributable to
high BMI showed an increasing tendency in China and
men U.S., and the overall mortality rate of kidney cancer
is still increasing in both genders in China but not in the
U.S. Comparison to U.S., China has a serious attribution
burden of kidney cancer death and BMI. The exposure
to kidney cancer risk factors in Chinese population is in-
creasing yearly. Potential kidney cancer risk factors in-
clude behavioural and environmental factors,
comorbidities, and analgesics. Smoking, obesity, and
hypertension represent established risk factors [30]. In
GBD 2017 study, spatiotemporal Gaussian process re-
gression was used to estimate risk-attributable burden
and risk exposure for many risks, typically those with
rich age-sex-specific data. It synthesises noisy data by
borrowing strength across space, time, and age to best
estimate the underlying trends for a given risk. GBD
study found considerable heterogeneity across super-
regions in the leading risk factors. There are also marked
spatial patterns for other risks such as high BMI in cen-
tral America, north Africa and the Middle East, and
Oceania [22]. In our study, we obtained China and U.S.
mortality data from GBD study to analyze the relation-
ships between kidney cancer deaths and high BMI. The
geographic heterogeneity in mortality rates of kidney
cancer attributable to high BMI may be considerable be-
tween China and U.S.

Table 2 The relative risks of kidney cancer mortality attributable
to high BMI due to age, period and cohort effects, U.S.

Factor Men Women

RR 95% CI RR 95% CI

Lower Upper Lower Upper

Age

20–24 0.05 0.00 13.34 0.08 0.00 17.08

25–29 0.07 0.00 4.30 0.11 0.00 6.18

30–34 0.12 0.01 2.80 0.14 0.00 4.35

35–39 0.25 0.02 2.48 0.24 0.02 3.41

40–44 0.54 0.09 3.08 0.43 0.05 3.42

45–49 1.06 0.26 4.25 0.76 0.15 3.97

50–54 1.70 0.54 5.36 1.24 0.32 4.73

55–59 2.38 0.93 6.06 1.79 0.60 5.32

60–64 2.88 1.35 6.13 2.37 0.99 5.71

65–69 3.18 1.73 5.85 2.89 1.43 5.85

70–74 3.31 1.96 5.59 3.35 1.84 6.09

75–79 3.38 2.00 5.70 3.55 1.96 6.42

80–84 3.07 1.66 5.68 3.73 1.88 7.38

85–89 3.49 1.65 7.38 4.13 1.79 9.54

90–94 3.50 1.38 8.84 4.18 1.48 11.77

Period

1992 0.62 0.34 1.14 0.70 0.36 1.37

1997 0.76 0.51 1.14 0.82 0.52 1.29

2002 0.94 0.72 1.21 0.95 0.70 1.29

2007 1.09 0.84 1.42 1.07 0.79 1.46

2012 1.30 0.88 1.93 1.21 0.77 1.90

2017 1.58 0.90 2.78 1.43 0.75 2.71

Cohort

1902–1906 2.31 0.54 9.95 2.31 0.47 11.21

1907–1911 2.45 0.76 7.91 2.44 0.69 8.65

1912–1916 2.56 0.97 6.79 2.52 0.89 7.19

1917–1921 2.52 1.11 5.71 2.51 1.05 6.02

1922–1926 2.42 1.19 4.95 2.39 1.12 5.10

1927–1931 2.21 1.13 4.31 2.17 1.06 4.42

1932–1936 1.97 0.96 4.01 1.93 0.89 4.19

1937–1941 1.72 0.76 3.90 1.70 0.69 4.21

1942–1946 1.49 0.57 3.90 1.46 0.50 4.29

1947–1951 1.26 0.41 3.89 1.22 0.34 4.40

1952–1956 1.03 0.28 3.85 1.00 0.22 4.53

1957–1961 0.86 0.19 3.93 0.85 0.15 4.90

1962–1966 0.70 0.12 4.02 0.72 0.10 5.40

1967–1971 0.56 0.08 4.17 0.57 0.06 5.99

1972–1976 0.46 0.04 4.74 0.46 0.03 7.37

1977–1981 0.40 0.02 7.14 0.41 0.01 12.41

1982–1986 0.38 0.01 15.64 0.40 0.01 26.98

Table 2 The relative risks of kidney cancer mortality attributable
to high BMI due to age, period and cohort effects, U.S.
(Continued)

Factor Men Women

RR 95% CI RR 95% CI

Lower Upper Lower Upper

1987–1991 0.36 0.00 52.63 0.37 0.00 83.92

1992–1996 0.33 0.00 363.70 0.33 0.00 483.03

1997–2001 0.29 0.00 90,958.62 0.28 0.00 1.33 × 105

Notes: RR Relative risk [RR = exp.(coefficient)], CI Confidence interval
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In China, the increasing ASMR of kidney cancer at-
tributable to high BMI was possibly associated with the
prevalence of obesity [12, 13]. The increasing attribut-
able burden and death of kidney cancer may be related
to the improved diagnosis level of kidney cancer [6], and
changes in exposure levels of kidney cancer risk factors
in the population also have impacts on the mortality of

kidney cancer [31]. Differently, a stable trend or slight
decline was observed for kidney cancer mortality in U.S.,
which may be explained by effective improving the rising
obesity trend in the US adult population over the past
decades [32, 33]. In U.S., relevant researches reported
that obesity prevalence remains need continue surveil-
lance [34], and the increasing mortality attributable to

Fig. 1 The age-standardized mortality rates of kidney cancer in China and the U.S. for both sexes at all ages, 1990–2017. Blue corresponds to
men. Red corresponds to women

Fig. 2 Trends in the age-standardized rates of kidney cancer mortality attributable to high BMI in China and the U.S. from 1990 to 2017, at all
ages. Blue corresponds to men. Red corresponds to women
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high BMI was observed in men U.S. Thus, this attribut-
able burden about BMI and kidney cancer remains need
be focused.
After adjusting the three effects using the APC model,

we confirmed that the differences in age-specific mortal-
ity rate patterns exist. A similar trend of age effect on
kidney cancer mortality attributable to high BMI was ob-
served between China and the U.S. adults. The age effect
increased in the two areas, which indicated that the risk
of the mortality of kidney cancer attributable to high
BMI tended to increase in the middle-aged and younger

groups. This finding may suggest that aging has driven
the trend of the mortality [35, 36]. The interesting
phenomenon is that age effect in the two areas was
found to increase exponentially until age 70, when it
continues to rise, albeit at a slower pace.
The cohort effects of the youngest and oldest age

groups must be interpreted carefully because they are
the small number of observations and they have larger
standard errors than estimates for the middle cohorts
[37]. Overall, The general trends of cohort effect showed
a continuously declined trend, which indicated a

Fig. 3 Kidney cancer mortality attributable to high BMI relative risks due to (a) age; (b) period; and (c) cohort effects. Blue corresponds to men.
Red corresponds to women
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decreased risk of the mortality in younger generations.
Younger generations may receive good education and
have a strong awareness of health [38], which may have
a connection with the mortality of kidney cancer. For ex-
ample, earlier birth cohorts had weak health awareness
and they realized neither the occurrence of cancer nor
the damage of obesity or overweight to human health. It
is worth noting that cohort effect increased for 1902–
1906 and 1907–1911 birth cohort in the U.S., which may
indicate a higher risk in the earliest birth cohort. This
finding should be treated carefully.
Here, period effects were found to be small or modest

when birth cohort and age effects were both controlled.
This study showed that the period effect might be the
critical factor in the trend of kidney cancer mortality, be-
cause the period effect in China was significantly con-
tinuously increasing and its mortality rate was also
continuously, while the period effect in U.S. slightly in-
creased over the same period and its mortality rate tends
to be stable. This relationship needs to be further veri-
fied. Increasing period effect was observed in both China
and U.S. adults over the whole study period, which indi-
cated the period risk factors might be contributed to the
increase in the linear trend of the age-standardized mor-
tality rate of kidney cancer attributable to high BMI
through 1990 to 2017. However, the period trend in-
creased rapidly in Chinese adults, compared with U.S.
adults. The difference in period effect of kidney cancer
was possibly related to the different risk exposure. In
U.S., no significant changes in obesity prevalence in re-
cent years [34], and some measures were conducted for
improving the increasing obesity prevalence in U.S.
adults [32, 33]. However, the prevalence of childhood
obesity in the U.S. is rising during the past decades [39],
and an increasing trend in obesity was observed for U.S.
women during 2005–2014 [40]. Thus, this finding also
needs to be further verified. Traditionally, obesity has
been considered a problem in Western countries, while
urbanisation in Asia has led to a sedentary lifestyle and
overnutrition, setting the stage for the epidemic of obes-
ity [41]. According to the 2011 China Health and Nutri-
tion Survey, the prevalence of obesity among both
Chinese adults increased significantly over the past de-
cades, especially in men [42, 43]. Moreover, Chinese
children may have a severe obesity problem. National
study reported that 14.4% of children and adolescents
were overweight, 11.9% were obese, and 36.8% did not
meet screen-time viewing recommendations [44, 45].
The possible reason of difference between the two areas
was associated to the increasing obesity prevalence. As
for the different increasing period effect, the underlying
reason of different extent to the trend between the two
areas was possibly attributable to the fact that the in-
crease in adult obesity in U.S. has slowed down [46].

Thus, Chinese population seems to face a more severe
situation of attributable burden of kidney cancer. Our
findings also may indicate inadequate measures or pol-
icies on obesity prevalence in Chinese adults, while U.S.
has efforts in prevention and care of obesity, and in es-
tablishing collaborative weight management models [47,
48], and the rates of awareness, treatment and control of
disease are relatively low in China population [5]. In
addition, there have a higher relative risk of the mortal-
ity of kidney cancer attributable to high BMI in men
than women. In China, it is more likely to be over-
weight/obesity in men compared with women [42, 49].
This gender difference in the relationship of kidney can-
cer and obesity should be further studied.
In summary, there has rapid urbanization and increas-

ing prevalence of obesity in China, and previous study
also noted a decrease in all measures of physical fitness
in normal-weight adults during 2000–2014 [13], the risk
of kidney cancer and high BMI need be focused. The in-
creasing period effect indicated the period factors may
be the key factor affecting the increasing mortality of
kidney cancer. Thus effective measures such as promot-
ing national fitness and low-fat dietary are needed for
the prevention of obesity/overweight. It is necessary to
reduce kidney cancer deaths in Chinese adults.

Limitations
There are also some limitations in the present study.
First, the data from the GBD study were supplied by the
governments of the various countries and districts,
which may have substantially different systems for col-
lecting vital statistics and methods used to confirm
causes of death. These factors limit the comparability of
the information in the two areas. Second, despite the
mortality data estimated by GBD study which incorpo-
rates methods to adjust for incomplete or missing VR
and VA data, general heterogeneity in data completeness
and quality, and the redistribution of so-called garbage
codes (insufficiently specific or implausible cause of
death codes), there might be difficult to thoroughly
avoid inaccuracy of data. Therefore, our results in the
present study on epidemiology of kidney cancer mortal-
ity should be treated carefully.

Conclusions
The age-standardized morality rate of kidney cancer at-
tributable to high BMI is rapidly increasing in China,
while the mortality rate in women U.S. varies and tend
to be stable in recent years. Apart from that, age effect
increased and cohort effect decreased in both China and
the U.S. adults, while period effect increased rapidly in
China adults, compared with the U.S. adults. Obesity
prevalence and China’s aging also may continuously
drive kidney cancer death. Effective mearsures, such as
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the correct knowledge and adopting policies on body
weight control and care, should be noted and
conducted.
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