Shi et al. BMC Public Health (2019) 19:1484

https://doi.org/10.1186/s12889-019-7858-y B M C Pu bl |C H ea |th

RESEARCH ARTICLE Open Access

Factors influencing high respiratory ®
mortality in coal-mining counties: a
repeated cross-sectional study

Ruoding Shi''@®, Susan Meacham?, George C. Davis', Wen You®, Yu Sun* and Cody Goessl®

Check for
updates

Abstract

Background: Previous studies have associated elevated mortality risk in central Appalachia with coal-mining
activities, but few have explored how different non-coal factors influence the association within each county.
Consequently, there is a knowledge gap in identifying effective ways to address health disparities in coal-mining
counties. To specifically address this knowledge gap, this study estimated the effect of living in a coal-mining
county on non-malignant respiratory diseases (NMRD) mortality, and defined this as “coal-county effect.” We also
investigated what factors may accentuate or attenuate the coal-county effect.

Methods: An ecological epidemiology protocol was designed to observe the characteristics of three populations
and to identify the effects of coal-mining on community health. Records for seven coal-mining counties (n =19,692)
were obtained with approvals from the Virginia Department of Health Office of Vital Statistics for the years 2005 to
2012. Also requested were records from three adjacent coal counties (n=10,425) to provide a geographic
comparison. For a baseline comparison, records were requested for eleven tobacco-producing counties (n = 27,800).
We analyzed the association of 57,917 individual mortality records in Virginia with coal-mining county residency,
county-level socioeconomic status, health access, behavioral risk factors, and coal production. The development of a
two-level hierarchical model allowed the coal-county effect to vary by county-level characteristics. Wald tests
detected sets of significant factors explaining the variation of impacts across counties. Furthermore, to illustrate
how the model estimations help explain health disparities, two coal-mining county case studies were presented.

Results: The main result revealed that coal-mining county residency increased the probability of dying from NMRD.
The coal-county effect was accentuated by surface coal mining, high smoking rates, decreasing health insurance
coverage, and a shortage of doctors. In Virginia coal-mining regions, the average coal-county effect increased by
147% (p-value< 0.01) when one doctor per 1000 left, and the effect increased by 68% (p-value< 0.01) with a 1%
reduction of health insurance rates, holding other factors fixed.

Conclusions: This study showed a high mortality risk of NMRD associated with residents living in Virginia coal-
mining counties. Our results also revealed the critical role of health access in reducing health disparities related to
coal exposure.
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Background

Health disparities have persisted in central Appalachia
for decades [1-4]. Virginia mines, in the heart of central
Appalachia, in the rugged mountains of the southwest-
ern part of the state, produce high-quality coal. Coal is
the heart of the economy and a cultural icon in a region
that reveres “coal as king.” While rates of mortality have
improved in the region, they have persisted at rates
higher than regional and national averages, particularly
non-malignant respiratory diseases (NMRD) [3]. Studies
attribute the elevated mortality risk to environmental ex-
posure to coal extraction, processing, and transportation
activities [5-8]. Mining releases a large amount of coal
dust and methane into the environment and results in
higher concentrations of particulate matter and sulfate,
impairing coal miner’s respiratory system, a condition
known as coal workers’ pneumoconiosis (CWP) [9]. An-
other coal-related lung disease is silicosis caused by in-
halation of crystalline silica dust. However, the potential
health effects of environmental contaminants produced
by coal mining on community residents are the subject
of ongoing investigations [10].

The health effects of coal mining are likely to be back
in the spotlight of health policymakers as the U.S. gov-
ernment is attempting to revive the coal industry. The
U.S. coal production has risen by 4% from 2016 to 2018
[11]. Some are concerned that the reemergence of the
coal industry may have negative impacts on the health of
those living in these areas, retarding or reversing the
progress made to improve health metrics for those resi-
dents over the past few decades [12]. For instance, Envir-
onmental Protection Agency is proposing to weaken the
Coal Ash Regulations to create new coal-related jobs,
even though their analysis suggests the new rules will
lead to 1400 more premature deaths annually [13]. Black
lung disease resurgence for coal miners has been ob-
served in the state of Virginia [14], but the health effect
on local communities has not been widely evaluated.
The current agenda of bringing back “beautiful clean
coal” makes the research into coal’s health impacts on
the general population critical [13].

Other factors, such as access to healthcare, could
also accentuate or attenuate the adverse effects of
coal mining on health. For example, an accentuating
factor is noticed when Kentucky lawmakers passed a
House bill (HB2-18RS) that permitted fewer doctors
to read chest X-ray for miners’ health claims [15]. An
example of an attenuating factor was seen when Con-
gress required governments and coal companies to
pay out healthcare and guarantee benefits to retired
coal workers even as coal companies faced bankruptcy
[16]. In these scenarios, the legislative actions are po-
tentially influencing the health of coal community
residents.
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Previous literature
Following Meacham et al. [2], we classified studies on
health disparities in Appalachia into two groups: those
focusing on coal mining and those not focusing on coal-
related factors. In the second group, the authors have
identified several determinants predominantly associated
with health disparities in coal communities, such as low
staffing levels in hospitals and Appalachian cultural be-
liefs [1, 4, 17, 18]. Based on a survey on healthcare pro-
viders, Denham et al. [17] found that insufficient health
staffing and facilities, and lack of diabetes education ex-
plained high diabetes prevalence in Appalachia. This re-
search group also proposed that cultural and ethnic
components of communities contributed to poor health
outcomes as well. McGarvey et al. [18] suggested a cul-
tural component and revealed that Appalachian resi-
dents in Virginia were more likely to report their health
status as “poor” compared to non-Appalachian residents
even though there was no difference in chronic diseases
reported by Appalachian and non-Appalachian groups.
Several studies have focused specifically on coal min-
ing and poor health outcomes in central Appalachia.
These poor health outcomes include high mortality rates
of cancer [5], cardiovascular diseases [19] and kidney
diseases [20], and increased risk of hospitalization for
hypertension and chronic obstructive pulmonary disease
(COPD) [21]. For instance, Hendryx et al. [7] examined
county mortality rates and found that living in a heavy
coal-mining county was a risk factor for lung cancer.
Based on a telephone survey on the self-reported pres-
ence of specific chronic diseases, Hendryx and Ahern [6]
tested whether coal production had adverse effects on
local residents’ health after controlling demographic
characteristics and county-level covariates (smoking rate,
obesity rate, poverty rate, and social capital). They found
higher risks of cardiopulmonary diseases, chronic lung
diseases, hypertension, and kidney diseases were associ-
ated with residents living in counties with high-level coal
production, compared to residents in non-coal counties.
To identify the health effect of coal mining, most
studies have attempted to handle several confound-
ing factors in central Appalachia [3, 7, 19]. However,
these health effects have often been assumed con-
stant between coal-mining counties even after con-
trolling socioeconomic and behavioral factors, such
as poverty rates and smoking rates [7, 19]. None of
the previous studies have considered if the health ef-
fects may differ by county and what factors influ-
enced those differences. This means that previous
studies implicitly assume that the effect stays con-
stant over time and across other covariates (e.g., coal
production, SES, health access). The data availability
and limited study scope may have contributed to this
literature gap.
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Current approach
For the purposes of this study, the term “coal-county ef-
fect” has been adopted to refer to the health effect of liv-
ing in a coal-mining county on mortality." Using an
ecological epidemiology protocol, we estimated the asso-
ciations between the mortality risk of NMRD and coal-
mining county residency and what non-coal factors
affect the associations. The non-coal factors of interest
represented the geography, temporal trends, and socio-
economic demographics of our study population groups.
Our study objective was twofold, prompting the fol-
lowing research questions:

1. Are the coal-county effects constant across
counties?

2. What factors lead to non-constant coal-county
effects?

With the first question, we hypothesize that the coal-
county effect may depend on a county’s health access,
economic condition, coal production, and other health
behavioral risk factors.”> For example, limited access to
health care services could accentuate coal-county health
effects, because some coal-related lung diseases (e.g.,
CWP and silicosis) are often symptomless in the early
stages but develop into severe conditions without access
to screening services and treatments [22]. By addressing
the second question, we plan to identify and estimate
the impact of selected factors contributing to the exist-
ing poor health measures in coal counties. The develop-
ment of a novel, two-level hierarchical model allows the
estimated coal-county effect to vary depending on the
county’s socioeconomic status, health access, health be-
havioral risk factors and coal production. Following the
insights from Hendryx et al. [7] and Hendryx et al. [23],
we consider coal production from both surface mining
(i.e., strip mining, open-pit mining, and mountaintop re-
moval mining) and underground mining. Surface mining
practice is more likely to affect neighboring communities
by air and water pollution [10], while underground coal
mining is often associated with miners’ lung diseases, an
occupational hazard [22].

Methods

Study design

Individual death records (n=57,917) were merged with
county-level covariates based on their counties of resi-
dence and years of death to capture the dynamic
changes from 2005 to 2012. Ethical approvals of

'Several previous studies identified elevated mortality rates in coal-
mining areas but did not name their findings as “coal-county effects.
’Health behavioral risk factors refer to risk behaviors that lead to poor
health outcomes.
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individual mortality data were obtained from the In-
ternal Review Boards of the Edward Via College of
Osteopathic Medicine and the Virginia Department of
Health Office of Vital Statistics. County-level covariates
were selected to capture the multi-dimensional concepts
of socioeconomic status, health access, and health be-
havioral risk factors in three population subgroups. Our
model design allowed the coal-county effect to vary as a
function of selected county-level covariates. This model
framework enabled us to test the assumption of non-
constant coal-county health effects. It also identified fac-
tors that explain variations across coal counties.

This study considered a potential spillover effect of
coal production across county borders, which had not
been explored in the majority of previous research using
non-mining counties as reference groups. The spatial
analysis by Hitt and Hendryx [24] showed that cancer
mortality rates were autocorrelated between adjacent
counties. Although our analysis was not of the typical
spatial approach, we did analyze the counties adjacent to
coal-mining counties to test a spillover effect. We con-
sidered both coal-mining counties and counties adjacent
to coal-mining counties as “treated” groups. Since Vir-
ginia tobacco counties share similar economic character-
istics with coal-mining counties, such as “low economic
diversification, low employment in professional services,
and low educational attainment rates [25]”, these to-
bacco counties served as a control group or “untreated”
baseline counties. Then, we identified the coal-county ef-
fect by comparing the average likelihood of dying from
NMRD among residents in treated groups with that in
baseline counties. The choice of an “untreated” baseline
aimed to reduce selection bias because of the similarity
between coal-mining counties and tobacco counties.

Study area

With places of residence recorded, the mortality data
were collected from three rural, underserved health dis-
parity areas in Virginia: coal-mining counties, adjacent
coal counties, and tobacco counties. The adjacent coal
counties served as a geographic comparison group with
residents living in small communities in mountainous
southwest Virginia. The tobacco counties were an eco-
nomic comparison group located in south central Vir-
ginia and experienced financial trends over several
decades that were similar to those for coal-dependent
counties.

Figure 1 shows the three county groups in Virginia.
Seven counties in southwest Virginia were considered as
coal-mining counties (Buchanan, Dickenson, Lee, Rus-
sell, Scott, Tazewell, and Wise, n = 19,692 records). Al-
though Scott County stopped producing coal after 1995,
it was classified as a coal-mining county because coal
mining may have a long-run impact on the local
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environment and human health, particularly chronic
conditions [26]. When estimating the coal-county effect,
we run alternative models in which Scott County is
treated as an adjacent coal county to check if the results
are sensitive to this classification. Three Virginia coun-
ties share the county border with coal-mining counties
(Bland, Smyth and Washington, # = 10,425 records). The
11 tobacco counties are located in the region historically
known for tobacco production (Amelia, Brunswick,
Buckingham, Charlotte, Cumberland, Halifax, Lunen-
burg, Mecklenburg, Nottoway, Pittsylvania, and Prince
Edward, n = 27,800 records). These counties dependent
on tobacco industry as a primary source of the local
economy and are economically comparable to coal-
mining counties [2]. Therefore, we used them as baseline
counties.

Data sources and variables

Individual-level data

Death records were collected from the Virginia Department
of Health Office of Vital Statistics [27], included the pri-
mary cause of death, age, gender, place of residence, marital
status, and years of education. Our outcome variable was

death caused by non-malignant diseases of the respiratory
system with the International Codes for Diseases (ICD)
10th revision codes JOO — J99. NMRD includes but is not
limited to asthma, chronic obstructive pulmonary disease
(COPD), and the pneumoconiosis. NMRD was chosen as
the dependent variable of concern because this group of
diseases was commonly considered as a high-risk health
problem in coal-mining regions [3, 23]. For example, coun-
ties in central Appalachia had the highest mortality rates of
pneumoconiosis and COPD [28].

County-level covariates

Publicly available county annual coal production was ob-
tained from the U.S. Energy Information Administration
[29]. Other county-level covariates were collected from
multiple sources and classified into three categories: socio-
economic characteristics, accessibility of health care ser-
vices, and health behavioral risk factors. Most county-level
covariates were obtained from the Area Health Resources
File (AHRF) [30]. AHRF is a health resource information
system maintained by the Health Resources and Services
Administration. County health behavioral risk factors were
obtained from the Behavioral Risk Factor Surveillance
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System (BRFSS) data [31]. Finally, additional data sources
included the Census Bureau’s Small Area Health Insur-
ance Estimates (SAHIE) for health insurance rates and the
U.S. Census Bureau and Rural-Urban Continuum code
from the United States Department of Agriculture Eco-
nomic Resource Service.

Selected covariates included county unemployment
rates, median household income, and rural-urban status
to measure SES, which played a vital role in individuals’
health outcomes and likelihoods of dying. The first SES
variable was the unemployment rate at the county level
as unemployment increased mortality risk by keeping
jobless people from investing in health [32]. However,
employment alone was insufficient to measure available
resources since a majority of individuals in the sample
were retired. We also considered county median house-
hold income and unobserved differences between rural
and urban residents. Based on the nearest observed
Rural-Urban Continuum codes in 2003 and 2013, we
constructed indicators to classify counties into rural
counties, non-metropolitan urban counties, and counties
in the metropolitan area.®> The 2003 Rural-Urban Con-
tinuum codes were used to construct indicators starting
in 2005 due to a closer time reference, and then we
switched to 2013 Rural-Urban Continuum codes to clas-
sify counties after 2008.

To represent health access, county health insurance
rates were collected from SAHIE and three county-level
health access measurements from AHRF, including
numbers of doctors (sum of active medical doctors and
osteopathic doctors), hospital beds and health centers
per 1000 population. Finally, we collected smoking rates
at the county level from the study of Dwyer-Lindgren
et al. [33] and age-adjusted obesity rates and physical in-
activity prevalence rates from the BRFSS.

Empirical model

A two-level latent index model was used to estimate the
coal-county effect and adjacent-coal-county effect [34].
A multilevel modeling technique is one type of regres-
sion analysis that handles micro-level individual and
macro-level county factors simultaneously in one model
[35]. In the context of this study, traditional regression
approaches do not consider between-county heterogen-
eity and assume the coal-county effect is constant across
all coal counties. A less restricted assumption is that the
statistical association between coal mining and health

31 Counties in the metropolitan area: Rural-Urban Continuum codes
1-3 with the description of “Metro - Counties in metro areas’;2) Non-
metropolitan urban counties: Rural-Urban Continuum codes 4—7 with
the description of “Nonmetro - Urban population of 2500 or more”;3)
Rural counties: Rural-Urban Continuum codes 8—9 with the descrip-
tion of “Nonmetro county completely rural or less than 2500 urban
population.
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outcome follows a distribution, and it can be different
across coal counties and over time due to other covari-
ates, such as SES or health behavioral risk factors. In-
stead of fitting a different model based on each county’s
individual-level data, we used a two-level model with in-
dividuals (level 1) nested within counties (level 2) and
allowed key model parameters vary across counties and
over time in association with other covariates. A detailed
description of each level’s model specification was pro-
vided below.

The Level-1 Model assumes that for an individual i in
county j deceased in year ¢, the probability of dying from
a certain disease y;; could be estimated through a latent
index y;;,. Intuitively, the latent index y* reflects the se-
verity of a disease: the individual will die when the latent
index reaches a threshold (y* >0). We model the latent
index as a linear combination of county-specific inter-
cept (Bg;r), county group indicator (coal-mining, adjacent
coal or tobacco county), individual s demographic char-
acteristics (X;;,) and year-specific effects (d,) as follows:

y;‘;‘[ = /))O/t + Cljtdincozzl + Cthdad/’coal"_X;jt/gl + dItO-
+ 8ijt (1)

To estimate the coal-county effect and adjacent-coal-
county effect, we use two binary variables indicating
county groups: d;,co.; = 1 if the deceased lived in a coal-
mining county, and d,4jcon = 1 if the deceased lived in a
county adjacent to coal-mining counties. The baseline
group consists of those residing in tobacco-producing
counties due to the similarity between coal-mining
counties (“treated” group) and tobacco-producing coun-
ties (“untreated” group) and their non-adjacency. Add-
itionally, individual-level demographic variables (Xj;),
such as age, race and gender are included. A set of year
dummies (d,) is added to control unobserved time ef-
fects. We adjust errors (g;,) for correlations between in-
dividuals in the same county.

The Level-1 Model (1) allows three parameters to vary
by county j and year £: B, c1j» and cyj.. The parameter By,
is the tobacco-county-specific intercept, reflecting county
heterogeneity in the mean latent index at the baseline
when d;y,cou1 = Aadjeoar = 0. We call By, the “county baseline”
as a short term in the following discussion since tobacco
counties are chosen as baseline counties. As the probabil-
ity of dying from a specific disease is an increasing func-
tion of the latent index, a lower county baseline suggests a
lower mean county probability of dying. We expect the
county baseline (i.e., free of coal mining effect) to be lower
if that county’s residents have a higher socio-economic
status (SES), better health access (HA) and lower health
behavioral risk (HR) at year t. Suppose there are two
counties, and county A provides better health access than
county B. This expectation can be explained in two
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scenarios. 1) When residents in both counties are the
same in SES and HR aspects, residents in county A would
be less likely to die from a particular disease; 2) When res-
idents in both counties also differ in some of SES and HR
aspects, for instance, if residents in county A face a higher
unemployment rate and smoking rate compared to resi-
dents in county B, this may offset their advantage with
health access and result in a higher likelihood of dying.
Therefore, the county baseline is determined by the spe-
cific combination of SES, HA, and HR. We further specify
Boje in the Level-2 Model with the signs indicating prior
expectations.

Boje = Bo + 11 SESjt + 1oy HAji + o3 HRj, (2)
GGG (-) ()

The level-2 predictors SES, HA, and HR are a set of
county characteristics that could affect the intercept, as
introduced in the section of County-level covariates.

The parameter c;;; measures the average coal-county
effect by comparing mean latent indices between a coal-
mining county with a tobacco county, holding other fac-
tors fixed. We expect ¢y, >0 if living in a coal-mining
county contributed to the mortality risk. Like Bg;, we
hypothesize the coal-county effect to be different among
coal-mining counties. In addition to SES, health access
and health behavioral risk factors, total coal production
(Prod) and the percent of production from surface coal
mining (Surface%), may have also affected the link be-
tween coal production and mortality risks. Conse-
quently, similar to Sy, the coefficient ¢y, is allowed to
vary by county characteristics.

Cije = €1+ 11y SESje + 111y HAj + 11,3 HR;;
0 O &) )
+ my4Prod; + n,5Surface%;, (3)
(+) (+H)

The magnitude of coal-county effect (cy;) depends on
estimated parameters and historical values of county
characteristics, which change over year (¢) and differ for
each county (j). Therefore, c;; is heterogeneous both
within and between counties. To explain this intuitively,
we expect coal-mining county j ’s adverse health effect
could be reduced over time if county j improves the eco-
nomic status of residents, increases the accessibility of
health care services or decreases risk factors and coal
production (within-county heterogeneity). Also, a coal-
county effect is expected to be smaller for a coal-mining
county with higher SES, better HA, lower HR and coal
production and less surface mining activities, compared
with other coal-mining counties during the same year ¢
(between-county heterogeneity). Note, although #;; and
#12 are expected to be negative, cy;, could still be positive
if the effects of the health behavioral risk factors (HR),
coal production (Prod) and surface coal percentage
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(Surface%) offset the socioeconomic status (SES) and
health access (HA) effects.

Similar logic applies to adjacent coal counties, so the
adjacent-coal-county effect is specified as:

Cojt = Co +1yy SESjt + 19y HAjt + 11y3 HR;; (4)
+ O - (=) (+)

If some coal mines are located near the county bound-
aries, cyj; is expected to be positive. Again, #,; and 7,
are expected to have negative signs, indicating higher
SES and better health access reducing the adjacent-coal-
county effect on mortality. Since health behavioral risk
factors increase the county effect [36], 77,3 is expected to
be positive.

Substituting Eqs. (2) to (4) into Eq. (1), yields:

Yie = (ﬁo + 01 SESje + HopFHAje + 103 HR;r)
+(er + 111 SESje + m1,HAj + 173HR;,
+17,4Prodye + 1,5 Surface¥o; ) dincoal
+(c2 + 13, SESje + 1 HAjt + 11y3H Rt ) A agjcoar
+X By + d,o + &
(5)

To answer the research questions, we test the follow-
ing two hypotheses:

1) Parameters Sy, 1, and ¢y, vary between counties
and over time. This means #o1, 702 and 73 are not
jointly equal to zero in the intercept equation. The
same logic is applied to ¢y, equation (17,1 # 0 or
H12# 0 or 13 % 0 or 14 % 0 or 715 = 0) and Cojt
equation (121 # 0 or #25 # 0 or 7,3 = 0);

2) The coal-county effect is affected by socioeconomic
status, health access, high-risk behavioral factors, and
coal production. This means the coefficients #;; = 0,
H12#0, 71320, 714 2 0 and 7715 2 0 in Eq. (3).

Statistical analyses

Our statistical analyses began with a descriptive sum-
mary of all variables in the model. In order to test for
the first hypothesis, we estimated the general model spe-
cified by Eq. (5) with all explanatory variables. Wald
tests were conducted to test the joint significance of all
county-level covariates in the By, cij, and ¢, equations.
The model assumed that individuals were correlated
within the same counties or cities. According to Cam-
eron and Miller [37], ordinary Wald tests often over-
reject when there is a small number of counties (M = 24
clusters in our case4), meaning that the p-values from

“*In addition to 21 counties, there are three independent cities: Bristol
City and Norton City in the coal region and Danville City in the
tobacco region. So we have a total of 24 clusters.
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ordinary Wald tests are underestimated. We followed
their suggestion and conducted adjusted Wald tests,
which were based on a t-distribution with M-1 degrees
of freedom. All statistical analyses were conducted using
Stata 14 software [38].

For the second hypothesis, particular interest centered
on the coal-county effect ¢y, in Eq. (3). According to the
Wald tests, we adjusted the general model by excluding
non-significant vectors of variables and checked sensitiv-
ities of the results to different specifications. Variance
inflation factor (VIF) was used to test potential collinear-
ity between socioeconomic and health access covariates.
Next, the coal-county effects (cy;;) of three coal-mining
counties were predicted based on these counties’ histor-
ical characteristics and the estimated parameters. The
case study of two Virginia coal-mining counties (Russell
County and Lee County) illustrated how our finding
could be meaningful in the real world. Specifically, it ex-
plained what happened to the coal-county effect when
some non-coal factor changed over time.

Although our analyses were not able to identify coal
miners from the death records, we expected that male
and working-age residents in our sample would have a
higher mortality risk associated with coal mining, be-
cause this population would more likely to be working
in coal mines. To explore this, we ran the regressions
and predicted the coal-county effects for male and fe-
male subgroups separately. Similar analyses were also
conducted on working age (15-64) and retirement age
(> 64) subgroups.

Results

Descriptive statistics

Table 1 provides descriptive statistics for all variables at
the individual level (#z =57,917). From 2005 to 2012, an
average of 11 out of 100 people died from NMRD. Resi-
dents in the death records obtained an average of 10
years of schooling (standard deviation (SD) = 3.56), and
their average age was 72 years (SD = 17.55). The majority
of deceased individuals were white (83%), and one half
of the sample was female. About 39% of the deceased
were married. Consistent with previous literature, SES in
this region was relatively low. The average county un-
employment rate was 7% (SD =2%), and the mean of
median household income was $35,880 (SD =4120).
About 39% of residents lived in rural areas where the
population was less than 2500. On average, the age-
adjusted physical inactivity prevalence rate was 28%
(SD =3%), and the age-adjusted obesity rate was 30%
(SD =3%). The average smoking rate of 28% (SD =2%)
was above the national average of around 24% calculated
by Dwyer-Lindgren et al. [33]. Regarding health access
variables, the mean values of hospital beds, federal quali-
fied health centers and doctors were 3.08, 0.06 and 1.11
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per 1000 population, respectively. The average county
health insurance rate showed that 84% of individuals
had some sorts of health insurance. Among the study
area, the mean county annual coal production was 1.23
million tons with a large standard deviation of 2.87,
which indicated heterogeneity in coal production be-
tween counties. Except for Scott County, all coal-mining
counties in Virginia were involved in surface mining,
and the mean surface coal production was 0.52 million
tons (SD =1.37). Finally, of the 57,917 residents in the
death records, 19,692 residents (34%) were living in
seven coal-mining counties and 10,425 residents (18%)
in three adjacent counties.

Wald test results

Table 2 reports p-values from adjusted Wald tests (p-
values from ordinary Wald tests are reported in the par-
entheses). The first row suggests that varying specifica-
tions of By, c1j»» and cyjr were preferred. For example, in
the ¢y;; column of row (1), we tested the null hypothesis
Hy:n11=7112=113=114=115=0 in Eq. (3) and obtained
a p-value less than 0.01 from adjusted Wald test, so we
rejected the null hypothesis that the coal-county effect
was a constant and independent of county-level covari-
ates. Likewise, Wald tests also rejected the null hypoth-
esis that 3y, (p-value< 0.01) and ¢, (p-value< 0.01) were
constants.

Furthermore, we tested the joint significance of socio-
economic status, health access and health behavioral risk
vectors of variables separately in each level-2 equation.
Column (2) and (3) in Table 2 show that coal-county ef-
fect ¢y, and adjacent-coal-county effect c,;, were signifi-
cantly affected by health access (HA) with p-values less
than 0.01, and county SES also explained the variations
in adjacent-coal-county effects (p-value=0.01). The
county baseline f3;; appeared to depend on health access
(HA) and health behavioral risk factors (HR) with p-
values less than 10%.

Model results of coal-county effects

Results of collinearity test are provided in Additional file
1. The maximum VIF value was less than 3, which indi-
cated that there was no collinearity. Average marginal
effects of all variables are reported in Additional file 2.
The average marginal effect of the coal-county indicator
was significantly positive across models.

Table 3 reports estimated coefficients in the equation of
cij» utilizing different model specifications. The magni-
tude and significance of estimated coefficients were ro-
bust. The results show that the coal-county effect was
higher in rural and metropolitan urban areas compared to
non-metropolitan urban areas. Significant coefficients
were found for the number of hospital beds, doctors per
1000 population and health insurance rates. For example,
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Table 1 Summary of individual and county-level characteristics from years 2005 to 2012. (n=57,917)
Variable Definition and Label Mean SD® Min © Max ©
Dependent variable
Ymro Death indicator: 1 = Death due to Non-Malignant 0.1 032 0 17
Respiratory Disease
Demographics
edu Years of education 10.08 356 0 17
age Age in years 72.24 17.55 0 109
Lhite Race indicator: 1 = white 083 038 0 1
Intack Race indicator: 1 = black 0.17 038 0 1
lother Race indicator: 1 = other race except for white 0.002 0.05 0 1
and black
female Gender indicator: 1 =female 0.50 050 0 1
Lsingle Marital status indicator: 1 =single 0.11 0.31 0 1
lmarried Marital status indicator: 1 = married 0.39 049 0 1
lwidowed Marital status indicator: 1 = widowed 0.38 048 0 1
laivor Marital status indicator: 1 = divorced 0.13 033 0 1
SES
Runemploy Unemployment rate 0.07 0.02 0.03 0.1
Income Median household income in 1000 dollars 35.88 4.12 252 524
Imetro Rural-urban indicator: 1 = county in a metro area 0.28 045 0 1
Inonmetro Rural-urban indicator: 1 = nonmetropolitan county 0.33 047 0 1
with the urban population more than 2500
lural Rural-urban indicator: 1 = nonmetropolitan county 039 049 0 1
completely rural with less than 2500
Risk factors
Rinactivity Age-adjusted leisure-time physical inactivity 0.28 0.03 0.2 04
prevalence percent
Ropesity Age-adjusted obesity rate 0.30 0.03 02 04
Rsmoking Age-standardized total cigarette smoking 0.28 0.02 0.2 03
prevalence rate
Health access
bedperooo Hospital beds per 1000 population 3.08 385 0 15.1
hcenterpenooo Federal qualified health centers per 1000 population 0.06 0.07 0 03
doCtOrperi000 M.D. and D.O. total active non-Fed & fed per 1.11 0.84 0.1 29
1000 population
Rinsur Percent insured under 65 years (%) 83.70 1.79 789 88.2
007" Switch indicator: 1 =year after 2007 062 049 0 1
Coal-related
Prod County coal production (million tons) 123 287 0 1.8
Surface County surface coal production (million tons) 052 137 0 6.7
Surface% Percent of surface mining coal (%) 1135 20.66 0 717
incoal Coal indicator: 1 =live with living in a coal-mining county 0.34 047 0 1
dadjcoal Coal indicator: 1=living in an adjacent county 0.18 0.38 0 1

of coal-mining counties

9 the SD denotes the standard deviation

b Min denotes the minimum values of each variable
€ Max denotes the maximum values of each variable
4 The SAHIE program calculates county-level health insurance based on national survey data. In 2008, the SAHIE program switched from using Current Population
Survey (CPS) as the basis of estimation to American Community Survey (ACS). Therefore, to capture the structural change of this variable in the model, we add a

product of the insurance rate with a switch indicator d-,q07, Which is one after 2007
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Table 2 Wald test of varying parameters
Vector of Variables to Test for Joint p-value: adjusted Boje Cije G Bor+ B+ G+ Boje + Crje +
Insignificance (unadjusted) ) (3) Cije Coje Coje Coje
4 5) (6) 7)
(MAIl variables except for the intercept <001 <001 <001 0.02 0.02 0.14 0.29
(<001) (<001) (<001) (<001) (<001) (<001) (<0071)
(2) SES: Runempioy: Income, lrai Imetro 031 0.11 0.01 0.01 0.04 0.02 0.06
0.21) (0.04) (<001) (<001) (<001) (<001 (<0.01)
(3) HA: bedperiooo, hcenterpernooo, doCtorperioons Rinsur Rinsur * d>2007 0.08 <001 <001 <001 <001 <001 <0.01
0.01) (<0.01) (0.02) (<001) (<001) (<001 (<0.01)
(4) HR: Rovesityr Rinactivity Rsmoking 0.06 0.15 061 0.01 030 030 0.08
(0.02) (0.09) (0.56) (<0.01) (0.12) (0.12) (<0.01)

one additional doctor per 1000 population significantly re-
duced the coal-county effect by 0.119 to 0.147 across
models, and a 1% increase in health insurance coverage
rates significantly reduced the health effect by 0.065 to
0.070 across models. However, the coefficient of hospital
beds per 1000 population is significantly positive. Regard-
ing health behavioral risk factors, a 1% increase of the
smoking rate at the county level significantly increased the
coal-county health effect by 0.026 to 0.035 across models.
Finally, the coal-county effect went up by 0.02 to 0.04 with
a 10% increase in surface coal proportion. The coefficients
of total coal production were not significant, so this vari-
able was excluded from the final estimation due to high
collinearity with surface coal percentage.

Case studies

Figure 2a plots annual surface-mining coal production
of three counties in Virginia. Buchanan County had pro-
duced the most coal in Virginia in the past decades, and
its production started to decline after 2007. Surface coal
production in Russell County and Lee County had been
much lower and less than 1 million tons. The coal-
county effect (c;;) was predicted using the estimated pa-
rameters from model 2 preferred by the adjusted Wald
tests. Figure 2b shows the predicted coal-county effects
for these three counties: Buchanan County (¢y;: 0.18 to
0.40), Russell County (¢1j;: 0.02 to 0.23) and Lee County
(C1je: 0.06 to 0.2). A 95% confidence interval was drawn
around Buchanan County’s ¢, to indicate the precision
of predicted values. The overall average coal-county ef-
fects in the Virginia coal region was 0.1 from 2005 to
2012. Highest coal-county effects were observed in Bu-
chanan County because of its heavy coal production.
However, the coal-county effects increased rapidly in
Russell County and Lee County, although their surface
coal production had been flat or decreasing.

Figure 3 provides an intuitive explanation to the increas-
ing coal effect in Russell county. Russell County’s health in-
surance rates were declining and much lower than other
coal-mining counties (Fig. 3a). By plotting the increments of

Russell County’s coal effects from 2007 and the fraction of
increments explained by health insurance rate (shadow
area). Figure 3b shows that Russell County’s declining health
insurance rates mainly drove the increasing coal-county ef-
fect. Given an average of population of 28,834, our model
predicted that a 1% decrease in the health insurance rate
would lead to 403 residents dying from NMRD in Russell
County, and increase the average coal-county effect by 68%.
Figure 3c shows that doctors were leaving Lee County
from 2006, and the decreasing number of doctors explained
more than two-thirds of the increments of coal-county ef-
fects in Fig. 3d. Model result suggested that the average
coal-county effect increased by 147% (=0.147/0.1*100%)
with one additional doctor per 1000 population leaving.

Subgroup analyses

Figure 4a and b show the predicted coal-county effects
from the female-only model and male-only model under
the specification of model 2. The predicted coal-county
effects on females ranged between 0 to 0.1 since 2007,
and the marginal effect of coal-county indicator was not
significant. However, for males, we found that the coal-
county effects ranged between 0.1 to 0.5, and coal-
mining county residency significantly increased the
probability of dying from NMRD.

Next, Fig. 4c and d show the predicted coal-county ef-
fects for working age (15—64) and retirement age (> 64),
respectively. With an average of 0.18, the coal-county ef-
fects were stronger for the working-age population, while
the average coal-county effect on the retirement-age
population was 0.10. Since the working-age sample had a
smaller sample size than other subsamples, the width of
its 95% confidence interval was around 0.6, while other
confidence intervals’ width was around 0.2 to 0.3. For Rus-
sell County, a 0.5 increase in coal-county effect was ob-
served for the working population after 2007 in Fig. 4c,
but not for the retirement-age population in Fig. 4d.

Discussion
The positive marginal effect of the coal county indicator
indicated that, compared to a tobacco county, living in a
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Table 3 Estimated coefficients of varying coal-county effects
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@) @ (©) 4) &)
General Model® Model 1° Model 2¢ City Adjusted Model Scott Check Model®
Intercept (c;) 4134 4969 5028 5028 5088
(239) (3.13) (3.59) (367) (3.60)
SES
Runemploy 0.020 0.020
(1.09) (1.24)
Income 0011 0011"
(1.16) (1.78)
Imetro 0.146" 0092
(2.43) (1.88)
lural 0.107" 0079
(1.80) (2.22)
Health Access
bedpenooo 00412" 00417 0034 0034 00317
(857) 871) (7.76) (838) (8.09)
hcenterenono ~0.131 -0.157 ~0.140 ~0.140 -0.138
(-052) (-0.75) (-064) (-087) (-067)
doctorsenon -0.119" -0143" -0.147" -0147" -01417"
(=3.02) (~4.25) (-592) (-8.04) (~5.79)
Rinsur —-0065"" -0070" ~0068" 0068 ~0065"
(-384) (-412) (- 4.08) (-4.15) (-373)
Rinsur  d2007 -0001" -0002" -0001" -0001" ~ 0001
(-1.88) (=2.76) (—1.84) (~1.78) (-1.16)
Risk Factor
Robesity 0.005 ~0002 0010 0010 -003
(038) (=0.19) (1.13) (1.09) (-037)
Rinactivity -0.008 -0.006 —0.005 -0005 - 0003
(-0.88) (=0.73) (=0.71) (-0.72) (—048)
Remoking 0035 0.029" 0026 0026~ 0027
(252) (197) (2.64) (2.45) @71
Coal Production
Surface% 0004 0003™" 0002 0002 0002
(9.14) (9.72) (4.68) @71) (4.55)
Pseudo R* 00297 00296 00294 00294 00293
Log likelihood -16917 -16918 -16,921 ~16921 -16922
BIC 34,1033 34,0853 34,1008 34,0684 34,104.1
Number of observations 49437 49437 49437 49,437 49437

Z test statistic in parentheses " p <.1,

" p<.05 " p<.01

? General model: kept all vectors of SES, HA and HR variables in By, ¢ and ¢y in Eq. (5) as the preliminary model
b Model 1: removed all SES variables in the Bojr equation and all HR variables in the ¢, equation from the General model

€ Model 2: removed all SES variables in both By and ¢y;; equations and all HR variables in the ¢, equation from the General model

9 City adjusted model: since there are independent cities that nest into counties in Virginia, we collapsed these cities into their belonging counties and adjusted

the clustered structure of error terms in model 2 accordingly

€ Scott check model: provided that Scott County stop producing coal in 1996, we treated Scott County as an adjacent coal county instead of a coal-mining county
to check sensitivity using model 2's specification
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Fig. 2 (a) Annual surface coal production and (b) Predicted coal-county effects of three Virginia coal-mining counties

coal county increased the probability of dying from
NMRD. Although residents in adjacent coal counties
were exposed to similar pollutants from coal production,
we did not find higher mortality risk associated with
residence in an adjacent-coal county. Additionally, sev-
eral non-coal factors (i.e., health insurance coverage
rates, numbers of doctors and hospital beds and smok-
ing rates) significantly affected the coal-county effect.
Our main results suggested that a decline in health insur-
ance coverage significantly accentuated the coal county ef-
fect. County health insurance rates captured the degree of
health care coverage. Without any health insurance, pa-
tients might not be able to afford medical care, which may
result in higher risks of dying from several chronic diseases
[39]. In many coal-mining counties, the declining health in-
surance rate was a common problem, which reduced the
affordability of health care services [40]. Since the demand
for coal decreased in the United States, several coal com-
panies declared bankruptcy and stopped contributing to
the healthcare benefits for their retirees [16]. This might
hurt health insurance coverage in coal counties. The

uninsured can be expected to be more vulnerable to coal-
related diseases that needed long-term medical care.
Coal-mining counties are often located in mountain
areas and have limited access to health services such as
fewer hospitals and physicians than the national average
[2, 17]. The number of doctors reflected the commu-
nity’s ability to detect diseases and provide long-term
medical services. A shortage of physicians in Appalach-
ian counties is associated with fewer appointment times
[40]. For example, Wellmont Health system closed the
only hospital in Lee County in 2013. After that closure,
Lee County’s residents have to visit a hospital in a neigh-
boring county for quick lab work or X-rays. Like Lee
County, some poor Appalachian rural counties faced the
problem of doctors leaving [41]. A survey by Huttlinger
et al. [40] showed that many respondents in Appalachia
had to wait up to 3 months for a doctor’s appointment
due to the lack of specialty care providers. A longer
waiting time may impede rural residents from seeking
early treatment on their coal-related diseases and can in-
crease the coal health effect. As several respiratory
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Fig. 3 Increasing coal-county effects in two counties caused by deterioration in access to healthcare. (a) Health insurance coverage rates, (b)
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diseases related to coal exposure are often symptomless,
regular screening tests by doctors can result in detection
of these diseases at earlier stages when the treatment is
more effective to prevent death. Without easy access to
healthcare professionals, a patient has a lower chance of
surviving as his or her disease progresses to a compli-
cated form [9, 42].

Data limitation might explain the significantly posi-
tive coefficients of the number of hospital beds (Table
3). We do not know how many hospital beds are oc-
cupied for respiratory treatments, such as mechanical
ventilation and oxygen therapy [43]. As a result, the
relationship between respiratory mortality and number
of hospital beds is unexpected. Another plausible ex-
planation is reverse causality [44]. As the number of
hospital beds represents the capacity of healthcare fa-
cilities [45], a county with a large number of hospital
beds often has a big and more demanded hospital
and may also be the result of high demands. Further-
more, patients from neighboring counties may travel

to that hospital for treatments. These may all result
in higher county mortality rates than neighboring
counties.

Smoking and surface coal mining also contributed to
the coal-county effect. Researchers observed much higher
smoking rates [46] in central Appalachia than the national
average [47]. Similar findings from previous literature also
suggested that living in a county with surface coal mining
was associated with more hospitalizations for asthma [48]
and high mortality rates of chronic heart diseases [19].

As subgroup analyses revealed higher coal-county ef-
fects among male than female residents, we suspected that
occupational health hazard from coal miners might partly
drive the estimated coal-county effects. Similar findings
were reported by Hendryx and Ahern [6], who found coal
effect was higher for male than female residents and inter-
preted this phenomenon as a miner’s effect. For female
residents in this study, living in a coal-mining county was
not associated with a higher likelihood of dying from
NMRD. A few previous studies found that female
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residents in coal-mining areas had a higher mortality risk
than females in non-coal areas [3, 20]. Our study did not
find a significantly positive coal county effect among the
female subgroup, which might be due to ecological bias.
According to Greenland and Morgenstern [49], ecological
bias means “the failure of ecological- (aggregate-) level as-
sociations to properly reflect individual-level associations.”
Although the aggregate effect on female subsample was
not significant, living in a coal county might still increase
the mortality risk for some female residents. Additionally,
there are two potential reasons for our different results
compared to previous studies. First, the ICD diagnosis
codes used in our study were J00-J99 for NMRD. Previous
studies focused on other health outcomes. Second, due to
some unobserved factors, less healthy people may self-
select to live in economically distressed counties. This lead
to a concern of selection bias that the observed health dis-
parity has no association with coal mining but with in-
come. Previous researchers often compared mortality
risks between coal-mining counties with non-coal-mining
counties, which did not consider the issue of selection bias
and income effects. Our study attempted to reduce the se-
lection bias by using tobacco counties as the comparison
group, given the similarity in economic condition between
the coal-mining counties and tobacco counties.

In the second subgroup analysis, health effect of coal
mining on the working-age residents was higher than
that on retirement-age residents. Driven by the decline
in health insurance coverage rate, an increase in coal
county effect was observed for Russell County’s working

population, but not for the retirement-age population in
the same county, which reflected the crucial role of
health insurance on the working population to reduce
adverse health impact from coal production.

Policy suggestions

Our findings assist health policymakers in identifying
and choosing between alternative strategies when
attempting to reduce elevated mortality rates in coal
communities. First, affordability of health insurance
challenges these coal communities due to declines in the
coal industry during the past two decades [40], and thus,
loss of jobs leads to loss of health benefits. Policy makers
may consider expanding health insurance coverage by
introducing low-cost health insurance plans and increas-
ing diverse job opportunities. According to Perri [16],
Congress reached a deal to provide a permanent $1.3
billion benefit for over 22,600 retired coal miners and
their families, which may be helpful to increase health
insurance coverage. Second, to address the shortage of
doctors, healthcare facilities in coal-mining counties may
consider collaborations with other healthcare facilities
and increase incentives to recruit more healthcare pro-
fessionals. Some rural counties may use telehealth [50],
which allows patients to see a remote specialist by using
video conferencing.

Limitations
Common to previous studies, this study has several limita-
tions. Although our analyses were based on individual-level
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data, the risk of ecological bias still existed. This problem
happens when an inference is made for individuals based on
aggregate data due to loss of intergroup variation in the dis-
tribution of other risk factors and effect modifiers. Although
our regression analysis used individual death records and
controlled individual-level covariates, there was a potential
ecological bias when county-level covariates were introduced
in the level-2 model. Particularly, the coal-county effect was
an average health impact of living in a coal-mining county.
Within each county, the coal health impact on each individ-
ual can be different. To assess ecological bias, future studies
may consider analyzing the association at individual and dif-
ferent aggregation levels to see if there is a significant differ-
ence. If yes, appropriate control of individual-level covariates
can reduce ecological bias [49].

One potential limitation of the statistical model is that it
did not assess the spatial autocorrelation among counties.
Previous spatial analyses found cancer mortality clustered
in areas of heavy coal production [5, 24]. If NMRD mor-
tality exhibits a positive spatial autocorrelation among
counties, the estimated coefficients are still unbiased, but
their standard errors will be underestimated. Future stud-
ies may incorporate spatial analyses to better understand
the health effect of living in an adjacent coal county.

The model revealed the statistical association between
coal-county residency and likelihoods of dying from
NMRD, but not the causal relationship. As the coal-
county effect is a parameter estimate associated with a
coal-county dummy variable, it does not mean the main
driving force for the significance of the parameter is coal
mining. Lack of individual-level coal exposure and envir-
onmental measures made it difficult to identify the
causal pathways linking coal mining and NMRD mortal-
ity. To establish a causal link, researchers need more so-
phisticated identification strategies, such as natural
experiments, longitudinal data on both health, environ-
ment and coal mining.

Other important limitations are mainly associated with
data availability. First, we used county of residence in the
death records as a rough measurement of exposure to coal
production, which did not capture the length of exposure.
Second, separating coal miners’ occupational hazard from
the community health effect is another common challenge
in this field. The lack of separation may overestimate coal
health effects on the general population. Since almost all
coal miners are male, we estimated the coal-county effects
based on female subgroup as a “second-best” strategy to
exclude occupational health exposure. The results indi-
cated that estimated coal-county effects should be lower if
coal miners can be excluded from the sample.

Conclusions
This study is a step forward in understanding the under-
lying factors that may be associated with a “coal-county
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effect” and helps identify factors that can be targeted to
improve health in coal-mining counties. Using individual
mortality data, we found a higher risk of dying from
NMRD associated with living in a coal-mining county,
but not with living in an adjacent county. This associ-
ation was further accentuated by limited accessibility of
health services--low health insurance coverage rates and
lack of doctors.

This study contributes to the literature by showing the
critical role of health access in reducing health disparities
related to coal exposure, especially for the working popu-
lation. Since coal-county effects may include occupational
hazard, future research needs the occupation information
to test whether or not living in a coal-mining county con-
tributes to non-miners’ respiratory mortality. Depending
on data availability, future research may also consider bet-
ter measures of coal exposure such as distance from resi-
dence to the nearest coal mine site [51] and occupational
histories [52]. The specific mechanism through which coal
affects population health is not in the scope of this study.
As previous studies suggested coal mining was a signifi-
cant source of air pollutants [26, 53, 54], future studies
may examine environmental factors such as particulate
matter distribution and concentration near Appalachian
coal-mining region to investigate the mechanism and as-
sociate relevant disease incidence.
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