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Characterising urban green space density
and footpath-accessibility in models of BMI
Philip Carthy1,2, Sean Lyons1,2* and Anne Nolan1,2,3

Abstract

Background: While exposure to urban green spaces has been associated with various physical health benefits, the
evidence linking these spaces to lower BMI, particularly among older people, is mixed. We ask whether footpath
availability, generally unobserved in the existing literature, may mediate exposure to urban green space and help
explain this volatility in results. The aim of this study is to add to the literature on the association between urban
green space and BMI by considering alternative measures of urban green space that incorporate measures of
footpath availability.

Methods: We conduct a cross-sectional study combining data from The Irish Longitudinal Study on Ageing and
detailed land use information. We proxy respondents’ exposure to urban green spaces at their residential addresses
using street-side and area buffers that take account of the presence of footpaths. Generalised linear models are
used to test the association between exposure to several measures of urban green space and BMI.

Results: Relative to the third quintile, exposure to the lowest quintile of urban green space, as measured within a
1600 m footpath-accessible network buffer, is associated with slightly higher BMI (marginal effect: 0.80; 95% CI:
0.16–1.44). The results, however, are not robust to small changes in how green space is measured and no
statistically significant association between urban green spaces and BMI is found under other variants of our
regression model.

Conclusion: The relationship between urban green spaces and BMI among older adults is highly sensitive to the
characterisation of local green space. Our results suggest that there are some unobserved factors other than
footpath availability that mediate the relationship between urban green spaces and weight status.
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Background
Obesity has become a major international public health
challenge. Globally, its prevalence, as measured by a
body mass index (BMI) ≥ 30 kg/m2, is estimated to have
risen from 3.2 to 10.8% in men and from 6.4 to 14.9%
among women between the years 1975 and 2014 [1]. In
Ireland, in 2015, 23% of the adult population were classi-
fied as obese [2].1 High BMI is a known risk factor for
various non-communicable diseases, including cardio-
vascular disease, [4] diabetes, [5] heart disease and stroke
[6]. This upward trend could thus create a significant
burden on healthcare systems across the world. While
its cause is undoubtedly multifaceted [7], it is possible
that the form of the modern built environment has a
role in promoting negative health behaviours that ultim-
ately result in adiposity [8]. Several aspects of the urban
environment might be relevant, including land use mix,
the extent of urban sprawl, the food environment, crime,
walkability, and access to green spaces [9]. Given that
two-thirds of the world’s population is expected to live
in urban areas by 2050 [10], it is important that research
aims to understand the interconnections between urban
living and health behaviours. Of particular interest in the
current work is the potential association between weight
status and the availability of pedestrian-accessible urban
green spaces.
While many studies have identified positive associa-

tions between urban green space and various dimensions
of individual health [11, 12], the evidence linking green-
ness to decreased obesity rates remains equivocal. A re-
cent review of the literature by Browning & Lee [13]
find that just 50% of reviewed analyses (n = 26) produce
significant results in favour of a green space-obesity link.
Indeed, some counterintuitive positive associations have
also been found [14]. The literature which specifically
looks at associations between urban green space and
obesity among older people remains limited but is
equally divided. Using a large sample of those aged 45
and over in Australia, Astell-Burt et al. [15] find that
higher exposure to urban green space is associated with
reduced risk of obesity among women but that the pro-
tective effect is absent for men. Li et al. [16] find no
association between green spaces and adiposity in a US-
based sample of people aged 50–75. Using Irish data,
Dempsey et al. [17] find a u-shaped relationship between
urban green space and obesity in older adults, with those
receiving the lowest and highest exposures to green

space in the vicinity of their residential address exhibit-
ing an increased probability of being obese.
The apparent conflict in the existing evidence could be

attributable to various methodological concerns: over-
reliance on cross-sectional data [18], absence of objective
obesity measurements in some studies, use of aggregate
rather than individual-level data, or insufficient control
for potentially confounding factors [11, 12]. We posit
that a further, relatively unexplored issue might also be
relevant. That is, while standard approaches used to ob-
jectively measure urban greenness generally quantify the
availability of green spaces, they often disregard the
issue of accessibility of the same spaces to individual
study participants. Previous evidence suggests that the
primary channel through which green spaces may affect
health is by facilitating physical activity [11, 12]. There-
fore, it is likely that spaces need to be easily accessible to
the target population in order to effectively promote
positive health behaviours. As such, the interaction be-
tween green spaces and local footpath networks may be
of particular relevance. For example, living in a locality
with extensive green coverage may not be associated
with any physical health benefits if the same area lacks
footpaths to access the green spaces on foot. Conversely,
an area which has sufficient footpath access to a limited
set of green spaces may effectively promote physical ac-
tivity and accrue health benefits for residents, despite
the fact that it is observationally ‘less green’.
The paper builds on an earlier paper by Dempsey et al.

[17] that found that, among the over 50s in Ireland, those
with the lowest and highest exposures to green space in
the vicinity of their residential address had an increased
probability of obesity. One potential explanation for the
counterintuitive results at the higher quintiles of green
space exposure is that the study did not consider the avail-
ability of footpaths. The aim of this study is, therefore, to
further investigate the association between urban green
space and BMI by explicitly controlling for footpath avail-
ability in urban areas, in the same setting explored by
Dempsey et al. We exploit a novel data source that com-
bines individual-level geocoded survey microdata with de-
tailed land-use information from which the density of
both local urban green spaces and footpaths can be ex-
tracted. While the analysis does rely on cross-sectional
methods, the data source contains objective BMI measure-
ments as well as a wealth of information on variables
which may confound the relationship between urban
green spaces and obesity. Our analysis thus overcomes
many of the methodological challenges cited above.

Methods
This paper combines two distinct datasets in order to
examine the relationship between urban green space and
BMI: The Irish Longitudinal Study of Ageing, and a land-

1Comparable data from the Healthy Ireland Survey for 2015 indicate
that approximately one third of the older (55+) population were obese
[2]. A comparison of rates of obesity among the over 50s in Ireland,
England and the US showed that rates of obesity were similar in
Ireland and England, and considerably lower in both countries than in
the US [3].
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use database known as Prime2. The datasets and the
methods used to link and analyse them are outlined below.

The Irish longitudinal study on ageing (TILDA)
TILDA is a nationally representative survey of those aged
over 50 in the Republic of Ireland. Data for Wave 1 (W1),
which forms the basis of the analysis in the current study,
was initially collected between October 2009 and July
2011. During this period, 8175 individuals from a sample
of 6279 households were recruited to participate in the
study. Respondents’ spouses and partners were also in-
vited to participate, regardless of their age, and so the full
W1 sample size is 8504. The data were primarily collected
using Computer Assisted Personal Interviewing (CAPI)
carried out by trained interviewers, face-to-face at each in-
dividual’s home. Sensitive questions were included in a
supplemental self-completed questionnaire (SCQ), which
respondents returned by mail. Wave 1 respondents were
also invited to attend a nurse-administered health assess-
ment at a dedicated centre or, where attendance was in-
feasible or impractical, to complete a modified partial
assessment in the home. Follow-up data have been col-
lected at two-year intervals [19, 20] but are not used here.
TILDA recruitment followed the RANSAM protocol

[21], a method which samples households from the
population of residential addresses in the Republic of
Ireland. The geo-location of each respondent’s residen-
tial address is thus known and can form the basis of
spatial links to additional external data sources.

Outcome: body mass index (BMI)
BMI, calculated as a person’s weight in kilograms divided
by the square of their height in metres (kg/m2), serves as
the health outcome of interest in this paper. The index is
widely used as a tool to classify adult obesity based on the
cut-off values defined by the World Health Organization
[22]. Self-reported measures of height and weight are sub-
ject to measurement error [11, 12], and so we use object-
ive measurements of height and weight that were
collected as part of the TILDA health assessment. After
each participant had removed footwear and any heavy
outer garments, SECA 240 wall mounted rods, and SECA
electronic floor scales were used to record height and
weight, respectively [23]. Since the health assessment was
an optional component of the study, a valid BMI measure-
ment is unavailable for 2302 respondents in our sample,
necessitating their exclusion.2 The those with a BMI more
than three standard deviations from the mean of the dis-
tribution (n = 63) are excluded from the analysis as the re-
corded values appear biologically implausible. See Fig. 1

for full details on how the final sample was constructed.
The distribution of BMI values among TILDA respon-
dents in this final sample is presented in Fig. S1 in the
Additional file 1. The observed range of BMI scores is
15.88–43.89, with a mean value of 28.45.

Additional control variables
The geography of urban green spaces may be systematic-
ally associated with socioeconomic characteristics [24].
In particular, those with favourable economic circum-
stances may have the ability to self-select into more attract-
ive and potentially greener neighbourhoods [25]. While the
structure of our combined data source does not allow us to
capture all such factors, the richness of the TILDA
dataset allows us to control for many socioeconomic,
demographic, and health-related factors that may jointly
determine BMI and exposure to green space. Importantly,
we control for income category in all our econometric
models. Failure to do so could lead to overestimation of a
positive relationship between greenness and health [13].
Our full set of control variables closely follows Dempsey
et al. [17] and includes age category, urban location, gender,
income category, employment status, marital status, highest
level of educational attainment, medical cover, smoking sta-
tus, and a dummy variable that indicates reported difficulty
walking 100m. Descriptive statistics for these variables ap-
pear in Table 1.
Consistent with the overall cohort, females are slightly

over-represented, making up 54% of our final sample
[23]. Despite TILDA’s focus on older people, the W1
cohort is relatively young and active in the labour mar-
ket, with 59.7% of the sample under the age of 65 and
38% in employment at the time of interview. A broad
spectrum of educational attainment and income levels
are captured in the data. Smoking habits are prevalent
among the cohort with past and current smokers com-
bined accounting for 55.1% of respondents. Mobility-
limiting disabilities are relatively uncommon at W1, with
6.1% indicating that their ability to walk 100 m would be
impeded by some physical or mental health condition.
Nevertheless, it is important to control for such difficul-
ties as the relationship between greenness and BMI is
likely mediated by an ability to access and utilise the
relevant spaces.

Land use data: Prime2
The spatial information used to derive the amount of urban
green space in the vicinity of TILDA residential addresses
is drawn from ‘Prime2’, an object-oriented digital mapping
model which standardises a wealth of spatial data for
Ireland. The dataset was developed by Ordnance Survey
Ireland (OSI), the country’s national mapping agency.
Prime2 includes three features that are particularly relevant
to the current study: 1) a detailed land-use data from which

2Our sample represents 73% of TILDA wave 1 respondents, Those
with more education, in better health and in the youngest age groups
were more likely to complete the TILDA health assessment [23].

Carthy et al. BMC Public Health          (2020) 20:760 Page 3 of 12



green areas can be identified, 2) a fully connected road net-
work from which the theoretical accessibility of green areas
can be imputed, and 3) a complete (albeit disjoint) set of
urban footpaths from which the feasibility of walking along
a particular route may be approximated. Walkable foot-
paths are taken to include the set of paths labelled as Side-
walks, Boardwalk, Walk general, Pedestrian Zone, Walk
unmarked and Towpath. They exclude those defined as
Pedestrian bridge, Pedestrian plaza or Steps, not all of
which are accessible to pedestrians. Footpaths within parks
are not available in the dataset. Data covering extensive
areas surrounding the country’s five primary urban centres
(Dublin, Cork, Galway, Limerick, Waterford) were made
available for the purposes of the current study. These areas,
however, contain large commuting zones that may be quite
rural in nature. We calculate various dimensions of green
space footpath-accessibility in regions identified as ‘urban
settlements’ in the 2011 Irish Census.3 Figure 2 provides a
map of the areas considered ‘urban’ in the analysis.

Characterising local green space
The strategy we employ to determine greenness of each
urban TILDA respondent’s locality builds on existing
methods from the literature with the specific aim of ac-
counting for urban accessibility factors, which may be
omitted under traditional research designs. Broadly, we
use Geographic Information Systems (GIS) to define a

buffer zone around each respondent’s residential address,
and subsequently calculate the share of land area within
the buffer that is made up of green spaces as a measure of
exposure.4 It is ultimately an empirical question how best
to specify these buffer zones such that the green space
metric captures what has the greatest potential relevance
to respondents’ health outcomes. Indeed, past research
has shown that observed associations between greenness
and health can be sensitive to researchers’ choice of green
space characterisation [8].
Basing the analysis on circular buffers ignores various

dimensions of connectivity within the urban space and
may misrepresent the extent of the area that can be
reached by a respondent on foot. For example, if the
urban landscape does not offer a straight-line path be-
tween the buffer centre and its edge, then an individual
wishing to travel between the two locations necessarily
transverses a distance greater than the buffer radius. In
such cases, a circular buffer can capture green space that
lies beyond an assumed maximum walking distance
from the residential address. This issue is accentuated in
regions where urban layouts do not follow grid systems
(as is the case in Ireland) since straight-line paths be-
tween locations are generally uncommon. To overcome
this issue, we follow a number of recent studies, which
have carried out green space analysis within network
buffers [27–30]. Such buffers are drawn based on a

Fig. 1 Construction of the final sample

3Specifically, the green space surrounding a TILDA residential address
is characterised if a) the address is located within a cluster of at least
50 occupied dwellings; b) the cluster contains is clear evidence of an
urban centre; c) the distance to the next nearest occupied dwelling
does not exceed 100m [26].

4Green spaces are derived from the vegetation layer of PRIME2. The
various land uses that this layer incorporates are detailed in Table
A1 in Additional file 1.
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maximum distance travelled across a road network (See
Panel A of Fig. 3).
While network buffers offer an improved characterisa-

tion of the maximum pedestrian-accessible area around
a given residential address, they cannot account for all
accessibility issues within the chosen buffer space. For

example, it may be impractical to walk along certain
roads even when they are proximal to one’s residential
address. To this issue, we offer a novel solution. We pro-
duce network buffers using only roads with which foot-
paths are associated. Specifically, a junction-to-junction
road segment is only included in a network buffer in this

Table 1 Descriptive statistics

Frequency Percent

Green Space
(1600 m Network)

Non-urban Settlement 3561 61.35

Quintile 1A (lowest) 449 7.74

Quintile 2A 449 7.74

Quintile 3A 450 7.75

Quintile 4A 447 7.70

Quintile 5A (highest) 448 7.72

Urban Location Non-Dublin 4288 73.88

Dublin 1516 26.12

Gender Male 2672 46.04

Female 3132 53.96

Age Category 50–64 3462 59.65

65–74 1548 26.67

≥ 75 794 13.68

Income Category 0–9999 426 7.304

10,000 - 19,999 1009 17.38

20,000 - 39,999 1944 33.49

40,000 - 69,999 1236 21.3

≥ 70,000 560 9.65

Not reported 629 10.84

Marital Status Married 4197 72.31

Never married 471 8.12

Sep/divorced 387 6.67

Widowed 749 12.9

Employment Status Employed 2209 38.06

Retired 2144 36.94

Other 1451 25.00

Smoker Never 2606 44.9

Past 2266 39.04

Current 932 16.06

Educational Attainment Primary/none 1519 26.17

Secondary 2371 40.85

Third/higher 1914 32.98

Medical Cover Not covered 588 10.13

Medical insurance 2631 45.33

Medical card 2585 44.54

Mobility No difficulty walking 100m 5456 94.00

Difficulty walking 100m 348 6.00

Total 5804 100.00
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study if a set of footpaths, with a combined length which
exceeds half that of the road segment, can be identified
within 25m of the road segment centreline. As a result,
our analysis is restricted to geographic areas where the
density of local footpaths is high and, on average, green
spaces that are not accessible on foot are excluded. A

more formal description of our methodology is provided
in the Additional file 1.
Even within these areas, which we term ‘footpath-ac-

cessible network buffers’, the proximity of green space to
the road network itself might have a mediating role in any
association between greenness and health. For example,

Fig. 2 Map of Ireland indicating regions in which `urban` green space is analysed in this paper. Source: analysis by the authors prepared using
QGIS 3.4 (under the GNU General Public License) with Prime2 data described in the text; and the map of settlements is from Central Statistics
Office Census 2011 Boundary Files (https://www.cso.ie/en/census/census2011boundaryfiles/)

Fig. 3 Comparison of network and street-side buffer strategies. Source: analysis by the authors prepared using QGIS 3.4 with Prime2 data
described in the text
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recent work has identified explicit associations between
street-side greenery and health outcomes [35]. To test the
relevance of such greenery (e.g., green common areas in
housing estates) in our context, we define second set of
buffer zones which restrict the classification of relevant
green spaces to those that fall within 50m of roads pro-
vided with footpaths (See Panel B of Fig. 3). A comparison
of results using the two alternative buffer definitions will
allow us to identify which set of green spaces, if any, is
most associated with BMI.
The appropriate size to draw the buffers is also un-

clear. A recent survey of the literature by Browning &
Lee [13] suggests that, on average, larger buffers sizes
(up to 2000m) best predict dimensions of physical
health, but that for studies which centre the zones on
exact residential addresses (as is the case in the current
study), this predictive power might plateau at a much
smaller buffer size (500-1000m). Since our observed re-
sults may be sensitive to this choice, we perform our
analysis using multiple buffer extents. Our main specifi-
cation follows Dempsey et al. [17] in using a 1600m buf-
fer, which creates a zone roughly appropriate for a 20-
min walk from one’s home address. We then repeat the
statistical analysis with a smaller 800 m buffer.
Our final analysis thus utilises four varied characterisa-

tions of local green space: “Footpath-accessible network
buffers” covering 1600m and 800m spaces and “footpath-
accessible street-side buffers” of the same sizes. In order
to preserve the anonymity of individual TILDA respon-
dents, the final variables enter our statistical models in
categorical form. Specifically, the variables used represent
the quintile of green space exposure which a respondent
receives. The correlations among these measures are
shown in Table 2 for the 1600m metrics. The correlation
between street-side and network buffers is high; that be-
tween these metrics and circular buffers is lower. Respon-
dents who reside in non-urban settlement areas are coded
as a separate category to allow a larger sample to be used,
permitting more precise estimation of non-green space
control variables.

Model
We test the association between urban green space and
BMI using regression techniques, specifically, using a
generalised linear model (GLM). The GLM framework
offers additional model flexibility compared to

traditional Ordinary Least Squares (OLS) and is
employed when the distribution of the outcome variable
may not be normal. In particular, the researcher may
specify a functional form that links the outcome variable
to a linear index of explanatory variables and make a
distributional assumption about the variance of the esti-
mator. The model, as it applies to the current context, is
as follows:

g BMIið Þ ¼ β0 þ β1greeni þ
X

βkXki ð1Þ

Var BMIi greeni;X
��

ki

h i
∝ E BMIi greeni;Xki

��� �� �v ð2Þ

where g(.) is a function that links BMI to our independ-
ent variables of interest, greeni is a categorical represen-
tation of local green space for individual i, and the X
represents the vector of k socioeconomic and health-
related control variables discussed above. We perform a
specification search to identify the most appropriate
functional form for g(.) (link function) and value for v
(estimator family). In the search process, we allow the
link to be the identity (linear), natural log, and square
root functions, and v = 0, 1, 2 (equivalent to Gaussian,
Poisson, and Gamma families respectively). The variance
of the dependent variable (Var) is assumed to vary (∝)
according to some function of the mean of the variable.
The models chosen are those with the lowest Akaike’s
Information Criterion (AIC) [32] and Schwarz Bayesian
Criterion (BIC) [33]. The Gaussian family model with
identity link function emerges as the most efficient. As
such, the results reported are equivalent to those pro-
duced by a linear OLS model. Robust standard errors,
clustered at the household level, are computed to allow
for a general form of heteroscedasticity. We run two
specifications of each model; one with the full set of co-
variates as set out above, and a second “parsimonious”
model with groups of covariates that are collectively in-
significant at the 5% level excluded. This allows us to
check the sensitivity of the urban green space coeffi-
cients to the set of covariates chosen for inclusion.

Results
Table 3 presents the results of the estimated GLMs and
Fig. 4 displays the marginal effects and 95% confidence
intervals for the estimates.5 Model 1, which characterises
local green space using 1600m footpath-accessible net-
work buffers, shows a u-shaped relationship with BMI,
although the estimates for higher quintiles are statisti-
cally insignificant. Higher BMI scores are observed
among those living in areas with low exposure to
footpath-accessible green space. Relative to living in the

Table 2 Spearman rank correlations for green space quintiles,
comparing 1600 m circular, network and street-side buffers

Circular buffer Network buffer Street-side buffer

Circular buffer 1.00

Network buffer 0.697 1.00

Street-side buffer 0.641 0.841 1.00
5Results for the full set of covariates are presented in Tables A2 and
A3 in Additional file 1.
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Table 3 Results using footpath-accessible network and street-side buffers

Network Buffer Street-side Buffer

(1) (2) 3) (4) (5) (6) (7) (8)

Marginal
Effect
(SE)

Marginal
Effect
(SE)

Marginal
Effect
(SE)

Marginal
Effect
(SE)

Marginal
Effect
(SE)

Marginal
Effect
(SE)

Marginal
Effect
(SE)

Marginal
Effect
(SE)

Share of Footpath-accessible Green Space

1600m Network Buffer Non-Urban Settlement 0.478*
(0.272)

0.722***
(0.238)

Quintile 1A (lowest) 0.800**
(0.325)

0.722**
(0.323)

Quintile 2A 0.533*
(0.298)

0.486
(0.299)

Quintile 3A [ref.] [ref.]

Quintile 4A 0.366
(0.320)

0.435
(0.320)

Quintile 5A (highest) 0.452
(0.319)

0.532*
(0.318)

800m Network Buffer Non-Urban Settlement 0.0764
(0.259)

0.269
(0.226)

Quintile 1B (lowest) 0.166
(0.308)

0.128
(0.306)

Quintile 2B −0.199
(0.300)

−0.226
(0.298)

Quintile 3B [ref.] [ref.]

Quintile 4B −0.0724
(0.311)

−0.0200
(0.312)

Quintile 5B (highest) −0.170
(0.315)

−0.0739
(0.313)

1600 m Street-side Buffer Non-Urban Settlement 0.285
(0.278)

0.466*
(0.240)

Quintile 1C (lowest) 0.141
(0.329)

0.0909
(0.322)

Quintile 2C 0.195
(0.302)

0.201
(0.301)

Quintile 3C [ref.] [ref.]

Quintile 4C 0.0848
(0.315)

0.148
(0.312)

Quintile 5C (highest) 0.334
(0.338)

0.449
(0.331)

800 m Street-side Buffer Non-Urban Settlement 0.256
(0.253)

0.427**
(0.214)

Quintile 1D (lowest) 0.215
(0.300)

0.193
(0.297)

Quintile 2D −0.0314
(0.294)

−0.0408
(0.294)

Quintile 3D [ref.] [ref.]

Quintile 4D 0.0550
(0.300)

0.128
(0.300)

Quintile 5D (highest) 0.190
(0.321)

0.309
(0.311)

N 5804 5807 5804 5807 5804 5807 5804 5807

Standard errors in parentheses. * p < 0.1 ** p < 0.05 *** p < 0.01.
The results in column (1) refer to the results of the full model with green space footpath-accessibility expressed in terms of a 1600 m network. The
results in column (2) are those of the parsimonious specification. The parsimonious models have three more observations due to the medical insurance
variable being dropped. The results in Column (3) are from full model with green space footpath-accessibility expressed in terms of an 800m network
buffer, while the results in Column (4) refer to the more parsimonious specification of the models. Columns (5) to (8) are the equivalent models using
green space footpath-accessibility using street-side buffers.
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third quintile, exposure to the first (lowest) quintile of
footpath-accessible green space under this definition is
associated with an increase in BMI of 0.80. As the mean
BMI value in this sample is 28.45, this estimate equates
to a 2.8% increase in BMI. By way of comparison, the ef-
fect of having a primary-level education (relative to a
second-level education) is 0.49 or 1.7%. Although we ob-
serve a positive relationship between quintiles 4 and 5
(highest) and BMI, these coefficients are not statistically
significant. The inclusion of footpath-accessibility mea-
sures into a 1600 m network buffer thus weakens the
positive association between high exposure to green
space and BMI found by Dempsey et al. [17] but does
not completely remove the pattern. Indeed, it is note-
worthy a more parsimonious version of this model
(Model 2) which drops groups of covariates that are col-
lectively insignificant at the 5% level, produces a slightly
stronger u-shaped relationship with marginal statistical
significance observed on the quintile 4 and 5 coeffi-
cients. As shown in Additional file 1: Table S2, Model 2
drops Dublin location, income, marital status and med-
ical cover from the covariates included in Model 1.
As noted earlier, these models place non-urban resi-

dents in a separate green space category. The pattern of
marginal effects on the urban green space variables is
broadly similar when these observations are excluded
from the analysis (see Additional file 1: Table S4). In
addition, we considered an alternative formulation of the

dependent variable based on the probability of having a
BMI > =30 (obesity) using a limited dependent variable
model. None of the green space categories has a statisti-
cally significant marginal effect in this model. See Add-
itional file 1: Table S5.
Our results differ from the existing evidence more sig-

nificantly when using other characterisations of
footpath-accessible local green space. Model 3, which
measures green space in an 800 m network buffer, sug-
gests no significant differences in BMI values across
quintiles of green space exposure. Similarly, while the
observed coefficients from models which measure green
space with footpath-accessible street-side buffers
(Models 5–8) broadly follow a u-shape, the differences
in BMI scores across quintiles of street-side greenness
are not statistically significant.

Discussion
Overall, we find no clear association between various
measures of footpath-accessible urban green space and
BMI. In addition, our results emphasise the sensitivity of
existing results in the literature to the characterisation of
green space. While we do find that estimated exposure
to the lowest quintile of green space in a 1600 m
footpath-accessible network buffer is associated with
higher BMI scores, it is clear that an adjustment for
footpath-accessibility of urban green space, as we have
defined it, has not offered a complete explanation for

Fig. 4 GLM regression results. Marginal effects of footpath-accessible green space quintile (relative to 3rd quintile) on BMI, comparing street-side
and network buffers at 800 m and 1600m. Notes: The values along the x-axis refer to marginal effects. Horizontal bars represent 95% confidence
intervals. Quantile 1 refers to the lowest quintile of footpath-accessible green space, while quintile 5 refers to the highest. A-D represent the
measure of green space footpath-accessibility used (see also Table 2)
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the u-shaped relationship previously identified in these
data by Dempsey et al. [17].
In this context, it remains possible that other unob-

served elements of the urban environment, or indeed of
green spaces themselves, may affect the individual deci-
sion to utilise green areas for physical activity. For ex-
ample, inadequate lighting, restricted opening hours, or
the presence of anti-social behaviour may, at times, im-
pede usage of some spaces. Equally, the decision to use
green spaces may be driven by individual preferences
that cannot be captured through analysis of the urban
environment alone [34]. It remains for future work to in-
corporate such hypotheses into an analysis of accessible
green space. In addition, there may be explanations for
any observed link between green space and BMI that op-
erate via mechanisms other than the promotion of phys-
ical activity such as stress reduction, increased social
interaction, etc. [12].
It is also striking that adjustments to the extent of the

area in which green space is measured can substantially
alter, and in our context statistically nullify, the associ-
ation with BMI. Given that our green-space variables are
correlated with each other (see Table 2), it is perhaps
unsurprising that a u-shaped relationship broadly re-
mains across most of our specifications. It is, however,
interesting that statistical significance depends on the
exact characterisation used. While such volatility in re-
sults is not unusual within the literature [11, 13], it
serves to reaffirm the sensitivity of findings in this area
to research design choices. Previous research on the as-
sociation between green space and obesity risk and phys-
ical activity in the Netherlands, albeit using different
measurements of green space, also found that the associ-
ation was sensitive to the types of measurements used
[31]. Our results are also consistent with a recent review
of the literature [13] which suggests the size of the area
in which green space is measured can meaningfully alter
the strength of its associations with health outcomes.
However, to our knowledge, this is the first study to in-
corporate measures of footpath availability in a study of
the association between local urban green space and
BMI. The question of how best to characterise local
green space such that the definitions are those with the
greatest possible relevance to individual behaviour and
ultimately health outcomes remains broadly unanswered
and should also be further addressed in future work.
The current study is subject to several limitations, pri-

marily related to the green space exposure metrics used
in the analysis. First, our dataset omits footpaths within
parks, which probably implies that our measures of
footpath-accessible green space underestimate the green
space exposures of respondents living in close proximity
to parks. This problem is mitigated by the categorical
representation of green space in the models: most

respondents living beside a park will be in a high expos-
ure quintile anyway. Nevertheless, it is possible that
some respondents were placed in a lower exposure cat-
egory due to this omission. Second, our key independent
variables capture elements of both availability and accessi-
bility. Longitudinal data incorporating changes to accessi-
bility over time (e.g., new footpaths, greater opening hours,
etc.) offers one approach that could be considered in future
work. Second, the process of building a ‘walkable’ road net-
work based on proximity to footpaths is one which un-
doubtedly contains at least some measurement error. It is
possible that some road segments excluded because of a
lack of identifiable footpath may actually be walkable. This,
in turn, could exclude some green spaces from our analysis.
Conversely, our data lack detailed descriptions of individual
footpaths, so our analysis can say little about the quality of
the footpath network used. It is plausible that some areas
treated as footpath-accessible in our data could contain
poor-quality paths on which it would be impractical for an
older person to walk. This, in turn, may lead to an overesti-
mate of green space accessibility in the affected areas. More
generally, we cannot rule out the possibility that there is an
effect on BMI from walking on these footpaths that is sep-
arate to that operating via access to green spaces. In
addition, the measures of footpath-accessibility developed
in this paper utilise green spaces that are proximal to the
public road network. Given the current data, we do not ob-
serve the ownership of these green spaces. Some green
areas that lie within a respondent’s footpath-accessible
buffer zone may not be available for public use. This could
also lead to an overestimation of green space exposure for
some respondents in our analysis. Finally, as our green
space and walkability measurements are drawn from a
specific database developed and maintained in Ireland, it
is hard to directly compare our empirical results with
those from other studies. If sufficiently high-resolution
data on green space and footpath networks were available
with international coverage using consistent metrics (e.g.
the normalized difference vegetation index (NDVI) for
green space characterisation), that should allow better ease
of comparison across national samples.
Two broader limitations are also noteworthy: first, it is

unclear whether any measure of green space based on
residential addresses can be considered an accurate
proxy for the exposure the resident receives. Exposure
to green space may instead be determined by unob-
served dimensions of one’s lifestyle. For example, if a re-
spondent as a particular preference for spending time in
green spaces, they may be willing to use other forms of
transport to travel to spaces that are beyond walking dis-
tance from their home. Equally, if a respondent’s routine
includes activities that take place away from their re-
ported residential address, then the area in which we
measure green space may not be the most relevant.
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Second, since we only observe land use data at one point
in time, we are precluded from using the longitudinal di-
mension of TILDA in our analysis. We cannot, there-
fore, fully account for the possibility that respondents
systematically self-select into areas with specific levels of
green space exposure. No causality can be assigned to
the results presented in this paper. Finally, a key poten-
tial mechanism linking green space exposure and BMI is
physical activity [11, 12]; the absence of objectively-
measured physical activity data for this sample of TILDA
respondents means that we cannot investigate the im-
pact of different conceptualisations of green space acces-
sibility on physical activity.

Conclusions
The relationship between urban green spaces and BMI
among older adults is highly sensitive to the character-
isation of local green space. This study contributes to
the literature on the association between green space
and BMI by considering alternative definitions of urban
green space that incorporate footpath availability. Our
results suggest that there are some unobserved factors
other than footpath availability that mediate the relation-
ship between urban green spaces and weight status.
We find suggestive evidence that being exposed to

lower levels of green space, as proxied by a 1600 m
footpath-accessible network buffer centred on one’s resi-
dential address, is associated with increased BMI. How-
ever, the association loses statistical significance if the
buffer size is reduced to 800 m or if green areas that are
located adjacent to walkable roads are used, despite rela-
tively high correlations among respondent exposure
rankings using the various buffer types. While the asso-
ciations we report are not statistically significant in most
cases, our model coefficients do broadly follow a u-
shape, consistent with previous work carried out by
Dempsey et al. [17] in a similar context. This suggests
that the incorporation of footpath availability measures
into the analysis does not offer a full explanation for
their results. We suggest that future work could include
additional features of the built environment or dimen-
sions of individual preferences for green space usage in a
similar analysis.
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