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Abstract

Background: Individuals living in deprived inner cities have disproportionately high rates of cancers, Type 2
diabetes and obesity, which have stress- and physical inactivity-related etiologies. This study aims to quantify effects
of ecological park restoration on physical activity, stress and cardio-metabolic health outcomes.

Methods: The Study of Active Neighborhoods in Detroit is a quasi-experimental, longitudinal panel natural experiment
with two conditions (restored park intervention (INT) and control (CNT)) and annual measurements at baseline and 3-
years post-restoration. Individuals (sampled within 500 m of an INT/CNT park) serve as the unit of analysis. Restoration
(n =4 parks) involves replacing non-native plants and turf with native plants; creating trails; posting signage; and
leading community stewardship events. The CNT condition (n =5) is an unmaintained park, matched to INT based on
specified neighborhood conditions. Recruitment involves several avenues, with a retention goal of 450 participants.
Park measures include plant/avian diversity; usage of the park (SOPARQ); signs of care; auditory environment
recordings; and visual greenness using 360 imagery. Health outcomes include device-based physical activity behavior
(primary outcome); salivary cortisol (secondary outcome); and several downstream health outcomes. Exposure to the
INT will be assessed through visual contact time and time spent in the park using GPS data. Changes in health
outcomes between years and INT versus CNT will be tested using generalized linear (mixed) models.

Discussion: Our study will examine whether restored urban greenspaces increase physical activity and lower stress,
with public health planning implications, where small changes in neighborhood greenspaces may have large health
benefits in low-income neighborhoods.

Study Registration: Registration: OSF Preregistration registered March 31, 2020. Accessible from https.//osf.io/surx7.

Keywords: Low-income, Built environment, Greenspace, Urban planning, Physical activity, Stress, Green exercise

* Correspondence: apearson@msu.edu

'Department of Geography, Environment and Spatial Sciences, Michigan
State University, 673 Auditorium Road, East Lansing, Ml 48824, USA

Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-020-08716-3&domain=pdf
https://osf.io/surx7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:apearson@msu.edu

Pearson et al. BMC Public Health (2020) 20:638

Background

Individuals living in socioeconomically deprived inner
cities have disproportionately high rates of obesity,
Type 2 diabetes, cancer and cardio-metabolic condi-
tions, all of which have stress- and physical inactivity-
related etiologies [1-14]. The cost of these diseases is
enormous, where the direct annual medical costs for
obesity exceed $300b [15], and societal tolls include
declining or stagnating life expectancy, particularly in
low-income communities [16]. Low-income neighbor-
hoods experience dual risks, whereby physical activity
(PA) levels are low and stress levels are high [17, 18].
Stress and physical inactivity can both lead to down-
stream inflammatory changes that alter body compos-
ition and metabolic and immune functions linked to
chronic disease [19-22]. Studies underscore the
twinned benefits of weight management and lowered
stress that engaging in PA confers [23]. Lower stress,
regardless of PA, assists with sustained weight loss
[24] and improved cardio-metabolic health [25], mak-
ing it an attractive goal for health benefits.

To induce change in PA and stress on a population
level, researchers and city planners are exploring fea-
tures of the built environment, such as greenspace
(e.g., parks), that may promote healthy lifestyles [26,
27]. Parks serve as places to engage in PA in direct
contact with nature — called ‘green PA’ — which has
been shown to lower anxiety [28] and perceived stress
[29, 30] over and above the effects of indoor PA [23]
or outdoor PA without greenery [31]. In addition,
cross-sectional research indicates that passive expos-
ure to greenspace (e.g., visual, as in the sight of
plants and trees, and auditory, as in birdsong) may
lower stress [32, 33]. However, not all residents living
near parks visit the parks or engage in PA, and, em-
pirically, the relationship between neighborhood
greenspace and PA is inconsistent (for a review [34]).
Even so, greener neighborhoods consistently predict
lower obesity rates across age groups and rural/urban
settings [35—-41]. One possible explanation for these
findings is that healthier people simply choose to live
in greener areas. Yet another possible explanation is
that the greenness-obesity relationship is influenced
not only by PA but by stress reduction.

To address these knowledge gaps, we designed the
Study of Active Neighborhoods Detroit (StAND) to
utilize a natural experiment (not a behavioral interven-
tion) to illuminate the causal health effects of green-
space. We integrate leading-edge geospatial techniques
to assess individual-level exposure to greenspace with
longitudinal evaluation of device-based measures of PA
and biomarkers of stress and cardio-metabolic health in
low-income, predominantly African American individ-
uals living in neighborhoods in Detroit, Michigan U.S.A.
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Objectives

The aims of StAND are to observe the effects of eco-
logical restoration of parks on PA, stress and cardio-
metabolic health outcomes from baseline through three-
years post restoration using a quasi-experimental design.
The hypotheses are:

Hypothesis 1

Compared to participants in control (CNT) park neigh-
borhoods, participants in intervention (INT) park neigh-
borhoods will have increased PA levels at three-years
post-restoration.

Hypothesis 2
Compared to participants in CNT park neighborhoods,
participants in INT park neighborhoods will have in-
creased levels of ‘green PA’ at three-years post-
restoration.

Hypothesis 3

Across both INT and CNT parks, the quality of visual
and auditory exposures (positive and negative) will affect
PA levels.

Hypothesis 4

Compared to participants in CNT park neighborhoods,
participants in INT park neighborhoods will have lower
stress levels as indexed by measures of cortisol, per-
ceived stress, and anxiety at three-years post-restoration.

Hypothesis 5
Participants with higher levels of PA and ‘green PA’ will
have lower stress.

Hypothesis 6
The quality of visual and auditory exposures (positive
and negative) will affect stress levels.

Hypothesis 7

Compared to participants in CNT park neighborhoods,
participants in INT park neighborhoods will have im-
proved glycated hemoglobin A1C (A1C) and C-reactive
protein (CRP) at three-years post-restoration.

Hypothesis 8

Compared to participants in CNT park neighborhoods,
participants in INT park neighborhoods will have lower
blood pressure, body mass index (BMI), and hip-to-waist
ratios at three-years post-restoration.

Methods

Design

The overall design of StAND is a four-year quasi-
experimental, natural experiment, with two conditions
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(INT and CNT), four measurement occasions, and
individual-level measurement of exposures and outcomes
(see Fig. 1 for a conceptual diagram for the study). Four
INT parks were selected by Detroit Audubon and five
comparable CNT parks were selected, based on size, exist-
ing trees/plants, and proximity to other bird habitats. All
adults (i.e. aged 218 years) living in a CNT or INT park
neighborhood (defined in the following text) were invited
to participate. Baseline (t=0) and three annual measure-
ments (t=1 to t=3) post-restoration will be conducted
on participating individuals with the intention of having a
longitudinal panel study design. However, we considered
sampling alternatives depending on attrition, as others
studies have done [42]. If attrition is higher than expected
(>25% at t=1), then additional participants will be re-
cruited at each time point, yielding a repeated cross-
sectional design, with a nested panel. If assessments at cer-
tain time points are missing within the panel for some
participants, we will assume that data from our unbal-
anced panel is missing at random.

The study was approved by the Michigan State Uni-
versity’s Institutional Review Board (IRB Approval
#STUDY00000587; date 03/21/2019). The study was reg-
istered with OFS (osf.io/surx7) and successfully tested in
a pilot study (Pearson AL, Clevenger K, Horton TH,
Gardiner J, Asana V, Dougherty B, et al: Feelings of
safety during daytime walking: Associations with mental
health, physicial activity and cardiometabolic health in
two high vacancy, low-income neighborhoods in Detroit,
Michigan, in review) [43]. The protocol was completed
using the TREND guidelines [44].

Participants
Participants are adults who reside in a study park’s zone
of influence, which is deemed to be 0.5km (0.31mi),
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which is an approximate 15-min walk to the park and also
a reasonable maximum distance for hearing birdsong in
an urban setting [45]. Participants will be recruited from
within a 16-cell grid (120m?/cell) around each park. Thus,
the unit of measurement is the individual, but the unit of
assignment-to-intervention is neighborhood. We con-
ducted a pilot study in two neighborhoods in 2018 (1 = 67
participants enrolled) and received funding at the end of
the summer in 2019, yielding a truncated field season (n =
145 participants). The first full field season for this study
will be 2020. To recruit participants, we mail postcards
and conduct recruitment activities (e.g., information
booths) in each neighborhood. Field staff then visit homes
in each study neighborhood to brief potential participants
on the study, request participation, and screen for inclu-
sion. We recruit only one English-speaking male or female
(= 18y) without mobility issues per household, which is at
the household’s discretion. To ensure participant compre-
hension and confirm contact information, we use an elec-
tronic text message to finalize enrollment. Participants are
then instructed on the correct usage of the accelerometer
(Actigraph GT3X), Global Positioning System (GPS) de-
vice (Canmore) and cortisol sample collection and
instructed that a study shuttle will take them to their
scheduled health appointment in our study office. The tar-
get total sample is 450 adults to be recruited and retained.
To retain participants, we will employ a set of strategies
including: 1) sending holiday cards with neighborhood-
level results; 2) sending birthday cards; and 3) sending
periodic, brief surveys through StANDApp.

Sample size

Assuming a longitudinal panel design, sample size assess-
ments for the study are based on achieving 82% power to
test the hypotheses. The effect measure is a difference-in-
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differences (DID) — in hypotheses 1-3, i.e., the expected
change in PA from baseline to three-years post-
restoration in INT parks compared to the corresponding
change in CNT parks. Hypotheses 3—6 concern a DID in
stress outcomes. A review of the literature on PA [46] and
cortisol [47] suggests an effect size (EF) of 0.35 could be
posited. Accordingly, we calculate our sample size require-
ments to detect an EF of 0.35 or better with 82% power.
Two other design features are: a serial correlation r be-
tween repeated measures over time and intra-class correl-
ation (ICC) p for clustering within neighborhood parks. In
community-intervention studies such as ours, p is small
[48—-51]. Plausible values from the literature and our own
experiences, suggest r > 0.35 and p < 0.004. With a total of
nine parks (4 INT, 5 CNT), we will need a sample of 450
participants, or 50 per park, to detect EF = 0.35 with 82%
power, based on a two-sided test at significance level 5%.
Because attrition is expected over the study period, we will
recruit a total of 620 participants at t =0 (baseline) to ac-
count for attrition of 15% at t =1 and another 10% at t =2
and 5% at t=3. Our sample size assessment may also be
deemed conservative as it does not account for potential
influence of fixed covariates, which should increase preci-
sion on the intervention effect estimate by reducing re-
sidual variance resulting in a positive effect on power.

Intervention and control parks

Both INT and CNT parks were selected from the same
pool of designated ‘Community Open Spaces’ by the
City of Detroit Parks & Recreation Department (DPRD).
These parks are not maintained as traditional parks and
are only mowed once annually. From this pool, we se-
lected CNT parks matched to INT parks based on
neighborhood conditions: blighted buildings, greenery,
vacant lots, major roads, industrial land use, poverty,
and violent/property crime.

Intervention description

To combat problems with severe population decline,
abandoned and demolished buildings, and huge numbers
of unmaintained parks and empty lots [52], DPRD cre-
ated an Improvement Plan in 2017 to: 1) improve exist-
ing parks; 2) strengthen neighborhoods through parks;
and 3) convert open spaces into forest buffers, meadows
or urban agriculture. DPRD has now implemented this
urban rejuvenation effort in partnership with Detroit
Audubon.

By restoring unused parks to meadows with native
grasses and wildflowers, Detroit Audubon intends to
create what it calls Detroit Bird City, a city-wide habitat
corridor to help conserve hundreds of North American
bird species that pass through Michigan using the De-
troit River as a migration flyway. Detroit Audubon is
scheduled to restore these four parks in 2019-2020.
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Restorations will include: 1) replacing non-native plant
and wildflower species with native species and removing
turf and cement; 2) creating trails around each park’s
perimeter; 3) adding signage in the park about these ef-
forts; conducting 4) avian and plant biodiversity surveys
at each park and 5) guided bird watching walks; and 6)
holding community meetings and an annual stewardship
event led by Detroit Audubon and DPRD to promote
engagement. Each park intervention will be rolled out
over a six-month period, including all the activities.
Time from restoration to grassland maturation is esti-
mated to be three years. Audubon, in partnership with
residents (receiving a paid incentive for maintenance),
will keep up these nature areas following restoration.

Control description

In June 2018, we conducted extensive inventories of all
nine parks at baseline, evaluating the following: bird spe-
cies, plant species, and maintenance and usage of parks.
Each park had 8-20 bird species, with American Robin
and European Starling the most common. Plant diversity
was low, with many invasive species and turf grass.
Broken cement and signs of dumping were common.
Only one park was observed to be used by park-goers
(see Fig. 2 for examples of current park conditions). We
expect the CNT parks in this project to continue these
conditions and to remain unmaintained (only mowed
once annually) during the duration of the study.

Risk of bias assessment

This study employs the Risk Of Bias In Non-randomized
Studies of Interventions (ROBINS-I) tool [53] to assess
risk of bias for the pre-intervention components. Specif-
ically, we aimed to reduce bias due to confounding by: i)
including a suite of potential individual-level con-
founders in our survey instrument (detailed below); ii)
matching INT and CNT neighborhoods based on base-
line area-level factors which may influence both the out-
comes and the exposures of interest (detailed above);
and iii) consideration of potential co-interventions that
might occur (that are related to receiving the interven-
tion and the outcomes). The potential for the interven-
tion to lead to gentrification was identified. Specific
items in the surveys will measure perceptions of gentrifi-
cation and median home price in each study neighbor-
hood will be quantified using publically available data
from Redfin, a national real estate brokerage, for each
time point. At the time of the intervention, bias in the
classification of the intervention will be minimized by
collecting objective data on: park usage, plant species,
bird species, greenness and signs of care. Post-
intervention bias will be assessed at the conclusion of
the study.
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Fig. 2 Examples (a-e) of current conditions in typical participating parks in Detroit, Michigan, U.S.A. Source: Google Street View

The participants and the study staff collecting out-
come data will be blinded to the condition assignment.
This will be accomplished by referring to neighborhoods
using a three-letter code and restriction of information
about the intervention locations. We will assess blinding
at the end of each field season by asking staff which
neighborhoods they believe are receiving the interven-
tion. Success will be determined as either i) a majority of
“don’t know” responses; or ii) a balance between correct
and incorrect responses. Because this is a natural experi-
ment and the researchers have no control over whether
the intervention is carried out completely in all locations
and to what degree the intervention is discussed

throughout the neighborhoods, assessment of blinding
of participants is not appropriate.

Measurement protocol

All items to be assessed are in Table 1 and include both
individual and area-level measures. At recruitment,
accelerometers (Actigraph GT3X) and GPS devices
(Canmore) on an elastic belt and saliva collection kits
will be distributed, and data will be collected for the fol-
lowing week. For subsequent time points, participants
will be phoned to arrange an equipment delivery time
and schedule a health appointment. Participants will be
reminded via StANDApp (detailed below) and/or text to
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Table 1 Tools, scale of measurement, and measurements that
will be obtained annually 2019-2024. Individual-level refers to
measurements collected from individual household participants
and area-level refers to measurements collected within and at
some points around a park

Tool/Variable Individual or Measures obtained
area-level

Survey Individual Demographics, perceptions of
neighborhoods, disease and
medication history, diet, perceived
stress score, anxiety and depression
symptoms, nature-relatedness, per-
ceived safety, acute illness

Physical activity  Individual Total activity counts, Moderate-to-

(PA) vigorous PA, when combined with GPS
- green PA

GPS Individual Time spent in park, time spent in view
of park, when combined with PA —
green PA

Cortisol samples  Individual Total concentration, slope of cortisol
from waking to evening

Dried blood Individual C-reactive protein

spots

Finger-stick A1C  Individual Hemoglobin A1C levels

Plant surveys Area Plant diversity of park, invasive species
versus native species

SOPARC Area Usage of park

Signs of care Area Maintenance level of park

Bird surveys Area Bird diversity of park

360 imagery Area Greenness of park, negative visual

exposures, signs of disorder

AudioMoth Area Bird species, insects, sound diversity,
acoustic noise
recorders

Weather station  Area Daily precipitation, high temperature

wear the elastic belt and to collect saliva samples. Partic-
ipants will also take a paper survey at home. Participants
will return the equipment, survey and saliva kits at the
health appointment or, if they forget an item, will sched-
ule a time to return the item(s) in order to receive the
compensation voucher.

At the health appointment, field staff will collect an-
thropometrics and dried blood spot (DBS) samples,
measure A1C using test strips, and retrieve equipment
and cortisol samples. All health data will be entered and
then shared with each participant via a health results
sheet, which includes resources for free or low-cost
healthcare in Detroit.

StANDApp smartphone app

In partnership with MEI Research Ltd., we have devel-
oped a secure mobile app for all study communication,
scheduling, and retaining survey deployment. MEI’s PiLR
[54] system will allow for the deployment of surveys as a
form of monthly contact from the study team to increase
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retention, sharing health results with each participant,
and reminders about health appointments, charging
units and wearing belts and taking cortisol samples.
Based on pilot work, we determined that some partici-
pants may be reticent to use this application on their
mobile phone. Accordingly, we will use the app on a vol-
untary basis. All reminders will also be sent by text mes-
sage, negating the requirement that all participants use
the app.

Physical activity (primary outcome) measured using
accelerometry

PA and sedentary behavior are measured using the Acti-
Graph accelerometer (ActiGraph model GT3X; Pensa-
cola, FL). The ActiGraph is a triaxial accelerometer that
measures acceleration in three planes of motion. Accel-
erometers capture and filter acceleration signals that are
digitized and recorded as count values that are stored in
investigator-defined intervals. Raw data are stored and
may also be used for analyses.

The accelerometers will be worn on an elastic waist-
band, placed at the right hip, for all waking hours over
seven days at each of the study’s four measurement time
points (all during the summer or early autumn). Data
will be collected in raw mode (30 Hz) and aggregated to
1-min values for analyses. The primary outcome is total
PA counts per week, which has been associated with
cardio-metabolic outcomes and biomarkers [22]. Ana-
lyses will also include number of minutes spent at given
PA intensity levels using cut-points of Freedson et al
(21952 cpm) for moderate-to-vigorous intensity PA and
Matthews et al. (< 100 cpm) for sedentary behavior, with
light PA as 100-1951 cpm [55, 56]. We will also explore
PA intensity levels using vector magnitude cutpoints
[57]. In addition, these measures will be stratified by
whether the PA occurred in the study park, in any
greenspace, or elsewhere (based on GPS data). This will
provide an indication of the proportion of ‘green PA’
from total PA. Periods of 60 min or more of continuous
zeroes are considered non-wear times and not included
in the calculation of total wear time. To be included, we
will require >4 days of PA data (wear time > 8—10 h/day)
per time point [58]. If high levels of missing data exist,
imputation strategies will be utilized. PA data will be
collected at the same time of year (summer months
only) to account for seasonality.

Mobility and park contact measured using GPS data

GPS units (Canmore) will be worn for one week, on an
elastic belt with an accelerometer. At the end of the
week of observation, data will be downloaded. To calcu-
late the amount of time spent in ‘green PA’, these data
will be linked with accelerometer data using time. Accel-
erometer data are then restricted using a threshold for
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PA and lux (>400). Speed is calculated and data are fur-
ther restricted by excluding speeds >25kmph. This re-
sults in total green PA. We will also use GPS data to
calculate the actual contact time spent within view of
the park [59] and usage of park. To calculate time spent
within view of park, we will create ‘viewsheds’ around
each park to determine all possible viewpoints from
which the park can be seen, accounting for obstacles
such as buildings, as we have done previously [60, 61].
To calculate usage of park, all GPS points located within
10 m of the park boundaries will be compiled to calcu-
late time spent in park.

Stress measures (secondary outcome)

We will measure salivary cortisol, perceived stress and
anxiety. Stress alters the dynamics of the diurnal rhythm
of cortisol secretion, and people who are chronically
stressed exhibit lower morning and higher evening con-
centrations, yielding flattened slopes [19, 20, 47, 62-67].
Samples will be collected using the passive drool method
[68] at waking, and 12-h after waking to permit calcula-
tion of time point concentrations and the slope of cortisol
from waking to evening. The saliva collection kit contains
collection supplies, a response sheet and reminder instruc-
tions. Participants will be reminded to take and freeze
samples at designated times the day before their scheduled
health appointment via StANDApp and/or text. Partici-
pants will also be reminded to bring kits to their appoint-
ment the next day [69, 70]. In the field, samples will be
stored in a manual-defrost freezer and shipped on dry ice
(once per measurement period) to Northwestern Univer-
sity’s Laboratory for Human Biology Research where they
will be thawed, centrifuged and the supernatant aliquoted
into replicate samples in smaller tubes and analyzed in du-
plicate. Low, medium, and high concentration controls
will be prepared in at t = 0 for use throughout the study to
monitor inter-assay variability. Cortisol will be measured
using the Salimetrics ELISA kit as per manufacturer’s in-
structions [71].

We will also use two stress indicators via the survey,
including: 1) Anxiety and Depression, measured via
NIH’s Adult PROMIS-29 Profile v2.0 [72, 73]; and 2) the
Perceived Stress Scale [74], comprising 10 items (e.g.,
feeling nervous) measured on Likert-type scale (0 =low,
40 = max stress). The perceived stress scale has been val-
idated in multiple populations, and the face validity and
scale content were ranked high with a Kaiser-Meyer-
Olkin coefficient of 0.82 [75]. The scale’s internal
consistency reliability was good in multiple languages
and convergent validity was supported by expected rela-
tionships with other mental health measures, including
anxiety and depression [76]. The PROMIS-29’s (our
measures of anxiety and depressive symptoms) internal
consistency for sub-domains has been shown to be high
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(Cronbach’s a >0.88), with adequate structural validity
for most domains (CFI > 0.95, RMSEA < 0.05) [77].

Anthropometric and cardio-metabolic measures
(downstream outcomes)

Cardio-metabolic outcomes will include body mass
index (BMI), waist-to-hip ratio, blood pressure, glycated
hemoglobin A1C (A1C) and C-reactive protein (CRP).
Height will be measured twice using a stadiometer
(SECA Corp). Weight will be measured twice using a
scale with bioelectric impedance capability (Tanita TBE-
300). Waist and hip measurements will be taken twice
with a Gulick tape, according to World Health
Organization (WHO) procedures [78] and the waist-to-
hip ratio calculated. Systolic and diastolic blood pres-
sures will be measured as markers of cardiovascular
disease (CVD) risk using an automatic upper arm moni-
tor (Omron HEM-711DLX), according to American Col-
lege of Cardiology recommendations [79]. With the
patient seated, two blood pressure measurements will be
taken at 30s intervals. The average of each set of mea-
surements will be used for height, weight, waist and hip
measurements and blood pressure. BMI will be calcu-
lated and expressed as l(g/mz. A1C [8, 80] will be
measured from blood samples collected from finger-tip
sticks using portable analyzers and test strips
(A1CNow"). Participants will be given these results im-
mediately, including normal ranges and recommenda-
tions for consulting a physician.

CRP will be measured to indicate chronic inflamma-
tion [81-90], associated with obesity, Type 2 diabetes,
cancer, and CVD [89, 91-94]. DBS samples will be col-
lected on Whatman 903 Protein Saver Cards [95, 96]
from finger sticks following collection of blood for the
A1C analyses. DBS serves as the lowest risk, least inva-
sive blood sampling technique [95]. Circulating levels of
CRP in young, healthy adults average 0.8 mg/l. Chronic
stress induces small changes in the range of 2—5 ng/I ne-
cessitating the use of high-sensitivity assays for CRP [90,
97]. Upon collection of DBS, samples will be transferred
to Northwestern University’s Laboratory for Human
Biology Research where CRP will be eluted from the
DBS and assayed using a CRP assay previously validated
in their laboratory for use with DBS [84, 97]. To reduce
inter-assay variability and improve quality control, all
samples will be stored with humidity sponges and oxy-
gen absorbents and frozen (-20°C) until the final data
collection year (2022) and then analyzed concurrently,
with no expected degradation.

Survey

Basic demographic data information (age, sex, ethnicity,
employment, household composition, length of resi-
dence) will be collected at recruitment or when re-
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contacted at each timepoint. Then, each participant will
complete a self-administered paper survey in the privacy
of their own home to assess: income, perceptions of the
neighborhood [98-102], disease and prescription medi-
cation history [103-106], diet [107, 108], perceived stress
[74], anxiety and depression symptoms [72, 73] (dis-
cussed previously), nature-relatedness [109]; all which
were considered potential correlates of device-based PA
and stress. Questions about the perceptions of the social
and environmental features of neighborhoods have been
shown to have moderate to high agreement (rho range =
0.42-0.91) [99]. Family Life, Activity, Sun, Health, and
Eating (FLASHE) questions related to diet were reviewed
by the scientific experts for consistency with existing,
validated measures [108]. The nature-relatedness scale
(NR-6) has been shown to demonstrate good internal
consistency, temporal stability, and predict happiness,
environmental concern, and nature contact [109]. Mea-
sures that may serve as confounders include: 1) symp-
toms of acute illness or infection or prescription
medication which could influence biomarker measures;
2) attitudes toward nature using the NR-6, because these
may influence behaviors; and 3) perceived safety which
may influence stress [110], PA [111, 112], and park
usage [113].

Park observations and imagery

The positive visual exposures of interest include the
presence of people using the park, signage, mowing and
other signs of care [114], diversity of plants and birds
and greenness. Negative visual exposures include the
presence of litter, arson, graffiti and broken windows of
buildings along the park perimeter (called signs of dis-
order). We will employ two methods to obtain these
data. First, Audubon volunteers will inventory plants in
quadrants and count bird species using point counts less
than three hours after sunrise, measuring species abun-
dances [115, 116]. Volunteers will be trained by Audu-
bon, and inter-observer reliability assessed by having
two or more observers collect data simultaneously but
independently [117]. Plant/bird species richness and bio-
diversity measurement will employ the well-established
Shannon Diversity and Simpson Indexes [118, 119] and
Evar Evenness Index [116]. Trained graduate students
will also make observations of signs of care and the
System for Observing Play and Recreation in Communi-
ties (SOPARC) [120]. SOPARC provides an assessment
of park users’ PA levels, gender, activity types, and esti-
mated age and ethnicity groupings as well as information
on a park’s level of accessibility, usability, supervision,
and organization with a high internal correlation be-
tween items (r=0.75) [120], and exhibiting high inter-
rater reliability (0.80-0.99) [117]. All nine parks, each of
which consists of only one target area due their small
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size, will be observed twice over one day (9 am-2 pm)
during randomly scheduled days without rain in summer
months, by two raters. INT and CNT parks will be ob-
served at the same time on different days for parallel ob-
servations. Signs of care involve observations (presence/
absence) of manmade and natural items in a park and
provides a categorical quality rating for each item, which
is based on qualitative work in Detroit [114]. Second, we
will measure visual greenness and negative visual expo-
sures (signs of disorder) via 360 images captured along
each park perimeter, using a mounted camera (Samsung
Gear 360). Images will be used to measure visual green-
ness, by quantifying pixels of greenery using methods we
developed [121]. Images will also be used to assess nega-
tive exposures using Marco et al’s neighbor disorder
coding protocol [122], which has shown acceptable ICCs
(0.41-0.60) for the mean level of subscales of physical
disorder and decay and has also been validated (showing
high correlations) with physical audits, police impres-
sions, and neighborhood socioeconomic status. This vir-
tual auditing approach has been validated across several
samples [123, 124].

We will employ two weighting schemes to create
individual-level visual exposures from the park mea-
sures. First, we will weight each exposure by the actual
contact time spent within view of the park in the one-
week observation time using the GPS data [59], as de-
scribed previously. Second, we will calculate the percent-
age of the viewshed occupied by the park, as seen from
the participant’s home by capturing a 360° image from
the front door of the home location. We will then create
weights using these measures, to be applied to each of
the visual exposures above.

Neighborhood soundscapes

Positive and negative auditory exposures will be
assessed by acoustic recordings collected by 90 Audio-
Moth v1.1.0 acoustic loggers (Open Acoustic Devices).
Nine devices will be placed at least 100 m apart ran-
domly in a 500 m grid around each park, and one de-
vice will be placed inside each park. We will record for
one week in June, corresponding with Audubon’s bird
surveys, selecting days to standardize weather condi-
tions. To predict negative auditory exposure, we will
calculate environmental noise metrics known to relate
to human annoyance, health, and perception including:
Laeqr (A-weighted equivalent sound level (L) over
time); Lamax (maximum A-weighted equivalent L over
time); Lajo and Lagy (A-weighted L exceeded 10 and
90% of time); Lajp - LAgp, LDN (Day-Night average L,
where night events receive a 10 dB penalty); Lpgy (Day-
Evening-High equivalency L); roughness (temporal vari-
ation in amplitude), and sharpness [125-128].
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To examine positive auditory exposure, trained staff
will count the number and duration of sound categories
using observations of spectrograms in Raven Pro soft-
ware (Cornell University, Ithaca, NY). Sound categories
are ‘anthropogenic’ (e.g., vehicle, people), ‘geological’
(e.g., wind), and ‘biological’ (e.g., birdsong). Additionally,
we will further categorize bird song to species, in order
to generate species richness and diversity of the acoustic
community [129]. We will combine the duration/fre-
quency and richness of biological with geological sounds
into a metric of positive exposure [130]. Using values of
each acoustic exposure metric, we will then predict
levels throughout the study area using spatial kriging
models [131]. We will extract the positive and negative
exposure levels for participants at each time point.

Weather data

While we restrict data collection to summer months
(May-September), weather conditions at the time of
data collection and the two weeks prior to data collec-
tion may influence both exposures of interest and out-
comes. Thus, we will compile daily precipitation and
high temperature data for every day during data collec-
tion and the two weeks preceding data collection for
each time point, from the weather station at Detroit air-
port (DTW) [132, 133].

Statistical analysis

Assuming a longitudinal panel design, we will compare
INT to CNT at baseline using as appropriate ANOVA-
E-tests, chi-square tests and non-parametric tests to de-
termine equivalence of potentially confounding physio-
logical and contextual participant characteristics. If
substantive differences are found, they will be controlled
for in subsequent analyses by regression techniques,
guided by the degree of dissimilarity [134]. Equivalence
between groups will be assessed on age, sex, ethnicity,
employment status, length of residence, marital status,
attitudes towards nature, perceived safety, and pre-
existing health conditions. We will calculate descriptive
statistics for all variables at baseline and each post-
restoration time point. Likewise, park characteristics will
be summarized for the INT and CNT parks for each
time point.

We adopt a regression-based approach to multivari-
able modeling that addresses features of clustering of
participants within parks and correlation over time in re-
peated assessments. Repeated measures ANOVA, or
more apropos, generalized linear (mixed) models
(GLMM) will be used [135-137]. Denote by Y} an out-
come in the i-th participant in the /-th park assessed at
time ¢. It is assumed that an individual is primarily ex-
posed to one park. Generally, outcomes are assessed at
baseline and at least 3 additional time-points, denoted
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t=0, 1, 2, 3. Our hypotheses concern the expected re-
sponse: pp; = E(Yit|Xjt,bp) .The GLMM is expressed as
9(Uni) = Xy + Z' by with link function g appropriate
to type of outcome (continuous, categorical, count, or-
dinal) random effects by; to capture serial correlation
within participant measures and clustering [138]. The
covariates Xp; are participant characteristics, some of
which are time-invariant such as the aforementioned
sociodemographic variables; 2z are characteristics of
park % at time £. Minimally, the predictor variables are: a
single indicator for GROUP, with CNT as referent, three
indicators for TIME, corresponding to t=1, 2, 3 with
baseline t=0 as referent, and GROUPxTIME interac-
tions. A measure of exposure to environmental stimuli is
included in participant characteristics. The GLMM al-
lows us to formulate and test hypotheses on functions of
the regression parameters B, including: i) point-in-time
comparison between INT and CNT, e.g., at each follow-
up year; ii) time-averaged comparison between INT and
CNT; iii) within group comparison for change over time;
and iv) change in INT compared to the corresponding
change in CNT via DID. SAS Software v9.4 (Analytics
15.1 or higher) will be used for statistical analyses.

To address missingness in our response data, we will
employ strategies for imputation [139]. The techniques
described above allow missing at random (MAR). In-
verse probability weighting [140] will be investigated to
accommodate missing data patterns that are not MAR.
To minimize bias in analysis, we will adjust for factors
that may be unbalanced between groups and examine
the robustness of our conclusions under deviations of
model assumptions. Below, we outline specific analyses
for each hypothesis to be tested.

Hypothesis 1

We will separately evaluate average activity counts/mi-
nute and average moderate-to-vigorous minutes over the
one-week observation period for each of the data collec-
tion periods. The predictor of interest is binary: INT ver-
sus CNT.

Hypothesis 2

The primary outcome, ‘green PA’, will be average activity
counts/minute and average moderate-to-vigorous mi-
nutes over the one-week observation period while in
parks and greenspaces in Detroit, as a subset of all
activity.

Hypothesis 3

We hypothesize there will be an association between PA
and the visual and auditory exposures. Instead of a bin-
ary predictor of interest, we will use continuous predic-
tors for visual and auditory park exposures. Interaction
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terms between positive and negative exposures will also
be assessed, as evidence suggests that negative sounds
deplete the restorative benefits of natural sounds, [141]
and that parks are often dominated by noise [45, 142].

Hypothesis 4

Each stress outcome will be evaluated separately and
treated continuously. We will also explore potential me-
diators (e.g., PA) by adding each to mixed models as
fixed terms, and adjusted mediation and partial correl-
ation coefficients explored. We will adjust for prescrip-
tion medication history and symptoms of acute illness as
potential confounders.

Hypothesis 5
We will assess relationships with each stress indicator,
in turn.

Hypothesis 6
We hypothesize there will be an association between
each stress indicator and these exposures.

Hypothesis 7

We will compare INT and CNT groups from baseline
through three-years post-restoration for changes in CRP
and A1C (continuously measured) between INT and
CNT groups. We will also consider the inclusion of pre-
scription medication history and symptoms of acute ill-
ness as potential confounders.

Hypothesis 8

We will compare INT and CNT groups from baseline
through three-years post-restoration for changes in
blood pressure, hip-to-waist ratio and BMI (continuously
measured) between INT and CNT groups.

Despite our best effort to recruit and retain a longitu-
dinal panel of participants, we may face problems with
attrition higher than the projected attrition rates of 15%
at t =1, another 10% at t=2, and 5% at t = 3. With these
levels, our longitudinal panel becomes unbalanced but
valid inference can be made under the assumption that
attrition is at random (MAR). We describe another strat-
egy, repeated cross-sections.

By repeated cross-sections we mean a series of inde-
pendent samples are drawn at the subsequent times t =
1, 2, 3 following the initial baseline sample at t=0. It
could happen that a participant in the baseline sample is
also in any of the subsequent samples, but this is at ran-
dom. With repeated cross-sectional samples, we cannot
estimate within participant change in outcomes, which
is the key advantage of the longitudinal panel approach.
However, we can still assess patterns of change at an ag-
gregate level as explained in the following text.

Page 10 of 14

Consider an outcome Yj at time ¢ in the i-th partici-
pant, and the linear model Yj = x;t/)’ + a; + gy with ex-
ogenous covariates X;;, t=0, 1, 2, 3. We aggregate each
sample into C cohorts defined as participants who share
common characteristics such as age, sex, neighborhood
park, etc. Aggregation of participants to the cohort level

¢ replaces the model by the cohort model Yy = 76,,8
+dc + &t c=1,...,C, t=0, 1, 2, 3. (Bar notation refers to
averages over participants within cohort/time). Our ob-
served data become a pseudo-panel of repeated observa-
tions on cohorts over time, and estimation of differences
between INT and CNT cohorts could be compared over
time, although the cohorts are not comprised of the
same participants from one time point to the other.
Some technical issues will need to be addressed to en-
sure a consistent estimator of 8 [143—146].

Discussion

At the time this investigation was initiated, to our know-
ledge no experimental study has examined the visual
and auditory exposures to greenspace to illuminate the
twinned effects on PA and stress, and downstream
cardio-metabolic health. Previous experimental studies
have focused on the addition of conventional park
equipment and infrastructure, which tend to be very ex-
pensive interventions. Additionally, we apply a rigorous
measurement protocol that uses device-based/objective
measurement of both exposures and outcomes to evalu-
ate the effects of the intervention on PA, stress and
cardio-metabolic outcomes. Further, and importantly,
this study involves measurement of individual-level vari-
ation in positive and negative exposures using geospatial
techniques, rather than assuming equal exposure among
all nearby residents. A recent report from WHO on the
effectiveness of greenspace interventions on health noted
that such interventions are promising avenues to im-
prove physical and mental health in cities, particularly in
low-income neighborhoods, although evidence is still
needed to confirm the effect of urban greenspace inter-
ventions in deprived populations. This study addresses
several recommendations from the report. The effective-
ness of those recommendations is yet to be determined
in a manner that will allow researchers and practitioners
to provide better evidence-informed policies and prac-
tices in low-income urban neighborhoods.
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